开关电源环路设计与计算
- 格式:pdf
- 大小:559.35 KB
- 文档页数:41
开关电源系统基本组成部分(Voltage Mode PWM System)开关电源环路分析和设计流程开关电源环路的小信号传函FlybackTL431Power StageFlyback PWM Stage右半平面零点PWM Stage()t d)+考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的DCM模式下电流模式与电压模式的直观理解()(O V D V D =−−1()(v d V V vI L 1ˆˆˆ−−+=()D I I L O −=1dI i L O ˆˆ−=电压模式的信号流程图(siˆ电流模式的信号流程图零极点对环路稳定性的影响及环路带宽选择标准环路的补偿方法把控制带宽拉低,在功率部分或加有其他补偿的部分相位达环路的补偿方法常用的补偿方式.补偿网络产生一个s=0(DC)极点,而且通常所以补偿网络需补偿网络的高频极点抵消输出滤波电容的ESR零点。
环路的补偿方法复杂,适用于输出带LC滤波的拓扑结构中.补偿网络产生一个s=0(DC)极点,以及两个零点和两个极点,反激变换器反馈回路的设计采用补偿方法Power Stage GainOB2263 控制芯片内部模块图OB2263OB2263基于OB2263的基于OB2263的基于OB2263的基于OB2263的5) 确定EA补偿网络的零点和极点的位置基于OB2263的基于OB2263的附录: 431及其补偿网络传函的推导6KR I v ⋅−=Thank you Any Questions?。
开关电源的设计及计算1.先计算BUCK 电容的损耗(电容的内阻为R buck 假设为350m Ω,输入范围为85VAC~264VAC,频率为50Hz ,P OUT =60W,V OUT =60W ):电容的损耗:P buck =R buck *I buck,rms 2I buck,rms =I in,min1**32−cline t F t c :二极管连续导通的时间t c =linelineF VpeakV e F **2)min(arcsin *41π−=3ms其中:V min =linein ch in in in F C D P V V *)1(***2min ,min ,−−V peak =2*V in,min其图中的T1就是下面公式中t c或:V min =η*)*21(**2**2min ,min ,in c line o in in C t F P V V −−所以(假设最低输入电压时,输入电流=0.7A):I buck,rms =I in,min1**32−cline t F =0.7*13*50*32−=1.3A P buck =350m*1.32=0.95W第一步计算电容损耗是为了使用其中的t c 值,电容的容量一般通用范围选2~3μ/W ,固定电压为1μ/W2.输入交流整流桥的计算(假设V TO =0.7V,R d =70m Ω)在同一个时间内有两个二极管同时导通,半个周期内两个二极管连续导通I d,rms =c line in t F I **3min ,=m3*50*37.0=1.04AP diodes =2*(V TO *2min ,in I +R d *I d,rms 2)=2*(0.7*27.0+70m*1.042)=640mW 一个周期内桥堆损耗为:P BR=2*P diodes =2*640m=1.28W桥堆功耗超过1.5W 时,我个人认为应加散热器(特别是电源的使用环境温度较高时)变压器和初级开关MOS :反激式开关电源有两种模式CCM 和DCM ,各有优缺点。
开关电源反馈设计除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。
它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。
开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。
当负载或输入电压突变时,快速响应和较小的过冲。
同时能够抑制低频脉动分量和开关纹波等等。
为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。
并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。
最后对仿真作相应介绍。
6.1 频率响应在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。
经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。
我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。
6.1.1 频率响应基本概念电路的输出与输入比称为传递函数或增益。
传递函数与频率的关系-即频率响应可以用下式表示600 )()(f f G Gϕ∠=&其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠ϕ(f ) 表示输出信号与输入信号的相位差与频率的关系,称为相频响应。
典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。
图 6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角ϕ。
两者一起称为波特图。
在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。
