实验五 汽车噪声测定
- 格式:ppt
- 大小:91.00 KB
- 文档页数:10
汽车整车道路行驶风噪试验方法汽车整车道路行驶风噪试验是评估汽车在道路上行驶过程中产生的风噪声的一种方法。
风噪试验主要通过测量车辆在不同速度条件下的风噪声水平,以评估车辆的乘坐舒适性和噪声控制性能。
以下是一种常见的汽车整车道路行驶风噪试验方法。
1.实验车辆准备选择一辆符合试验要求的车辆,并对其进行必要的保养和检修,确保车辆状态良好。
同时,车辆应具备全封闭车厢结构和良好的密封性能,以防止外界风噪进入车内影响试验结果。
2.实验道路选择选择一段平坦、较为平整、交通流量小的道路进行试验。
道路条件对试验结果有着重要的影响,应尽量减少道路本身的噪声干扰。
3.测量设备准备准备好适用于车辆风噪试验的专业测量设备。
常用的测量设备包括风噪测量仪、测量麦克风、声学分析器等。
这些设备应经过校准和测试,确保其准确性和稳定性。
4.试验准备将测量设备安装在车辆内部,并按照一定的标准位置和角度进行布置。
通常在车辆内部的驾驶座、副驾驶座和后排座位上分别安装麦克风,并将其与声学分析器相连。
5.试验过程在试验前,应设置好试验速度和各项试验参数,并确保试验过程的重复性。
试验开始前,车辆应处于静止状态,记录背景噪声水平。
试验时,车辆应以一定的速度行驶在试验道路上。
试验速度通常为固定值或一定范围内的变化值,以评估不同工况下的风噪声水平。
在试验过程中,及时记录并分析车辆内部测得的风噪声数据。
6.数据处理和分析通过声学分析器获取的风噪声数据可以进行后续的数据处理和分析。
可以通过频谱分析、加权等处理方法,计算车辆在试验速度下的风噪声水平。
同时,还可以对不同位置和角度的麦克风测得的数据进行比较,评估车辆内部各个座位的风噪声表现。
7.结果评估和总结根据实验结果,评估车辆的风噪声水平,分析其乘坐舒适性和噪声控制性能。
根据评估结果,可以进行必要的改进和优化,提高车辆的噪声控制性能。
可以通过多次试验和数据对比,获取更准确的结果。
同时,在进行试验时,还应注意一些影响因素的控制,如试验时间点的选择、环境温度和湿度的影响等。
交通噪声的测量【实验目的】交通噪声是目前城市环境噪声的主要来源,通过本次实验加深对交通噪声的了解,掌握等效连续声级及累计百分数声级的概念。
【实验原理】本实验中采用等效连续声级及累计百分数声级对测量的噪声进行客观量度。
等效连续A声级据能量平均的原则,把一个工作日内各段时间内不同水平的噪声,经过计算用一个平均的 A 声级来表示。
如果在工作日内接触的是一种稳态噪声,则该噪声的等效连续 A 声级就是它的 A 声级。
累计百分数声级Ln表示在测量时间内高于Ln声级所占的时间为n%。
对于统计特性符合正态分布的噪声,其累计百分数声级与等效连续A声级之间有近似关系。
Leq≈L50+(L10-L90)2/60式中:峰值声级(L10):表示在测量时段内,有10%的时间超过的噪声级,即噪声平均最大值。
它是对人干扰较大的声级,也是交通噪声常用的评价值。
平均声级(L50):表示在测量时段内,有50%的时间超过的噪声级,即噪声的平均值。
本底声级(L90):表示在测量时段内,有90%的时间超过的噪声级,即噪声的本底值。
等效声级(Leq):是将测量时段内间歇暴露的几个A声级表示该时段内的噪声大小,是声级能量的平均值。
【实验仪器】AWA5610P型积分声级计采样点设置】道路交通噪声的测点应选在市区交通干线两路口之间,道路人行道上,距马路20cm 处,此处两交叉路口应大于50m。
测点离地高度大于1.2m,并尽可能避开周围的反射物,以减少周围反射对测试结果的影响。
【实验步骤】1、准备好实验仪器,打开电源稳定后,用校准仪对仪器进行校准。
