最新第4章交通工程学交通流理论习题解答
- 格式:doc
- 大小:138.00 KB
- 文档页数:5
交通工程复习题答案一、单项选择题1. 交通工程学是一门综合性的边缘科学,它主要研究的是交通流的()。
A. 运动规律B. 形成过程C. 管理方法D. 经济价值答案:A2. 交通信号灯的三个颜色分别代表的含义是()。
A. 停止、准备、通行B. 通行、停止、准备C. 停止、通行、准备D. 准备、通行、停止答案:C3. 交通流理论中,交通流的基本参数不包括()。
A. 流量B. 速度C. 密度D. 车型答案:D二、多项选择题1. 交通工程中的交通调查包括()。
A. 交通流量调查B. 交通事故调查C. 交通速度调查D. 交通噪声调查答案:ABCD2. 交通信号控制的基本原则包括()。
A. 确保交通安全B. 提高交通效率C. 减少环境污染D. 降低能源消耗答案:ABCD三、判断题1. 交通流理论中的“瓶颈效应”指的是在交通流中,由于某些路段的通行能力低于其他路段,导致整个交通流的通行能力受限。
()答案:正确2. 交通规划的目的是通过合理配置交通资源,实现交通流的最大化。
()答案:错误四、简答题1. 简述交通工程学的主要研究内容。
答案:交通工程学主要研究交通流的运动规律、交通设施的设计、交通管理与控制、交通安全、交通环境以及交通规划等方面。
2. 描述交通信号灯控制的基本原理。
答案:交通信号灯控制的基本原理是通过红、黄、绿三种颜色的信号灯,按照一定的时间间隔和顺序,对不同方向的交通流进行控制,以确保交通流的有序、安全和高效。
五、计算题1. 已知某路段的交通流量为1200辆/小时,交通速度为60公里/小时,试计算该路段的交通密度。
答案:交通密度 = 流量 / 速度 = 1200辆/小时 / 60公里/小时 =20辆/公里。
六、案例分析题1. 某城市交通拥堵严重,试分析可能的原因,并提出相应的解决措施。
答案:可能的原因包括:道路容量不足、交通信号控制不合理、交通事故频发、公共交通系统不完善等。
解决措施可以包括:扩建道路、优化交通信号控制、加强交通管理、提高公共交通的吸引力等。
交通工程考试题库及答案一、选择题1. 交通工程的主要任务是什么?A. 确保交通安全B. 提高交通效率C. 减少交通污染D. 以上都是答案:D2. 交通流理论中,以下哪个参数不是描述交通流的基本参数?A. 流量B. 密度C. 速度D. 车辆类型答案:D3. 交通信号控制的基本目标是什么?A. 减少车辆延误B. 增加车辆通行量C. 减少交通事故D. 以上都是答案:D二、判断题1. 交通工程中的“绿波带”是指在一定路段内,通过信号控制使车辆能够连续通过多个交叉口。
(对)2. 交通工程中不考虑行人和非机动车的通行需求。
(错)3. 交通规划的目的是为了解决交通问题,提高城市的交通服务水平。
(对)三、简答题1. 简述交通流三参数之间的关系。
答案:交通流三参数包括流量(Q)、密度(K)和速度(V)。
它们之间的关系可以通过流量-密度关系(Q=KV)来描述。
在一定的道路条件下,流量与密度成正比,与速度成反比。
当密度增加时,流量会减少,速度也会降低。
2. 描述交通信号控制的基本原则。
答案:交通信号控制的基本原则包括:- 确保交通安全:通过信号控制减少交通事故的发生。
- 提高交通效率:合理分配信号灯的时间,减少车辆延误。
- 平衡交通需求:根据各个方向的交通流量合理分配绿灯时间。
- 适应交通变化:根据交通流量的变化调整信号控制策略。
四、计算题1. 某路段在高峰时段的交通流量为1200辆/小时,平均速度为40km/h,求该路段的平均交通密度。
答案:首先,将速度转换为小时单位,即40km/h = 40/3.6 m/s ≈ 11.11 m/s。
然后,根据流量-密度关系 Q = KV,可得密度 K = Q / V = 1200 / (11.11 * 3600) ≈ 0.033 辆/m。
2. 某交通信号灯周期为120秒,其中绿灯时间为60秒,求该信号灯的周期使用率。
答案:周期使用率是指信号灯在一个周期内绿灯时间所占的比例。
计算公式为:周期使用率 = 绿灯时间 / 信号灯周期。
《交通工程学第四章交通流理论》习题解答4-1在交通流模型中,假定流速 V 与密度k 之间的关系式为 V=a(1-bk)2,试依据两个边界条 件,确定系数a 、b 的值,并导出速度与流量以及流量与密度的关系式。
1解答:当 V=0 时,K =Kj ,••• b =—;k j当 K = 0 时,V =V f ,• a =V f ;2把a 和b 代入到 V=a(1-bk)K•- V =V f 1-—— l 心丿又 Q =KV流量与密度的关系 Q=V f K 1 4-2已知某公路上中畅行速度 V f =82km/h ,阻塞密度 K j =105辆/km,速度与密度用线性关系模型,求:(1) 在该路段上期望得到的最大流量; (2) 此时所对应的车速是多少?解答:(1) V — K 线性关系,V f =82km/h , K j =105 辆/km•- V m =V f /2=41km/h , K m =K j /2=52.5 辆/km, •- Q m =V m K m =2152.5 辆/h (2) V m = 41km/h4-3对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有 如下形式:乂 =35.9 ln 180k式中车速V s 以km/h 计;密度k 以/km 计,试问在该路上的拥塞密度是多少?