当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高频截止频率与低频截止频率之间称为中频区。
开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程) ■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。
一般需要6db的增益裕量。
备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。
要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。
传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。
把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。
开关电源环路设计与计算开关电源是一种将输入的直流电转换为所需要的输出电压的电源。
其主要由开关元件、功率变压器、整流电路和滤波电路组成。
在进行开关电源的设计与计算时,需要考虑到输入电压范围、输出电压稳定性、功率转换效率、电磁干扰等因素。
首先,设计开关电源需要确定所需的输入电压范围和输出电压稳定性。
根据实际需求选择开关电源的输入电压范围,一般常见的输入电压为220V交流电。
对于输出电压稳定性的要求,需要根据实际应用来确定。
例如,对于电子设备来说,输出电压稳定性要求较高。
其次,需要选择开关元件和功率变压器。
开关元件一般选择功率MOSFET或IGBT,这两种开关元件都具有较高的开关速度和效率。
功率变压器则需要根据输出电压和输出功率来选择合适的型号。
然后,设计整流电路。
整流电路一般采用整流桥进行整流。
通过改变整流桥的二极管的导通方式,可以实现不同的输出电压。
最后,设计滤波电路。
滤波电路可以通过电感和电容的组合来实现对电源纹波的滤除。
通过计算电感和电容的取值,可以达到所需的滤波效果。
在进行开关电源的计算时,需要进行一系列的参数计算。
首先,需要计算开关元件的导通和关断损耗。
根据开关元件的参数,可以计算其导通状态下的功耗和关断状态下的功耗。
然后,需要进行功率变压器的设计和计算。
根据输入电压和输出电压的比值,可以计算变压器的变比。
同时,根据输出功率的大小,可以计算变压器的功率。
接下来,需要计算整流电路的输出电压和输出电流。
根据变压器的变比和整流电路的设计,可以计算输出电压和输出电流的大小。
最后,需要计算滤波电路的电感和电容的取值。
可以根据输出电压纹波的要求,选择合适的电感和电容。
除了上述的设计和计算,还需要考虑到开关电源的保护和安全性。
例如,需要添加过压保护、过流保护和短路保护等电路来保护开关电源和输出负载的安全。
总之,开关电源的设计与计算是一个复杂的过程,需要考虑到多个因素。
通过正确的设计和计算,可以实现稳定、高效、安全的开关电源。
【我是工程师】精确计算开关电源-环路是如何计算出来的?---2015.5.18(电源网)摘要模块化设计开关电源,全方位精确计算环路模块。
以反激为例,采用mathcad软件全面精确计算环路参数,确保100%的可靠性。
正文要真正学好电源,必须学好数学。
很多人对此不以为然,或者自己不懂就刻意贬低,其实这是有害的。
数学主要分3个方向,即数学分析,高等代数,概率论。
数学分析再进一步就是实变函数论,复变函数论,泛函分析。
高等代数再进一步就是近世代数。
概率论再进一步就是数理分析。
以上这几门数学均是学好电源设计的理论基础。
就算暂时无法更近一步,至少要懂得这3个方向的第一步,即数学分析,高等代数,概率论。
数学分析即常说的微积分,对电源设计的理解相当有用。
具体主要表现在理解电路的时域波形,尤其是求解常微分方程与偏微分方程上。
有些同学自己不懂还贬低它,个人觉得相当不可取。
实变函数论在电源中较少用到,因为在开关电源设计中,绝大部分函数是黎曼可积的,即R可积的。
并不需要用到勒贝格可积,即L可积。
但凡事并没有绝对,毕竟实变函数是数学分析的深化,黎曼可积必定勒贝格可积,反之则不一定。
所以懂得实变函数论,可以用更高观点的眼光来看待电源设计。
积分如此,当然微分也是如此。
复变函数论广泛应用于电源设计中。
拉普拉斯变换与反变换是其最直接的体现。
可以这样说,如果没有复变函数论,就没有开关电源的设计。
在这个帖子中,也用到了拉普拉斯变换与反变换,因为有了这个变换与反变换,环路计算才得以简化。
而在电路时域计算中,也因为有了复变函数论的复数分裂域的特征,才使得可以把复杂的高阶运算化为简单的一阶线性运算,大大简化了计算。
至此,大部分同学应该相信高等数学在电源设计中的重要作用。
至于认为可以用简单的加减乘除平方开方等初等数学就能足够设计开关电源的想法可以休了,这样的想法是错误的。
如果不懂高等数学就认为是无用的,认为只需要初等数学就足够了,甚至认为高等数学是卖弄,是糊弄,只能说明是不懂装懂,贬低别人抬高自己。
开关电源控制环路设计稳压电源工作原理我们需要什么样的电源?2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。
一般需要6db的增益裕量。
备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。
要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。
传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。
把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。
由传递函数就可以绘制增益/相位曲线。