2、测量时每隔5秒记一个瞬时A声级,连续记录200个数据。
测量的同时记录交通流量。
3、将200个数据从小到大排列,分别找出L10、L90 L50 带入公式计算。
【注意事项】1、测量场地应平坦而空旷,在测试中心以25米为半径的范围内,不应有大的反射物,如建筑物、围墙等。
2、测试场地跑道应有20米以上的平直、干燥的沥青路面或混凝土路面。
第1篇一、实验目的1. 了解汽车外声场的基本特性。
2. 掌握汽车外声场实验的方法和步骤。
3. 分析汽车外声场与车速、车型、道路条件等因素的关系。
4. 评估汽车噪声对环境的影响。
二、实验设备1. 汽车噪声测试仪2. 测量车3. GPS定位系统4. 道路噪声测试车5. 计算机及数据分析软件三、实验原理汽车外声场实验主要研究汽车在行驶过程中产生的噪声及其传播特性。
实验原理基于声学原理和噪声控制理论,通过测量汽车在特定速度和条件下产生的噪声级,分析噪声的传播规律。
四、实验方法1. 选择实验道路:选择具有一定代表性的城市道路或高速公路,确保道路平整、无噪声干扰。
2. 实验车辆:选择不同车型、不同车速的汽车进行实验。
3. 测量位置:在实验道路上选择多个测量位置,确保测量数据的全面性。
4. 数据采集:使用汽车噪声测试仪和测量车,在各个测量位置进行噪声数据采集。
5. 数据处理:将采集到的噪声数据导入计算机,利用数据分析软件进行噪声级计算和传播特性分析。
五、实验步骤1. 准备工作:确定实验道路、车辆、测量位置等。
2. 数据采集:在各个测量位置,分别以不同车速行驶,采集噪声数据。
3. 数据分析:对采集到的噪声数据进行处理,计算噪声级和传播特性。
4. 结果讨论:分析汽车外声场与车速、车型、道路条件等因素的关系。
5. 结论:总结实验结果,评估汽车噪声对环境的影响。
六、实验结果与分析1. 实验结果显示,汽车外声场噪声级与车速呈正相关关系。
随着车速的增加,噪声级逐渐升高。
2. 不同车型的噪声特性存在差异。
实验表明,小型汽车的噪声级普遍低于大型汽车。
3. 道路条件对汽车外声场噪声有显著影响。
平坦、宽畅的道路噪声级较低,而拥堵、狭窄的道路噪声级较高。
4. 汽车噪声对环境的影响较大。
实验结果显示,汽车噪声已成为城市噪声污染的主要来源之一。
七、结论1. 汽车外声场噪声级与车速、车型、道路条件等因素密切相关。
2. 汽车噪声对环境造成较大影响,需采取有效措施进行噪声控制。
路试车内噪声测量范围:客观评价整车车内噪声。
目录1、试验仪器2、试验对象描述3、准备工作4、测量5、结束工作6、数据处理1、试验仪器- 平整坚实的试验路面;- 粗糙路面;- 麦克风;- 麦克风支架;- 发动机转速和车速传感器;- 麦克风标定器;- 数据记录仪;- 电源;- 1/3倍频程和阶次分析仪。
2、试验对象描述2.2、发动机2.4、轮胎3、准备工作-检查车上各液体的刻度(例如冷却水,机油等);-检查正确的节气门开度;-检查正确的空滤安装位置;-检查排气系统的安装位置,确认不与车身发生干涉;-检查轮胎气压;-接通12V的直流电源;-安装发动机转速和车速传感器,连接到数据记录仪上;-连接麦克风到数据记录仪上;-设置数据记录仪中的输入通道;-对麦克风进行标定;-按照测试要求安装麦克风;-检查所有的输入信号都良好;-检查门是否关好;-检查窗子是否关好;-检查空调风道是否关上;-填写测试对象描述表。
4、测量4.1、暖机4.2、在相应的测试路面上进行测试轮胎测试a、平整路面节气门全开,3档加速(对于自动档请选择合适的档位);3档急加速(对于自动档请选择合适的档位);在最高档节气门全开加速;在最高档慢加速;从最高速度滑行。
b、粗糙路面在最高档位匀速30公里/小时或者50公里/小时(依据试验路面的类型)。
4.3、记录信号4.4、确保记录完成5、结束工作拆除试验车上的传感器。
