中南大学 研究生考试 数学分析 近2年真题
- 格式:pdf
- 大小:165.29 KB
- 文档页数:4
---○---○------○---○---学院专业班级学号姓名…………评卷密封线………………密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按分处理………………评卷密封线…………中南大学期末考试试卷2019——2020学年一学期数学分析C(二)课程时间100分钟学时,学分,闭卷,总分100分,占总评成绩%年月日题号一二三四五六七八九十合计满分201510202015100得分评卷人复查人一、单项选择题(本题20分,每小题2分)1.在数学分析中,序列极限的Cauchy 准则是指:A.一个序列收敛当且仅当它的任意两项之间的差趋于零。
B.一个序列收敛当且仅当它的各项绝对值有界。
C.一个序列收敛当且仅当它满足Cauchy 不等式。
D.一个序列收敛当且仅当它的偶数项与奇数项分别收敛到同一极限。
2.下列哪个函数是Riemann 可积的?A.(f(x)=\sin(1/x))在(x =0)处定义。
B.(f(x)=x \cdot \sin(1/x))在(x =0)处定义。
C.(f(x)=|x|\cdot \sin(1/x))在(x =0)处定义。
D.所有选项都不是。
3.如果函数f 在点a 处连续,则以下说法正确的是:A.f 在点a 的任意邻域内都有界。
B.f 在点a 的任意小的邻域内都是单调的。
C.f 在点a 的任意小的邻域内都取到最大值和最小值。
D.f 在点a 的左侧和右侧导数都存在。
4.关于实数系中的完备性,以下说法正确的是:A.每个柯西序列都在实数系中收敛。
B.每个有界的实数序列都包含一个收敛子序列。
C.每个无理数都可以用有理数序列来逼近。
D.A 和B 都对。
得分评卷人5.若函数f在区间[a,b]上连续,并且在(a,b)内可微,则:A.f一定在[a,b]上有界。
B.f一定在[a,b]上单调。
C.f'一定在(a,b)上有界。
D.f一定在[a,b]上一致连续。
6.若级数Σan收敛,则其系数序列{an}满足:A.(\lim_{n\to\infty}a_n=0)B.(\sum_{n=1}^{\infty}|a_n|)收敛C.{an}是有界的D.A和B都对7.对于积分(\int_{a}^{b}f(x),dx),以下说法正确的是:A.如果f在[a,b]上有界,则该积分一定存在。
中南大学2002-2009研究生入学考试试题高等代数中南大学2002年研究生入学考试试题考试科目:高等代数注:以下2R 表示n 维实列向量空间,n n R ?表示n 阶实矩阵的全体,T A 表示矩阵A 的转置,()Tr A 表示矩阵A 的迹。
一、(20分)设0x 是n 维欧氏空间V 中非零向量,,0k R k ∈≠,定义变换00(,),Tx x k x x x x V=+∈1.验证T 是线性变换;2.设0x 在V 的标准正交基12,,,n e e e 下的坐标为()12,,,n ξξξ ,求在该基下的矩阵;3.证明T 为对称变换,即(,)(,)Tx y x Ty =,,x y V ?∈; 4.证明:T 为正交变换的充要条件是22k x =-。
二、(16分)设n n A R ?∈,记(){:,}.n nC A B AB BA B R==∈1.证明:()C A 是n n R ?的子空间; 2.当A I =时,求()C A ;3.当100002000A n ?? ? ?= ? ???时,求()C A 的维数和一组基。
三、(16分)设12(,,,)T n b b b b = 为n 维非零列向量,求矩阵0H b A b=?的特征值和特征向量,其中H b 表示列向量b 的共轭转置。
四、(14分)设,,n n n A R b x R ?∈∈,证明线性方程组TTA Ax A b=必有解。
五、(12分)设,A B 为n 阶实矩阵,证明0.A B BA ≥-六、(12分)求证:A 为幂零阵(即存在正整数m ,使得0m A =)的充要条件是:对任一自然数r ,有()0.r Tr A =七、(10分)设,A B 是n 阶实对称矩阵,0A ≠,证明:A 为正定矩阵的充要条件是,对所有正定矩阵B ,恒有()0.Tr AB > 中南大学2003年研究生入学考试试题考试科目:高等代数一、填空题:(每小题6分,共30分)1、设四阶方阵1234(,,,)A αααα=,1234(,,,)B βααα=,其中1234,,,,ααααβ为4维列向量,若||1,||2A B ==,则||()A B +=。