通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数,然后将分子和分母进行因式分解,表示成多个因式的乘积,即G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/[(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)],分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。
0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。
而环路的设计与主电路的拓扑和参数有极大关系。
为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。
在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。
由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。
好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。
开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。
采用其他拓扑的开关电源分析方法类似。
1 Buck电路电感电流连续时的小信号模型为理想开图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。
R为滤波电容C的等效串联电阻,R o为负载电阻。
各状态变量的正方向定义如图e1中所示。
图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。
这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。
由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。
BUCK 电路的环路计算,补偿和仿真Xia Jun 2010-8-14 本示例从简单的BUCK 电路入手,详细说明了如何进行电源环路的计算和补偿,并通过saber 仿真验证环路补偿的合理性。
一直以来,环路的计算和补偿都是开关电源领域的“难点”,很多做开关电源研发的工程师要么对环路一无所知,要么是朦朦胧胧,在产品的开发过程中,通过简单的调试来确定环路补偿参数。
而这种在实验室里调试出来的参数真的能满足各种实际的使用情况吗?能保证电源产品在高低温的情况下,在各种负载条件下,环路都能够稳定吗?能保证在负载跳变的情况下收敛吗?太多的未知数,这是产品开发的大忌。
我们必须明明白白的知道,环路的稳定性如何?相位裕量是多少?增益裕量是多少?高低温情况下这些值又会如何变化?在一些对动态要求非常严格的场合,我们如何折中考虑环路稳定性和动态响应之间的关系?有的放矢,通过明确的计算和仿真,我们的产品设计才是科学的,合理的,可靠的。
我们的目标是让产品经得起市场的检验,让客户满意,让自己放心。
一切从闭环系统的稳定性说起,在自动控制理论中,根据乃奎斯特环路稳定性判据,如果负反馈系统在穿越频率点的相移为180°,那么整个闭环系统是不稳定的。
很多人可能对这句话很难理解,虽然自动控制理论几乎是所有大学工科学生的必修课,可大部分是是抱着应付的态度的,学完就忘了。
那就再给大家讲解一下吧。
等式:V out=[Vin-V out*H(S)]*G(S)公式:Vout Vin G S ()1G S ()H S ()⋅+G(S)/(1+G(S)*H(S))就称之为系统的闭环传递函数,如果1+G(S)*H(S)=0,那么闭环系统的输出值将会无限大,此时闭环系统是不收敛的,也即是不稳定的。
G(S)*H(S)是系统的开环传递函数,当G(S)*H(S)=-1时,以S=j ω带入,即获得开环系统的频域响应为G(j ω)*H(j ω)=-1,此时频率响应的增益和相角分别为:gain =‖-1‖=1angle=tan -1(0/-1)=180°从上面的分析可以看出,如果扰动信号经过G(S)和H(S)后,模不变,相位改变180°,那么这个闭环系统就是不稳定的。
多路输出反激式开关电源的反馈环路设计的输出是直流输入、占空比和负载的函数。
在开关电源设计中,反馈系统的设计目标是无论输入电压、占空比和负载如何变幻,输出电压总在特定的范围内,并具有良好的动态响应性能。
模式的开关电源有延续电流模式(CCM)和不延续电流模式(DCM)两种工作模式。
延续电流模式因为有右半平面零点的作用,反馈环在负载电流增强时输出电压有下降趋势,经若干周期后终于校正输出电压,可能造成系统不稳定。
因此在设计反馈环时要特殊注重避免右半平面零点频率。
当反激式开关电源工作在延续电流模式时,在最低输入电压和最重负载的工况下右半平面零点的频率最低,并且当输入电压上升时,传递函数的增益变幻不显然。
当因为输入电压增强或负载减小,开关电源从延续模式进入到不延续模式时,右半平面零点消逝从而使得系统稳定。
因此,在低输入电压和重输出负载的状况下,设计反馈环路补偿使得囫囵系统的传递函数留有足够的相位裕量和增益裕量,则开关电源无论在何种模式下都能稳定工作。
1 反激式开关电源典型设计图1是为变频器设计的反激式开关电源的典型,主要包括沟通输入整流电路,反激式开关电源功率级电路(有控制器、MOS管、及整流组成),RCD缓冲电路和反馈网络。
其中PWM控制芯片采纳UC2844。
UC2844是电流模式控制器,芯片内部具有可微调的(能举行精确的占空比控制)、温度补偿的参考基准、高增益误差、电流取样。
开关电源设计输入参数如下:三相380V工业沟通电经过整流作为开关电源的输入电压Udc,按最低直流输入电压Udcmin为250V举行设计;开关电源工作频率f为60kHz,输出功率Po为60W。