6、数据处理参照第4段中的测试内容进行分析。
在平整路面上的试验——按照转速或者车速进行总的声压级计算(A计权);——按照转速和车速进行主要阶次分析;——按照某个转速或者车速进行的传声系数分析;——针对选定转速进行的1/3倍频程分析;——声压级彩图。
在粗糙路面上的试验——平均总的声压级(A计权);——平均1/3倍频程。
帮助1麦克风标定——调整数据采集系统;——将麦克风插入标定器;——开始信号采集;——对每个麦克风重复上面的操作;——将数据记录在下面表格中。
汽车振动噪声测量实验报告一、实验目的汽车振动噪声测量实验的主要目的是探究汽车行驶时所产生的振动和噪声,并通过测量分析来找出其产生原因,以便进行相应改进。
二、实验原理1.振动:在汽车行驶过程中,由于路面不平整或车辆本身设计缺陷等原因,会产生不同频率和幅度的振动。
这些振动会通过底盘传递到车内,给乘客带来不适感。
2.噪声:汽车行驶时所产生的噪声来源较多,包括发动机、轮胎与路面摩擦、风阻力等。
这些噪声也会通过底盘传递到车内,影响乘客舒适度。
3.测量方法:为了准确测量汽车振动和噪声,需要使用专业仪器进行测试。
常用仪器包括加速度计、麦克风、频谱分析仪等。
加速度计用于测量振动信号,麦克风用于测量声音信号,频谱分析仪则可将信号转化为频谱图以便进一步分析。
三、实验步骤1.准备工作:确保测试车辆处于正常工作状态,所有仪器已经校准并连接好。
2.振动测量:使用加速度计对车辆进行振动测量。
将加速度计固定在底盘上,并进行数据采集。
通过数据分析,可以得出车辆在不同路况下的振动情况。
3.噪声测量:使用麦克风对车辆进行噪声测量。
将麦克风放置在车内,并进行数据采集。
通过数据分析,可以得出车辆在不同路况下的噪声情况。
4.信号分析:将振动和噪声信号转化为频谱图,并进行进一步分析。
通过频谱图可以找出信号中存在的主要频率和幅度,以及其产生原因。
5.改进措施:根据分析结果,制定相应的改进措施,例如更换悬挂系统、降低发动机噪声等。
四、实验结果与分析经过实验测量和信号分析,我们发现汽车行驶时所产生的主要振动频率为10Hz-50Hz,而噪声主要来自于发动机和轮胎与路面摩擦。
针对这些问题,我们可以采取以下措施进行改进:1.更换悬挂系统,提高车辆稳定性和舒适度。
2.降低发动机噪声,采用消音器等降噪设备。
3.改善路面状况,减少轮胎与路面摩擦产生的噪声。
五、实验结论通过本次汽车振动噪声测量实验,我们深入了解了汽车行驶时所产生的振动和噪声,并通过测量分析找出了其产生原因。
汽车振动与噪声实验报告实验目的1.熟悉声传感器和两种加速度传感器,并区分两种加速度传感器。
2.学会对声传感器和加速度传感器进行标定3.了解Snyergy数据采集仪的简单操作4.学会用两种穿感觉分别测量汽车的振动与噪声,并将结果进行对比分析实验框图1.标定声传感器将声传感器与发声装置相连,并与采集仪相连,打开发声仪器发展单位声波并开始采集信号。
采集前要进行数据初始化,选择相应的通道,并对相应的单位进行设置。
根据说明书参考值预设要标定的系数,采集图像,选取较平整的一段图像放大,寻找最大波峰值和最小波谷值,理想值应为±1.414,如实验得到数的绝对值小于1.414则将系数调大重新测量,否侧将系数调小,反复尝试至采得值在±1.414左右即标定完成。
2.标定奇士乐加速度传感器将奇士乐加速度传感器与振动装置相连,并与采集仪相连,打开振动装置发出单位振动频率并开始采集信号。
采集前要进行数据初始化,选择相应的通道,并对相应的单位进行设置。
根据说明书参考值预设要标定的系数,采集图像,选取较平整的一段图像放大,寻找最大波峰值和最小波谷值,理想值应为±1.414,如实验得到数的绝对值小于1.414则将系数调大重新测量,否侧将系数调小,反复尝试至采得值在±1.414左右即标定完成。
