基于VSC的柔性直流输电技术研究
- 格式:pdf
- 大小:287.27 KB
- 文档页数:5
柔性直流输电技术及其应用研究作者:赵林平来源:《现代企业文化·理论版》2009年第14期摘要:柔性直流输电(Voltage Source Converter based HVDC,VSC-HVDC),又称基于电压源型换流器(VSC)的高压直流输电,是近年发展起来的一种新型直流输电技术。
文章详细介绍了VSC-HVDC的相关技术,并针对其主要的技术特点与应用背景作了相关的应用研究。
关键词:柔性直流输电;电压源型换流器;高压输电中图分类号:TM721 文献标识码:A文章编号:1674-1145(2009)21-0162-02柔性直流输电,是采用基于可控关断器件的VSC和PWM的直流输电技术。
由于它具有有功和无功独立控制、能向无源网络供电且适用于可再生能源并网、城市电网供电、异步交流电网互联等优点,国外学者已对其展开了深入的研究,而在国内,这种新型的输电技术还处于起步阶段,但从柔性输电的技术优势与国外成功的工程经验来说,这种新型的输电技术在国内将有着非常巨大的应用前景。
一、VSC-HVDC技术概述柔性直流输电技术是在IGBT(绝缘栅双极晶体管)和VSC(电压源换流站)基础上采用PWM(脉宽调制)技术发展起来的新一代直流输电技术。
(一)VSC-HVDC的基本原理所谓VSC-HVDC就是基于VSC的直流输电,其基本原理如图1所示,设送端、受端换流器均采用VSC,则两个换流器具有相同的结构。
换流器采用两电平六脉动型,每个桥臂都由多个IGBT或GTO串联而成。
直流侧电容器的作用是为逆变器提供电压支撑、缓冲桥臂关断时的冲击电流、减小直流侧谐波;换流电抗器是VSC与交流侧能量交换的纽带同时也起到滤波的作用;交流滤波器的作用是滤去交流侧谐波。
设交流母线电压基波分量为、逆变桥输出电压基波分量为、滞后于的角度为,换流电抗器为X,如图1所示。
则忽略谐波分量时换流器所吸收的有功功率和无功功率为:(1)(2)由式(1)可见,有功功率传输主要取决于,当时VSC吸收有功功率,相当于传统HVDC中的整流器运行;当时VSC发出有功功率,相当于传统HVDC中的逆变器运行。
柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。
本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。
我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。
我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。
我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。
通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。
二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。
与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。
柔性直流输电技术的核心在于电压源换流器(VSC)。
VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。
VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。
在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。
VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。
柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。
这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。
柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。
柔性直流输电技术介绍1引言柔性直流输电技术(Voltage Sourced Converter,VSC)是一种以电压源变流器、可关断器件(如门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT))和脉宽调制(PWM)技术为基础的新型直流输电技术。
国外学术界将此项输电技术称为VSC-HVDC,国内学术界将此项输电技术称为柔性直流输电,制造厂商ABB 公司与西门子公司分别将该项输电技术命名为HVDC Light和HVDC Plus。
与传统基于晶闸管的电流源型直流输电技术相比,柔性直流输电技术具有可控性高、设计施工方便环保、占地小及换流站间无需通信等优点,在可再生能源并网、分布式发电并网、孤岛供电、城市电网供电等方面具有明显的优势。
随着大功率全控型电力电子器件的迅速发展,柔性直流输电技术在高压直流输电领域受到越来越广泛的关注及应用。