_ 180解答:V =35.9In ——k拥塞密度K j 为V=0时的密度,,180 门…ln 0K j•- K j =180 辆/km4-5某交通流属泊松分布,已知交通量为 1200辆/h,求: (1 )车头时距t> 5s 的概率;(2) 车头时距t> 5s 所出现的次数; (3) 车头时距t> 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q=1200辆/h流量与速度的关系Q=K j 1V f r-t—x 」翅(1) P(h t—5)=e i 二e 3600二e3=0.189(2) n=P(h K5)XQ=226 辆/h5»訂水4-6已知某公路q=720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。
第一部分:交通工程学课后思考题解答第一章:绪论●1-1简述交通工程学的定义、性质、特点、与发展趋势定义:交通工程学是研究交通发生、发展、分布、运行与停住规律,探讨交通调查、规划、设计、监管、管理、安全的理论以及有关设施、装备、法律与法规。
协调道路交通中人、车、路与环境之间的相互关系。
使道路交通更加安全、高校、快捷、舒适、方便、经济的一门工程技术学科。
性质:是一门兼有自然科学与社会科学双重属性的综合性学科。
特点:系统性、综合性、交叉性、社会性、超前性、动态性发展趋势:智能化和系统化●1-2简述我国的交通现状与交通工程学科面临的任务现状:综合运输六点;公路交通三点;城市交通四点任务:即重点研究的那些领域●1-3简述城市交通畅通工程的目标和重点任务目标:提高城市交通建设与管理科学化水平。
重点任务:改善道路条件,优化交通结构,强化科学管理,规范交通行为●1-4简述交通工程学科的研究范围、重点及作用。
范围:交通特性分析技术、交通调查方法、交通流理论、道路通行能力分析技术、道路交通系统规划理论、交通安全技术、道路交通系统管理技术与管理规划、静态交通系统规划、交通系统的可持续发展规划、交通工程的新理论新方法新技术作用:良好的交通条件与高效的运输系统能促进社会的发展,经济的繁荣,和人们日常生活的正常进行以及城市各项功能的发挥、山区开发、旅游开展。
经济方面能扩大商品市场与原材料的来源,降低生产成本与运输费用,促进工业、企业的发展与区域土地的开发,提高土地价格与城市的活力,交通的发展还可实现运输的专业化、便捷化、批量化与运费低廉化。
从而有可能更大的范围内合理配置生产要素,同时也可促进全国或地区范围内人口的合理流动。
第二章:交通特性●2-1交通特性包括那几个方面?为什么要进行分析?意义如何?分析中要注意什么问题?特性:人-车-路基本特性、交通量特性、行车速度特性、交通密度特性、交通流基本特性及其相互关系、交通要素与环境之间的相关关系。
#### 第一部分:选择题1. 交通工程学的研究对象是:A. 道路工程B. 交通规划C. 道路交通系统D. 交通设施答案:C2. 交通工程学的基本理论包括:A. 道路通行能力理论B. 交通流理论C. 交通需求预测理论D. 以上都是答案:D3. 下列哪项不属于交通工程学的研究内容:A. 道路几何设计B. 交通信号控制C. 交通设施设计D. 城市环境规划答案:D4. 下列哪种交通流理论主要描述车辆在道路上行驶时的运动规律:A. 道路通行能力理论B. 交通需求预测理论C. 交通流理论D. 交通设施设计理论答案:C5. 交通规划中,以下哪项不属于交通需求预测的方法:A. 时间序列分析B. 模糊数学方法C. 模型模拟法D. 统计回归分析答案:B#### 第二部分:填空题1. 交通工程学是研究______的科学,旨在提高交通系统的______。
答案:道路交通系统;效率2. 道路通行能力是指单位时间内______道路上车辆通过的最大______。
答案:一定长度;车流量3. 交通流理论主要研究______、______和______。
答案:交通流量;交通速度;交通密度4. 交通需求预测是交通规划中的______阶段,其目的是为______提供依据。
答案:预测;交通设施规划5. 交通信号控制的主要目的是通过______和______来调节交通流量。
答案:交通信号配时;交通组织措施#### 第三部分:名词解释1. 交通流理论- 交通流理论是研究车辆在道路上行驶时的运动规律和交通现象的学科,主要包括交通流量、交通速度和交通密度等基本概念。
2. 道路通行能力- 道路通行能力是指在一定条件下,道路上车辆通过的最大车流量,通常用车辆/小时·车道(pcu/h)来表示。
3. 交通需求预测- 交通需求预测是通过对交通系统未来交通量的预测,为交通规划、交通设施建设和交通管理提供科学依据的过程。
4. 交通信号控制- 交通信号控制是指通过信号灯、标志、标线等交通设施,对交通流进行有序管理,以提高道路通行效率和安全性的措施。
《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。