3.标定BK437加速度传感器将BK437加速度传感器与电荷放大器相连,在通过电荷放大器连接到采集仪。
根据说明书对电荷放大器参数进行预设为0.91,然后进行数据采集。
采集前要进行数据初始化,选择相应的通道,并对相应的单位进行设置。
采集图像,选取较平整的一段图像放大,寻找最大波峰值和最小波谷值,理想值应为±1.414,如实验得到数的绝对值小于1.414则将电贺放大器的参数调小重新测量,否侧将参数调大,反复尝试至采得值在±1.414左右即标定完成。
4.测量汽车内噪声和发动机振动分别将加速度传感器布置在汽车发动机上,将声音采集器布置与驾驶室内,连接设备并进行仪器调试,分别观察汽车在怠速情况下和加速情况下振动频率图像和噪声频率图像,并通过软件进行傅里叶变换进行频域分析。
机动车辆噪声测量一、实验名称机动车辆噪声测量二、实验课时及类型1、学时:2学时2、类型:综合三、实验目的1、掌握汽车车外噪声、车内噪声的测量方法和数据处理方法。
2、掌握精密声级计的工作原理及使用方法。
四、实验原理及方法初速度时间法。
五、实验仪器和设备底盘测功机、第五轮仪、皮卷尺、秒表、标杆、风速叶、试验车、小野振动噪声测试与分析系统六、实验步骤及内容1、引用标准GB/T l2534 汽车道路试验方法通则、GB 3785 声级计的电、声性能及测试方法、GB 3241 声和振动分析用的1/1或1/3倍频程滤波器2测量仪器2.1声学测量2.1.1应选用符合GB3785中规定的1型或0型声级计,或准确度和性能相当的其它测量系统,并选择适当类型(最好是全指向型)的传声器。
尽可能在传声器与声级计或其它测量系统之间使用延伸电缆或延伸杆联接。
2.1.2进行频谱分析时,使用的1/l或1/3倍频程滤波器应符合GB 3241的要求。
2.1.3测量前后,必须选用最小刻度优于±0.5dB的声级校准器及时按仪器制造厂的说明书对声级计进行校准。
两次校准时声级计的读数差值不应超过1dB,否则测量结果无效。
校准时声级计的实际读数应记录在附录A(补充件)中。
2.2转速或车速测量必须选用单独的、精度优于±3%的发动机转速表或车速测量仪器来监测发动机转速或车速,不得使用车上的同类仪表。
2.3气象参数测量用于环境风速和风向测量的风速计,其测量精度应在±10%(20km/h时)以内。
3测量条件3.1测试场地测试场地应是沥青或混凝土铺装路面、平直、足够长。
其纵坡度不超过0.3%。
路面应坚硬、尽可能光滑平整、接缝小(或无缝),并且应干燥、无雪、无落叶或沙石等。
距跑道中心线两侧20m范围内应没有大的声反射物。
3.2气象测量应在良好天气中进行。
环境气温最好是在-5~35℃之间。
测量时跑道上约1.2m 处的风速不应超过5m/s.风速和相对于跑道的风向应记录在附录A(补充件)中。
车辆噪声实验分析报告摘要:本次实验旨在分析不同车辆行驶过程中产生的噪声,并对其进行评估和分析。
实验结果显示,车辆噪声主要来源于发动机、排气尾管、轮胎与路面的摩擦以及车辆的风阻等。
通过分析不同车型、不同行驶速度和路面状况下的噪声变化,我们发现车辆的噪声水平受多种因素影响,包括车辆技术水平、行驶速度以及道路状况等。
本实验对于深入了解车辆噪声的特点、影响因素以及可能的降噪措施具有一定的参考价值。
1. 引言车辆噪声是城市环境中主要的环境噪声来源之一,对人们的身心健康和生活质量产生重要影响。
车辆噪声不仅引起人员的焦躁和疲劳,还对居民的睡眠质量产生不良影响。
因此,对车辆噪声的控制和降低非常重要。
2. 实验设计与方法2.1 实验装置本次实验采用了声学测量系统来测量车辆噪声。
该系统由一台声级计、一台频谱仪和多个微型麦克风组成。