传统的低电平VSC具有开关频率高、输出电压谐波大、电压等级低、需要无源滤波器等缺点,而且存在串联器件的动态均压问题;多电平变流器提供了一种新的VSC实现方案。
它通过电平叠加输出高电压,逼近理想正弦波,输出电压谐波含量少,无需滤波设备。
自1997年赫尔斯扬试验工程投入运行以来,柔性直流输电技术迅速发展,目前已有13项工程投入商业运行,最高电压等级已达±200kV,最大工程容量达到400MW,最长输电距离为970km。
通过各个领域专家的不断创新和工程建设运行经验的不断积累,柔性直流输电技术作为一种先进的输电技术已具备大规模应用的条件。
图1两端VSC-HVDC系统典型结构图2008年12月,“柔性直流输电关键技术研究与示范工程”作为国家电网公司的重大科技专项正式启动。
该工程联接上海南汇风电场与书院变电站,用于上海南汇风电网并网,是中国首条柔性直流输电示范工程。
该工程由中国电力科学研究院开发,负责接入系统设计、设备供货及工程实施等工作。
2柔性直流输电技术的研究现状2.1高压大容量电压源变流器技术2.2.1模块化多电平变流器(Modular Multilevel Converter,MMC)模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图2所示。
多端柔性直流输电(VSC—HVD)系统直流电压下垂控制学院:姓名:学号:组员:指导老师:日期:摘要:多端柔性直流输电系统(voltage sourcedconverter basedmulti-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。
下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。
本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。
关键词:VSC-MTDC 下垂控制模块化多电平换流器一、引言基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。
MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。
并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。
多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。
单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。
课程论文论文题目:基于VSC的高压直流输电系统控制策略研究学生姓名:学生学号:专业班级:电气2班学院名称:电气与信息工程学院指导老师:学院院长:年月日摘要VSC-HVDC输电技术在实际的电力系统中已得到了一些成功的应用,其显著的特点就是具有高度可控性。
作为一种新型的输电技术,目前在国内,其相关的研究还处于初步阶段,因此对于此领域的研究特别是相对不够成熟的控制策略研究具有深刻的理论意义和现实意义。
本文从VSC的单相电路结构入手简要地分析VSC-HVDC输电系统的工作原理及控制方式。
在此基础上对在给定控制方式的VSC-HVDC输电系统,导出了其稳态数学模型,再根据非线性控制理论中的状态反馈精确线性化方法对所导出的数学模型进行了全局精确线性化,从而将系统的非线性数学模型转化为完全能控的线性方程,再根据二次型最优控制理论设计了VSC-HVDC输电系统的非线性控制器。
在分析含VSC的交直流混合输电系统模型的基础上,对系统的非线性模型进行了线性化和偏差化,从而得到交直流混合输电系统的状态方程和输出方程,再根据有结构约束的分散协调控制理论,得出了系统的最优控制规律,并在此基础上设计了适合交直流混合输电系统的分散协调控制器。
最后利用电磁暂态仿真软件PSCAD/EMTDC,对本文提出的非线性控制器和分散协调控制器分别进行了计算机仿真研究。
仿真结果表明,本文所采用的VSC-HVDC输电系统模型可行,提出的线性化方法有效。
在输电系统发生故障或扰动时,本文所设计的非线性控制器和分散协调控制器均能有效地增加系统的阻尼,改善系统的暂态稳定性,减少直流输电线路电压和电流的振荡幅度和持续时间,使系统能够在较短的时间内恢复到正常运行状态,从而有效改善了输电系统的动态性能。
关键词:VSC;非线性控制;分散协调控制;PSCAD/EMTDC.AbstractThe technology of HVDC power transmission based on VSC which could be highly controlled had some successful applications in the power systems.But as a newtechnology,study in this field is not mature in our country.So the study in this field especially the immature control scheme is of great meaning