解答:当V = 0时,j K K =, ∴ 1jb k =; 当K =0时,f V V =,∴ f a V =;把a 和b 代入到V = a (1 - bk )2∴ 21f j K V V K ⎛⎫=- ⎪ ⎪⎝⎭, 又 Q KV = 流量与速度的关系1j Q K V ⎛= ⎝ 流量与密度的关系 21f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭ 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:(1)在该路段上期望得到的最大流量;(2)此时所对应的车速是多少?解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,∴ Q m = V m K m = 2152.5辆/h(2)V m = 41km/h解答:35.9ln V k= 拥塞密度K j 为V = 0时的密度,∴ 180ln 0jK =∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;(3)车头时距 t > 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====(2)n = (5)t P h Q ≥⨯ = 226辆/h(3)55158s t t e tdt e dt λλλλλ+∞-+∞-⎰⋅=+=⎰4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。
《交通工程学 第四章 交通流理论》习题解答4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。
解答:当V = 0时,j K K =, ∴ 1j
b k =; 当K =0时,f V V =,∴ f a V =;
把a 和b 代入到V = a (1 - bk )2
∴ 2
1f j K V V K ⎛⎫=- ⎪ ⎪⎝
⎭, 又 Q KV = 流量与速度的关系1j f V Q K V V ⎛⎫=- ⎪ ⎪⎝⎭
流量与密度的关系 2
1f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭ 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:
(1)在该路段上期望得到的最大流量;
(2)此时所对应的车速是多少?
解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km
∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,
∴ Q m = V m K m = 2152.5辆/h
(2)V m = 41km/h
4-3 对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有如下形式: 式中车速s V 以 km/h 计;密度 k 以 /km 计,试问在该路上的拥塞密度是多少?
解答:18035.9ln V k
= 拥塞密度K j 为V = 0时的密度,
∴ 180ln 0j
K = ∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:
(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;
(3)车头时距 t > 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h
(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====
(2)n = (5)t P h Q ≥⨯ = 226辆/h
(3)55158s t t e tdt e dt λλλλλ
+∞-+∞-⎰⋅=+=⎰ 4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其
出现次数。
解答:(1)q = 720辆/h ,1/s 36005
q λ==辆,t = 2s n = 0.67×720 = 483辆/h
4-7 有优先通行权的主干道车流量N =360辆/ h ,车辆到达服从泊松分布,主要道路允许次要道路穿越的最小车头时距=10s ,求
(1) 每小时有多少个可穿空档?
(2) 若次要道路饱和车流的平均车头时距为t 0=5s ,则该路口次要道路车流穿越主要道路车流的最大车流为多少? 解答:
(1) 如果到达车辆数服从泊松分布,那么,车头时距服从负指数分布。
根据车头时距不低于t 的概率公式,t e t h p λ-=≥)(,可以计算车头时距不低于10s 的概率是
主要道路在1小时内有360辆车通过,则每小时内有360个车头时距,而在360个车头时距中,不低于可穿越最小车头时距的个数是(总量×发生概率)
360×0.3679=132(个)
因此,在主要道路的车流中,每小时有132个可穿越空挡。
(2) 次要道路通行能力不会超过主要道路的通行能力,是主要道路通行能力乘以一个小于1的系数。
同样,次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,可记为),,(0t t S S 主次
1t t e e S S λλ---=主次337136053600360103600360=-⨯=⨯-⨯-e e
因此,该路口次要道路车流穿越主要道路车流的最大车辆为337辆/h 。
4-8 在非信号交叉口,次要道路上的车辆为了能横穿主要道路上的车流,车辆通过主要车流的极限车头时距是6s ,次要道路饱和车流的平均车头时距是3s ,若主要车流的流量为1200量/h 。
试求
(1) 主要道路上车头时距不低于6s 的概率是多少?次要道路可能通过的车辆是多少?