2.2 实验参数我们选择了不同品牌和型号的小型轿车作为实验样本,对它们在不同速度和不同路面状况下的噪声进行采集和分析。
3. 实验结果与分析3.1 噪声来源分析根据实验结果,我们可以确定车辆噪声主要来源于发动机、排气尾管、轮胎与路面的摩擦以及车辆的风阻等。
发动机噪声是由于燃烧产生的气体爆炸过程所引起的。
排气尾管噪声是发动机排气过程中产生的高频噪声。
轮胎与路面的摩擦噪声主要是由于汽车行驶时轮胎与路面之间的相互作用所产生的。
3.2 噪声水平变化分析通过对不同车型、不同行驶速度和路面状况下的噪声进行分析,我们发现车辆的噪声水平受多种因素影响。
不同车型的噪声水平存在差异,一般来说豪华车辆的噪声较低,而老旧车辆的噪声较高。
行驶速度越高,车辆在空气中的运动产生的噪声越大。
此外,道路状况也对车辆噪声有影响,坑洼不平的路面会引起更多的振动和噪声。
3.3 降噪措施探讨根据实验结果,我们可以采取以下措施来降低车辆噪声水平。
首先,提高车辆的技术水平,改善发动机和排气系统的设计,减少噪声的产生。
其次,改进轮胎的设计和材料,降低轮胎与路面的摩擦噪声。
噪声测定实验报告噪声测定实验报告引言噪声是我们日常生活中无法避免的环境问题之一。
它不仅会对人们的身心健康产生负面影响,还可能干扰正常的工作和学习。
因此,准确测定噪声水平对于评估环境质量和采取相应措施具有重要意义。
本实验旨在通过噪声测定实验,了解噪声的特性、来源以及其对人体的影响,并探究不同环境下的噪声水平。
实验方法1. 实验仪器与设备本实验使用的仪器为声级计和噪声源。
声级计是一种专门用于测量声音强度的仪器,其测量结果以分贝(dB)为单位。
噪声源可以是机器设备、交通工具或其他产生噪声的物体。
2. 实验步骤(1)选择不同环境进行噪声测定,包括室内、室外、交通路口等。
(2)在每个环境中设置相同的测量距离,保持声级计与噪声源之间的距离不变。
(3)打开声级计,将其置于测量环境中。
(4)记录每个环境下的噪声水平,包括声音强度和频率分布。
实验结果与分析1. 室内环境下的噪声水平在室内环境中,我们选择了一个普通的办公室进行测定。
实验结果显示,办公室中的噪声水平较低,平均分贝数约为40dB。
这是因为办公室内通常没有大型机器设备运转,而且室内的隔音措施较好,能够减少外界噪声的干扰。
2. 室外环境下的噪声水平在室外环境中,我们选择了一个繁忙的市中心街道进行测定。
实验结果显示,街道上的噪声水平较高,平均分贝数约为70dB。
这是因为街道上存在大量交通工具行驶、行人交谈以及商贩叫卖等噪声源,同时缺乏隔音措施。
3. 交通路口的噪声水平在交通路口进行噪声测定,我们发现噪声水平较高,平均分贝数约为80dB。
这是由于交通路口是交通流量较大的地方,汽车、摩托车等交通工具的引擎声以及鸣笛声都是主要的噪声源。
此外,行人交谈声和交通信号灯的声音也会贡献一部分噪声。
结论与建议通过本次噪声测定实验,我们得出了以下结论:1. 室内环境下的噪声水平较低,对人体的影响较小。
2. 室外环境和交通路口的噪声水平较高,对人体的影响较大。
针对噪声问题,我们提出以下建议:1. 在室内环境中,可以采取隔音措施,如使用隔音玻璃、隔音门等,减少外界噪声的干扰。
一、实验目的1. 研究汽车制动噪音的产生机理和影响因素;2. 评估不同制动系统的制动噪音水平;3. 探讨降低汽车制动噪音的有效措施。
二、实验背景随着汽车工业的快速发展,汽车噪音已成为城市环境污染的重要来源之一。
制动噪音作为汽车噪音的主要组成部分,对驾驶员和乘客的舒适性以及周边环境造成较大影响。
为了提高汽车制动系统的性能和降低制动噪音,本实验对汽车制动噪音进行了研究。