in both theory and expenence.Starting from the structure of single—phase circuit of VCS,this article brieny analyzed both the principle and control method of VSC—HVDC power transmission system.On that basis stable math model of the VSC—HVDC power system under given control scheme was deduced.Then the model is converted to a fully controllable linear model using state feedback and coordinate transformation in nonlinear system control theory.Last a nonlinear optimal control strategy is deriVed based on the optimal control theor)r of linear systems.Finally a new nonlinear controller is designed for VSC—HVDC systems.The state equation and output equation are obtained using linearization method on the basis of analyzing the hybrid transmission systems.Then an optimal control strategy is derived based on the structure restriction control theory of Iinear systems.Finally a new decentralized and coordinated controller is designed for hybrid transmission systems.Numerical simulations of the newly designed nonlinear controller and decentralized and coordinated controller are carried out by using the electromagnetic transient simulation software PSCAD/EMTDC.Simulation results show that the models using in the paper are feasible and the linearization method are efficient.Controllers can restore the system subj ected to a disturbance or fault to normal state faster and better than the system with the existing controllers.It improVes efnciently the dynamic performance of the hybrid transmission systems.Key Words:VSC;Nonlinear Control;Decentralized and Coordinated Control;PSCAD/EMTDC目录1绪论 (1)1.1引言 (1)1.2VSC-HDVC输电系统的特点 (2)1.2.1VSC-HDVC输电系统的优点 (2)1.2.2VSC-HVDC输电系统的缺点 (3)1.3VSC-HVDC输电系统的应用场合和情况 (4)1.4VSC-HVDC输电技术的研究现状 (6)1.5本文的主要工作 (7)2VSC—HVDC输电系统的基本原理 (8)2.1VSC的电路结构 (8)2.2VSC的调相原理 (9)2.3VSC的运行特性 (11)3VSC-HDVC系统新型非线性控制器设计 (14)3.1非线性控制理论简介 (14)3.2VSC-HVDC输电系统的控制方式 (15)3.3VSC—HVDC输电系统模型 (16)3.3.1VSC.HVDC输电系统的结构模型 (16)3.3.2VSC.HVDC输电系统的数学模型 (18)4基于PSCAD的仿真算例及分析 (20)4.1PSCAD/EMTDC仿真软件简介 (20)4.1.1PSCAD/EMTDC发展历程 (20)4.1.2PSCAD/EMTDC的程序结构和功能特点 (21)4.2新型非线性控制器仿真研究 (22)4.3结论 (24)湖南大学毕业设计(论文)第1页1绪论1.1引言高压直流输电(HVDC)技术起源于20世纪20年代,经历了大半个世纪的发展历程,直到1954年才进入商业化运行,其标志性工程是连接哥特兰岛(Gotland)与瑞典大陆之间的直流输电工程。