(2) 就主要道路而言,若最小车头时距是1s ,则已知车头时距大于6s 的概率是多少?而在该情况下次要道
路可能通过多少车辆?
解答:
(1) 计算在一般情况下主要道路上某种车头时距的发生概率、可穿越车辆数。
把交通流量换算成以秒为单位的流入率,λ=Q /3600 =1/3 (pcu/s)
根据车头时距不低于t 的概率公式,t e t h p λ-=≥)(,计算车头时距不低于极限车头时距6s 的概率,
次要道路通行能力不会超过主要道路的通行能力,是主要道路通行能力乘以一个小于1的系数。
同样,次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,
(2) 计算在附加条件下主要道路上某种车头时距的发生概率、可穿越车辆数。
根据概率论中的条件概率定律的()(|)()P A P A B P B =⋅,在主要道路上最小车头时距不低于1s 的情况下,车头时距不低于6s 的概率是
次要道路的最大车流取决于主要道路的车流的大小、主要道路车流的可穿越空挡、次要道路车流的车头时距,
(2) 关于第2问还存在另外一种解答。
负指数分布的特点是“小车头时距大概率”,即车头时距愈短出现的概率
越大。
“车头时距等于零的概率的最大”这个特征违反了客观现实,因为相邻两个车头之间的距离至少不低于车身长度,也就是说车头时距必须不低于某个阈值τ,此时,应考虑采用移位负指数分布p (h ≥t )=exp (-λ(t -τ))。
主要道路的最小车头时距是1s ,可以理解为τ=1s 。
4-9 今有 1500辆/h 的车流量通过三个服务通道引向三个收费站,每个收费站可服务600辆/h ,试分别按单路排队和多路排队两种服务方式计算各相应指标。
解:(1)按单路排队多通道系统(M/M/1系统)计算:
1500/h λ=辆,600/h μ=辆
∴ 2.5λρμ==,0.831N
ρ=<,系统稳定 = 6.016n q ρ+=辆, 14.44s/n d λ==辆, 8.44s/q
ωλ==辆 (2)按多路排队多通道系统(3个平行的M/M/1系统)计算: λ=1500/3=500辆/h ,600/h μ=辆,516λρμ=
=<,系统稳定 51n ρ
ρ==-辆, 4.17q n n ρρ=⋅=-=辆
对于由三个收费站组成的系统
15n =辆,12.5q =辆,36s/d =辆,30s/ω=辆 4-10 流在一条6车道的公路上行驶,流量q 1=4200辆/h ,速度v 1=50km/h ,遇到一座只有4车道的桥,
桥上限速13km/h ,对应通行能力3880辆/h 。
在通行持续了1.69h 后,进入大桥的流量降至q 3=1950辆/h ,速度变成v 3=59km/h ,试估计囤积大桥入口处的车辆拥挤长度和拥挤持续时间?(李江例题107页、东南练习题123页习题)
解答:
在车辆还没有进入限速大桥之前,没有堵塞现象,在车辆进入限速大桥之后,因为通行能力下降,交通密度增大,出现交通拥堵。
因此,车流经历了消散-集结-消散的过程,三种状态下的交通流的三个基本参数是 q1=4200veh/h ,v1=50km/h ,k1=q1 / v1=84veh/km
q2=3880veh/h ,v2=13km/h ,k2=q2 / v2=298veh/km
q3=1950veh/h ,v3=59km/h ,k3=q3 / v3=33veh/km
1. 计算排队长度
交通流密度波等于
表明此处出现迫使排队的反向波,波速为1.50km/h ,考虑到波速从0经过了1.69h 增加到1.50km/h ,其平均波速为v a =(0+1.50)/2=0.75km/h ,所以此处排队长度为
2. 计算阻塞时间
高峰过去后,排队即开始消散,但阻塞仍要持续一段时间。
因此阻塞时间应为排队形成时间与消散时间之和。
① 排队形成时间是1.69h ,所有车辆都经历了这么长的排队时间。
② 排队消散时间的计算,主要根据在形成时间里的囤积量与消散时间里的消散量平衡的原则来进行。
高峰过后的车流量:q 3=1950辆/h < 3880辆/h ,表明通行能力已经富余,排队开始消散。
排队车辆是 辆54169.1)38804200(69.1)(21=⨯-=⨯-q q
车队消散能力 h /19303880195023辆-=-=-q q 则排队消散时间 1232() 1.695410.28h 1930
q q t q q -⨯'====-排队车辆数消散能力 因此,交通阻塞时间=排队形成时间+排队消散时间=1.69h +0.28h = 1.97h。