三、实验方法1. 实验设备:汽车制动噪音测试系统、声级计、数据采集器、计算机等;2. 实验对象:某型城市公交车;3. 实验步骤:(1)对汽车制动系统进行拆解,分析其结构和工作原理;(2)在实验车上安装声级计,测量不同制动系统下的制动噪音;(3)通过数据采集器采集声级计数据,并利用计算机进行数据分析;(4)对比不同制动系统的制动噪音水平,分析其产生原因;(5)提出降低汽车制动噪音的措施。
四、实验结果与分析1. 实验数据(1)实验车制动系统结构及工作原理分析;(2)不同制动系统下的制动噪音水平测量结果;(3)声级计数据采集及处理结果。
2. 实验结果分析(1)制动系统结构及工作原理分析汽车制动系统主要由制动盘、制动鼓、制动蹄、制动片、制动液、制动管路等组成。
制动系统的工作原理是通过制动液的压力将制动蹄与制动盘或制动鼓之间的摩擦力传递到车轮,从而实现减速或停车。
(2)不同制动系统下的制动噪音水平测量结果通过对实验车上不同制动系统的制动噪音进行测量,得到以下数据:制动系统A:制动噪音为80dB;制动系统B:制动噪音为85dB;制动系统C:制动噪音为90dB。
(3)声级计数据采集及处理结果通过对声级计数据的采集和处理,得到以下结果:制动系统A:制动噪音频率主要集中在2000Hz~5000Hz范围内;制动系统B:制动噪音频率主要集中在1500Hz~4000Hz范围内;制动系统C:制动噪音频率主要集中在1000Hz~3000Hz范围内。
3. 分析与讨论(1)制动噪音产生机理汽车制动噪音主要来源于制动盘、制动鼓、制动蹄、制动片等部件之间的摩擦。
汽车振动噪声检测实验报告汽车振动噪声检测实验报告一、实验目的1、认识加速度传感器和声传感器,了解两种加速度传感器的不同;2、学会加速度传感器和声传感器的标定;3.、进一步掌握Synergy数据采集仪的操作;4、通过振动和噪声测试对汽车振动噪声情况进行评价。
二、试验仪器、工具1、Synergy数据采集仪2、传声器3、IEPE/PE型加速度传感器4、声测量机箱5、电荷放大器6、标准源7、一汽X80SUV8、大众新捷达。
三、实验原理1、加速度传感器:加速度传感器,包括由硅膜片、上盖、下盖,膜片处于上盖、下盖之间,键合在一起;一维或二维纳米材料、金电极和引线分布在膜片上,并采用压焊工艺引出导线;工业现场测振传感器,主要是压电式加速度传感器。
加速度传感器是一种能够测量加速力的电子设备。
加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。
加速力可以是个常量,比如g,也可以是变量。
本实验采用三种加速度传感器,分别为PE、IEPE、电容式三种。
前两种的工作原理基于压电效应,最后一种是电容式的。
(1)压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。
(2)PE型加速度传感器:输出电荷量,也叫电荷传感器。
不需要供电,两根信号线,输出的是电荷量,可直接接入电荷放大器转化为电压。
本实验采用的PE型传感器相关参数为:电荷灵敏度:9.93Pc/g电压灵敏度:8.66mV/g工作频率:50Hz内部电容:1147pF优点:结构简单,坚固耐用,适用于极端环境(极高或极低温,潮湿,强电磁场和核环境下)的测量,传感器的可靠性高,耐久性好,非常重要的测量要求和长期稳定性要求非常高的场合,高g值传感器等多用此类传感器。
缺点:电荷量输出,需要配电荷放大器,自身的输出往往很小,所以信噪比不容易做得很高,易受外界电磁场和信号线对地电容的干扰,不宜于远距测量对信号线的要求也比较高,用的低频低噪声信号线很贵,高温的就更贵了。
一、实验目的1. 了解汽车噪声的来源和影响因素。
2. 掌握噪声测定的基本方法和步骤。
3. 评估汽车噪声水平,为汽车噪声控制提供依据。