柔性直流输电工程技术研究、应用及发展一、本文概述1、简述柔性直流输电技术的背景和发展历程随着能源结构的优化和电网互联的需求增长,直流输电技术以其长距离、大容量、低损耗的优势,在电力系统中占据了举足轻重的地位。
然而,传统的直流输电技术,如基于晶闸管的直流输电(LCC-HVDC),存在换流站需消耗大量无功、无法独立控制有功和无功功率、对交流系统故障敏感等问题。
因此,柔性直流输电技术(VSC-HVDC)应运而生,它采用电压源型换流器(VSC)和脉宽调制(PWM)技术,实现了对有功和无功功率的独立控制,并具有快速响应、灵活调节、易于构成多端直流系统等优点。
柔性直流输电技术的发展历程可以追溯到20世纪90年代初,当时基于绝缘栅双极晶体管(IGBT)的VSC技术开始应用于风电场并网和孤岛供电等领域。
随着电力电子技术的快速发展,VSC的容量和电压等级不断提升,使得柔性直流输电技术在电网互联、新能源接入、城市配电网等领域得到了广泛应用。
进入21世纪后,随着全球能源互联网的提出和新能源的大规模开发,柔性直流输电技术迎来了快速发展的黄金时期。
目前,柔性直流输电技术已经成为直流输电领域的研究热点和发展方向,其在全球范围内的大规模应用也为电力系统的智能化、绿色化、高效化发展提供了有力支撑。
2、阐述柔性直流输电技术在现代电力系统中的重要性在现代电力系统中,柔性直流输电技术已经日益显示出其无法替代的重要性。
它作为一种先进的输电技术,不仅克服了传统直流输电技术的局限性,还以其独特的优势在现代电网建设中占据了举足轻重的地位。
柔性直流输电技术的灵活性和可控性使得它在大规模可再生能源接入电网中发挥了关键作用。
随着可再生能源如风能、太阳能等的大规模开发和利用,电网面临着越来越大的挑战。
这些可再生能源具有随机性、波动性和间歇性等特点,对电网的稳定性造成了威胁。
而柔性直流输电技术通过其独特的控制策略,可以实现对有功功率和无功功率的独立控制,从而有效地解决可再生能源接入电网所带来的问题,提高电网的稳定性和可靠性。
柔性直流输电技术探析1 柔性直流输电技术的特点及其研究现状柔性直流输电是一种新型的直流输电技术,CIGRE和IEEE将之定义为VSC-HVDC,其中VSC为电压源换流器,它在工业驱动装置上的应用十分广泛,HVDC 为高压直流输电,它是ABB公司在50多年前研发的一项技术,主要作用是提高远距离输电效率。
1.1 VSC-HVDC的系统结构及其工作原理从图1中可以清楚地看到,该系统主要是由VSC、滤波器(交流)、电抗器、直流输电线路、电容等元件构成。
其中VSC为核心部件,它是由换流桥和直流电容器构成的。
1.1.2 系统运行原理。
在VSC-HVDC系统当中,按照其主电路的拓扑结构及开关器件的类型,可采用SPWM(正弦脉宽调制)技术,通过该技术在调制参考波与三角载波进行比较,若是前者的数值比后者大,则会触发上桥臂到导通并关断下桥臂,如果前者的数值小于后者,则会触发下桥臂开关导通并关断下桥臂。
因参考波的幅值及相位可利用脉宽调制技术实现自动调节,故此VSC的交流输出电压基频分量的幅值及相位也可通过脉宽进行调节。
1.2 VSC-HVDC的特点分析大体上可将VSC-HVDC的特点归纳为以下六个方面:1.2.1 VSC-HVDC系统中的换流站独立对有功及无功功率进行控制,由此不但实现了有功与无功功率的四象限运行,而且控制非常方便和灵活。
1.2.2 换流站之间无需通讯,各个站能够独立控制运行。
1.2.3 不需要在线路间增设无功补偿装置。
1.2.4 开关频率高、滤波装置的容量较小,无需设置专门的换流变压器。
1.2.5 新型直流电缆的应用使其能够适应多种恶劣的环境。
1.2.6 采用先进的模块化设计,使其本身的体积较小,有效节省了占地面积,且便于安装。
综上,与传统的直流输电系统相比,VSC-HVDC的可控性更高,对线路中潮流的控制更加方便,对扰动的响应速度更快,更适合用于中小功率和远距离输电。
1.3 VSC-HVDC技术的研究现状VSC-HVDC技术自问世以来便受到了业界的广泛关注,一些专家学者也加大了对其的研究力度。
基于VSC的柔性直流输电技术研究
本文介绍了基于VSC的柔性直流型输出电力系统的基本结构、基本工作原理和技术特点,并使用ATP-EMTP软件仿真建立其模型,得出其正常工作时的谐波及其不同故障情况下的运行特点。
最后总结了柔性直流型输电系统需重点研究的几个基础理论问题及其发展前景。
1 引言
随着能源日益紧张和环境污染日益严重,目前中国在极力开发和利用可再生的清洁型能源。
由于风能、太阳能等可再生能源利用规模的日益增大,其分散性、小规模性、离供电中心较远等问题,使得采用传统的交流输送电力系统或传统的直流输电系统显得不是很经济。
相关电子技术的迅猛发展以及控制技术的突飞猛进使得采用直流型输电力系统即可解决上述问题。
采用基于可关断型电压源换流装置和PWM技术进行直流电输送,适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市区域电网供电等诸多领域。
根据实际情况,特别是西电东送、全国电网联网迫在眉睫的情况下,研发直流型输电系统,建设新一代直流型输电联网系统,将会促进大规模电网合并,并逐步完善城市供电和孤岛供电等技术。