当系统工作在最低输入电压、负载最重、最大占空比的工作状况下,设计开关电源工作在延续电流模式(CCM),纹波系数为0.4。
设计的第1页共6页。
不可少的,因为没有ESR 的LC 滤波器相位滞后大。
6.4.12. Ⅲ型误差放大器电路、传递函数和零点、极点位置具有图6.41(b)的幅频特性电路如图6.42所示。
可以用第6.4.6节Ⅱ 型误差放大器的方法推导它的传递函数。
反馈和输入臂阻抗用复变量s 表示,并且传递函数简化为)(/)()(12s Z s Z s G =。
传递函数经代数处理得到 )]/((1)[1)((])(1)[1()()()(212123321133112C C C C sR C sR C C sR C R R s C sR s U s U s G in o +++++++== (6-69) 可以看到,此传递函数具有(a ) 一个原极点,频率为 )(212110C C R f p +=π (6-70) 在此频率R 1的阻抗与电容(C 1+C 2)的阻抗相等且与其并联。
(b ) 第一个零点,在频率 12121C R f z π= (6-71) 在此频率,R 2的阻抗与电容C 1的阻抗相等。
(c ) 第二个零点,在频率 31331221)(21C R C R R f z ππ≈+= (6-72) 在此频率,R 1+R 3的阻抗与电容C 3的阻抗相等。
(d ) 第一个极点,在频率 2221212121)]/([21C R C C C C R f p ππ≈+= (6-73) 在此频率,R 2的阻抗与电容C 2和C 1串联的阻抗相等。
(e ) 第二个极点,在频率 33221C R f p π= (6-74) 在此频率R 3的阻抗与电容C 3阻抗相等。
为画出图6.41(b)的幅频特性,以f z 1=f z 2,f p 1=f p 2选择RC 乘积。
双零点和双极点频率的位置由k 来决定。
根据k 获得希望的相位裕度。
图6.41(b)中误差放大器在希望的f c 0处以斜率+20dB/dec 处的增益(图6.41(a))令其等于LC 滤波器的衰减量,但符号相反。
开关电源的建模和环路补偿设计(上)引言如今的电子系统变得越来越复杂,电源轨和电源数量都在不断增加。
为了实现最佳电源解决方案密度、可靠性和成本,系统设计师常常需要自己设计电源解决方案,而不是仅仅使用商用砖式电源。
设计和优化高性能开关模式电源正在成为越来越频繁、越来越具挑战性的任务。
电源环路补偿设计常常被看作是一项艰难的任务,对经验不足的电源设计师尤其如此。
在实际补偿设计中,为了调整补偿组件的值,常常需要进行无数次迭代。
对于一个复杂系统而言,这不仅耗费大量时间,而且也不够准确,因为这类系统的电源带宽和稳定性裕度可能受到几种因素的影响。
本应用指南针对开关模式电源及其环路补偿设计,说明了小信号建模的基本概念和方法。
本文以降压型转换器作为典型例子,但是这些概念也能适用于其他拓扑。
本文还介绍了用户易用的LTpowerCAD 设计工具,以减轻设计及优化负担。
确定问题一个良好设计的开关模式电源(SMPS) 必须是没有噪声的,无论从电气还是声学角度来看。
欠补偿系统可能导致运行不稳定。
不稳定电源的典型症状包括:磁性组件或陶瓷电容器产生可听噪声、开关波形中有抖动、输出电压震荡、功率FET 过热等等。
不过,除了环路稳定性,还有很多原因可能导致产生不想要的震荡。
不幸的是,对于经验不足的电源设计师而言,这些震荡在示波器上看起来完全相同。
即使对于经验丰富的工程师,有时确定引起不稳定性的原因也是很困难。
图1 显示了一个不稳定降压型电源的典型输出和开关节点波形。
调节环路补偿可能或不可能解决电源不稳定问题,因为有时震荡是由其他因素引起的,例如。
开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。
一般需要6db的增益裕量。
备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。
要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。
传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。
把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。
开关电源系统基本组成部分(Voltage Mode PWM System)
开关电源环路分析和设计流程
开关电源环路的小信号传函
Flyback
TL431
Power Stage
Flyback PWM Stage
PWM Stage
()t d)+
考虑斜率补偿后的
考虑斜率补偿后的
考虑斜率补偿后的
考虑斜率补偿后的
考虑斜率补偿后的
DCM模式下
零极点对环路稳定性的影响及环路带宽选择标准
环路的补偿方法
把控制带宽拉低,在功率部分或加有其他补偿的部分相位达
环路的补偿方法
常用的补偿方式.补偿网络产生一个s=0(DC)极点,而且通常
所以补偿网络需补偿网络的高频极点抵消输出滤波电容的ESR零点。
环路的补偿方法
复杂,适用于输出带LC滤波的拓扑结构中.
补偿网络产生一个s=0(DC)极点,以及两个零点和两个极点,
反激变换器反馈回路的设计
采用补偿方法Power Stage Gain
OB2263 控制芯片内部模块图
OB2263
OB2263
基于OB2263的
基于OB2263的
基于OB2263的
基于OB2263的
5) 确定EA补偿网络的零点和极点的位置
基于OB2263的
基于OB2263的
附录: 431及其补偿网络传函的推导6K
R I v ⋅−=
Thank you Any Questions?。