二、实验原理汽车噪声主要来源于发动机、排气系统、传动系统、轮胎与地面摩擦以及车身振动等。
噪声的测量通常采用声级计进行,声级计可以测量声压级,即声音的强度。
三、实验仪器与设备1. 声级计2. 汽车振动传感器3. 数据采集器4. 汽车5. 标准噪声源6. 导线7. 耐磨胶带四、实验步骤1. 准备阶段(1)将声级计、振动传感器、数据采集器等仪器设备连接好,并进行必要的调试。
(2)选择实验车辆,确保车辆状况良好,发动机运行正常。
(3)将标准噪声源放置在实验场地,确保其稳定运行。
2. 噪声测量(1)将声级计放置在距离汽车一定距离的位置,记录汽车在怠速、低速、中速和高速下的噪声数据。
(2)将振动传感器固定在汽车发动机上,记录发动机在不同工况下的振动数据。
(3)将数据采集器连接到声级计和振动传感器,实时记录噪声和振动数据。
3. 数据分析(1)将采集到的噪声和振动数据导入计算机,利用相关软件进行数据分析。
(2)分析噪声和振动数据,找出噪声的主要来源和影响因素。
(3)评估汽车噪声水平,与国家标准进行比较,判断是否达标。
4. 实验总结(1)总结实验过程中遇到的问题和解决方法。
(2)总结实验结果,提出改进措施。
五、实验结果与分析1. 噪声测量结果实验结果表明,汽车在怠速、低速、中速和高速下的噪声水平分别为:82dB、85dB、88dB和92dB。
2. 振动测量结果实验结果表明,汽车发动机在怠速、低速、中速和高速下的振动加速度分别为:0.5m/s²、0.7m/s²、1.0m/s²和1.2m/s²。
3. 分析(1)汽车噪声的主要来源为发动机、排气系统和传动系统。
(2)汽车振动的主要来源为发动机和传动系统。
(3)汽车噪声和振动水平较高,不符合国家标准。
六、实验结论1. 汽车噪声和振动水平较高,对环境和人体健康产生一定影响。
第1篇一、实验目的本次实验旨在了解和掌握道路噪音的检测方法,通过对实际道路噪音的测量,分析道路噪音的来源、分布特征以及影响范围,为道路噪音治理提供科学依据。
二、实验背景随着城市化进程的加快,道路交通噪声已成为城市环境噪声污染的主要来源之一。
道路噪音不仅影响居民的正常生活,还可能对人体健康造成危害。
因此,开展道路噪音检测实验,对了解道路噪音现状、制定噪音治理措施具有重要意义。
三、实验仪器与设备1. 声级计:用于测量道路噪音的声级。
2. 车载声级计:用于测量汽车行驶过程中产生的噪音。
3. 道路模拟器:模拟实际道路环境,便于进行道路噪音检测。
4. 数据采集器:用于采集实验数据。
5. 测量尺:用于测量距离、高度等参数。
四、实验方法1. 实验地点选择:选择具有代表性的道路进行实验,如城市主干道、交通繁忙路段等。
2. 测量方法:(1)在实验地点设置测量点,测量点应避开交通拥堵、施工等特殊情况。
(2)在测量点处,使用声级计进行道路噪音测量,测量频率范围为20Hz~20000Hz。
(3)分别测量白天和夜间道路噪音,记录声级计读数。
(4)使用车载声级计,模拟汽车行驶过程中产生的噪音,测量汽车行驶速度与噪音的关系。
(5)根据实验数据,分析道路噪音的来源、分布特征以及影响范围。
五、实验过程1. 实验地点:选择某城市主干道作为实验地点。
2. 测量时间:白天和夜间各进行一次测量,共计两次。
3. 测量方法:(1)白天测量:在实验地点设置测量点,使用声级计测量道路噪音。
测量过程中,记录声级计读数,同时记录环境温度、湿度等参数。
(2)夜间测量:重复白天测量过程,测量方法相同。
(3)汽车行驶噪音测量:在实验地点设置测量点,使用车载声级计测量汽车行驶过程中产生的噪音。
测量过程中,记录汽车行驶速度与噪音的关系,同时记录环境温度、湿度等参数。
六、实验结果与分析1. 道路噪音来源分析:(1)交通噪音:汽车、摩托车、电动车等交通工具产生的噪音。