2 柔性直流输电的系统结构和基本原理
与传统自然换相技术的直流型输电系统不同,VSC-HVDC(Voltage Source Converter-High Voltage Direct Current)是一种以电压源换流器、可控关断装置和脉宽调制(PWM)技术为基础的新型的直流型输电技术。
该技术能在短时间内实现有功率和无功率的独立解耦控制,能够自主地向无源电网供电,极易于构成多端直流型电力系统,能极大的增加供电系统的稳定性,提高电力系统的输电能力。
下面将介绍VSC-HVDC 的系统基本结构和基本的工作原理。
2.1 系统结构
图1为柔性直流型输出电力系统的基本原理框图,两端的换流站全部采用VSC基本结构,由换流站、换流变压设备、换流电抗设备、直流电容和交流滤波电路等部分组成。
其中各部分的基本作用如下:
电压源换流器VSC:电压源换流器的桥由功率比较大的可控制关断电子器件和反并联的二极管构成。
在本论文仿真设计中,电压源换流设备采用HVDC型模块,其基本结构为12脉动控制整流装置。
变压器:变压器可采用常规的单相变压器或者三相变压器。
常见的是采用Y/接法。
换流电抗:换流电抗是VSC与交流电力系统之间的功率传送的桥梁,它决定换流设备功率的大小。
直流电容:直流电容是VSC的基本储能元器件,缓冲桥开断的冲击电流的能量,减小直流电压谐波分量。
交流滤波装置:改善输出的交流电压中高次谐波分量,其容量及参数的设定依据换流器开关的频率来选定。
2.2 工作原理
直流型输电系统可分为端对端直流型供电系统和多端型直流型系统两类,目前已成功运行的直流型系统基本全是两端型系统,图1所示即为两端型直流系统原理图。
与传统的晶闸管直流型供电有所差别,柔性直流型供电采用电压源型换流电路和PWM技术,利用IGBT可以在高速的情况下进行通断,可将PWM技术引入到VSC的基本模型中。
由调制载波和三角型载波比较,产生相对应的触发脉冲,使VSC上端桥和下端桥的高频开关开通和关断,则桥中端电压uc在两端稳定电压+ud和-ud之间进行快速转换,uc再经过电抗电路滤波后则转换为电网一侧的交流输出电压US。
VSC的基本控制工作原理公式:
公式中,uc为电流转换器输出端电压的基波分量;uS为电网一侧的交流输出电压;d为uc和uS的相位差;XT为换流电抗电路的同效电抗。
从式中可看出,通过调控uS,d即可较方便地控制电路输送的有功功率和无功功率。
如果利用PWM技术,uc同PWM调制度M成正比关系,d是PWM调制波相位差,因此可利用PWM调制幅度M和PWM调制波相位差d,在瞬间改变电网一侧交流输出电压的相位和幅值,进而实现有功率和无功率的单独控制。
3 谐波分量分析
柔性直流型输电系统影响供电电压的质量,其主要的影响因素就是谐波分量。
电压源换流电路在正常工作时,其直流电压一端和交流电压一端会同时产生相应的谐波分量;当工作电压不平衡时或交流供电系统发生不对称的故障时,直流电压一端和交流电压一端会产生很多非特征要求的谐波分量,这将使电力系统产生大量的过电压和过电流,最终影响电路和整个系统的正常运行与安全工作。
柔性直流型输电系统的控制谐波分量的一个方法是在控制电力系统中采用PWM技术。
在开关的频率要求相对较高的情况下,换流电路在比较高的开关频率下工作,其输出的交流电压和交流电流中含有的低次谐波分量比较少,本文使用12脉动换流装置,同6脉动换流装置相比较12脉动换流装置谐波分量特性有很大的改善,目前换流站大部分只采用12脉动换流装置作基本的换流单元。
另一个方法就是在换流设备交流电一端装配换流站交流滤波装置,用来吸收谐波分量的电流,使流入交流供电系统的谐波电流变小,从而进一步的降低了谐波分量电压。
依据高电压状态直流型输电系统的模型,利用滤波器的相关滤波特性进行了一定的研究。
选取适当的滤波器设置参数,得出在ATP-EMTP环境下整流一端和逆变一端的电压波形,如图3和图4所示:
从图3和图4可看出:电流转换站在比较高的开关频率下运行,在交流电压一端和直流电压一端装设相应滤波设备后,其相应的输出电压含有低次谐波分量很少,较容易达到谐波分量标准,可基本正常工作。
4 不同状态的故障分析
同传统的直流输电型输电系统相比较,柔性直流型输电系统还有另外一个显著的优点:连接两个独立交流系统的柔性直流型输电系统,一端交流系统产生故障时,但并不影响另一端交流系统和换流电路设备的正常运行。
利用ATP-EMTP软件仿真结果如下:
由图5与图6可看出:如果在一端交流系统出现单相的故障或远端出现三相短路故障时,柔性直流输电系统仍具备一定的有功功率传输能力。
因此,在柔性直流型输电的控制系统中,我们利用合理有效的控制来提高系统在出现故障情况时不间断运行能力。
5 结 论
本文研究和总结了现有电压源型供电基本模型,通过ATP。
EMTP 软件建立了基于VSC的柔性直流型输电系统的基础模型,对柔性直流型输电系统交流端和直流端进行谐波分量分析、仿真分析及其相应的优化,为交流端与直流端滤波系统的设计、PWM控制系统的设计及其优化等提供有效的仿真。
同时对VSC-HVDC输电系统异常工作况下的仿真并进行了相应的分析,得出供电系统在故障状态下的运行特性,提出了相应的解决办法,确保系统安全可靠运行。