2023年九年级数学中考专题:旋转综合压轴题(含简单答案)
- 格式:docx
- 大小:913.15 KB
- 文档页数:13
2023年九年级数学中考复习:旋转(线段问题)综合压轴题1.已知∠ABC =90°,BA =BC ,在同一平面内将等腰直角∠ABC 绕顶点A 逆时针旋转(旋转角小于180°)得∠ADE .(1)若AE //BD 如图(1),求旋转角∠BAD 度数;(2)当旋转角为60°时,延长ED 与BC 交于点F ,如图(2).求证:AC 平分∠DAF(3)点P 是边BC 上动点,将AP 绕点A 逆时针旋转15°到AG ,如图(3)示例,设AB =BC =α,求CG 长度最小值(用含α式子表示)2.如图,正方形ABCD 中,=45?MAN ∠,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)如图1,求证:MN BM DN =+;(2)当=6AB ,5MN =时,求CMN 的面积;(3)当MAN ∠绕点A 旋转到如图2位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.3.如图,等边∠ABC 与等腰三角形∠EDC 有公共顶点C ,其中∠EDC =120°,AB =CE =26,连接BE ,P 为BE 的中点,连接PD 、AD(1)为了研究线段AD 与PD 的数量关系,将图1中的∠EDC 绕点C 旋转一个适当的角度,使CE 与CA 重合,如图2,请直接写出AD 与PD 的数量关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若∠ACD =45°,求∠P AD 的面积.4.【问题提出】如图∠,在ABC 中,若8,4AB AC ==,求BC 边上的中线AD 的取值范围.【问题解决】解决此问题可以用如下方法:延长AD 到点E ,使DE AD =,再连结BE (或将ACD △绕着点D 逆时针旋转180︒得到EBD △),把AB 、AC 、2AD 集中在ABE △中,利用三角形三边的关系即可判断.由此得出中线AD 的取值范围是____________.【应用】如图∠,在ABC 中,D 为边BC 的中点、已知5,3,2AB AC AD ===.求BC 的长.【拓展】如图∠,在ABC 中,90A ∠=︒,点D 是边BC 的中点,点E 在边AB 上,过点D 作DE DE ⊥交边AC 于点F ,连结EF .已知10,12BE CF ==,则EF 的长为____________.5.(1)如图1,在∠OAB 和∠OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =39°,连接AC ,BD 交于点M .填空:AC BD的值为 ,∠AMB 的度数为 ; (2)如图2,在∠OAB 和∠OCD 中,∠AOB =∠COD =90°,∠OBA =∠ODC =60°,连接AC交BD的延长线于点M.请判断AC的值,并说明理由;BD(3)在(2)的条件下,将∠OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB6;点Q为CD的中点,则在旋转的过程中,AQ的最大值为.6.如图,过边长为4的等边∠ABC的顶点A作直线l∠BC,点D在直线l上(不与点A重合),作射线BD,将射线BD绕点B顺时针旋转60°后交直线AC于点E.(1)如图1,点D在点A的左侧,点E在边AC上,请直接写出AB,AD,AE间的关系(2)如图2,点D在点A的右侧,点E在边AC的延长线上,那么(1)中的结论还成立吗?若成立,请证明;若不成立,写出你的结论,再证明.(3)如图3,点E在边AC的反向延长线上,若∠ABE=15°,请直接写出线段AD的长.7.如图,将矩形ABCD绕点B旋转,点A落到对角线AC上的点E处,点C、D分别落在点F、G处.。
2023年春九年级数学中考复习《几何图形变换综合压轴题》专题训练(附答案)1.如图,△ABC和△ECD都是等边三角形,直线AE,BD交于点F.(1)如图1,当A,C,D三点在同一直线上时,∠AFB的度数为,线段AE与BD的数量关系为.(2)如图2,当△ECD绕点C顺时针旋转α(0°≤α<360°)时,(1)中的结论是否还成立?若不成立,请说明理由;若成立,请就图2给予证明.(3)若AC=4,CD=3,当△ECD绕点C顺时针旋转一周时,请直接写出BD长的取值范围.2.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D、E两点分别在AC、BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A、B、E三点共线时,若CE=5,AC=4,直接写出线段AD的长.3.已知:如图1,线段AD=5,点B从点A出发沿射线AD方向运动,以AB为底作等腰△ABC,使得AC=BC=AB.(1)如图2,当AB=10时,求证:CD⊥AB;(2)当△BCD是以BC为腰的等腰三角形时,求BC的长;(3)当AB>5时,在线段BC上是否存在点E,使得△BDE与△ACD全等,若存在,求出BC的长;若不存在,请说明理由;(4)作点A关于直线CD的对称点A′,连接CA′当CA′∥AB时,CA′=(请直接写出答案).4.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系是:;数量关系是:;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系为:;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.5.如图,平面直角坐标系中O为原点,Rt△ABC的直角顶点A在y轴正半轴上,斜边BC 在x轴上,已知B、C两点关于y轴对称,且C(﹣8,0).(1)请直接写出A、B两点坐标;(2)动点P在线段AB上,横坐标为t,连接OP,请用含t的式子表示△POB的面积;(3)在(2)的条件下,当△POB的面积为24时,延长OP到Q,使得PQ=OP,在第一象限内是否存在点D,使得△OQD是等腰直角三角形,如果存在,求出D点坐标;如果不存在,请说明理由.6.如图1,已知△ABC中,∠ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD =AB.(Ⅰ)求BD的长度;(Ⅱ)如图2,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;②连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(Ⅲ)如图3,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD',若点M 为AC的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.7.如图①,将两个等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),点A(0,+1),点B(+1,0),点C(0,1),点D(1,0).(Ⅰ)求证:AC=BD;(Ⅱ)如图②,现将△OCD绕点O顺时针方向旋转,旋转角为α(0°<α<180°),连接AC,BD,这一过程中AC和BD是否仍然保持相等?说明理由;当旋转角α的度数为时,AC所在直线能够垂直平分BD;(Ⅲ)在(Ⅱ)的情况下,将旋转角α的范围扩大为0°<α<360°,那么在旋转过程中,求△BAD的面积的最大值,并写出此时旋转角α的度数.(直接写出结果即可)8.在△ABC中,AB=AC,∠BAC=α,过点A作直线l平行于BC,点D是直线l上一动点,连接CD,射线DC绕点D顺时针旋转α交直线AB于点E.(1)如图1,若α=60°,当点E在线段AB上时,请直接写出线段AC,AD,AE之间的数量关系,不用证明;(2)如图2,若α=60°,当点E在线段BA的延长线上时,(1)中的结论是否成立?若成立,请证明;若不成立,请写出正确结论,并证明.(3)如图3,若α=90°,BC=6,AD=,请直接写出AE的长.9.有一根直尺短边长4cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D 与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x ≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=;当x=12cm时,S=.(2)当0<x<8(如图乙、图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.10.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.11.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.12.(1)如图1,平面直角坐标系中A(0,a),B(a,0)(a>0).C为线段AB的中点,CD⊥x轴于D,若△AOB的面积为2,则△CDB的面积为.(2)如图2,△AOB为等腰直角三角形,O为直角顶点,点E为线段OB上一点,且OB=3OE,C与E关于原点对称,线段AB交x轴于点D,连CD,若CD⊥AE,试求的值.(3)如图3,点C、E在x轴上,B在y轴上,OB=OC,△BDE是以B为直角顶点的等腰直角三角形,直线CB、ED交于点A,CD交y轴于点F,试探究:是否为定值?如果是定值,请求出该定值;如果不是,请求出其取值范围.13.在△ABC中,AB=AC,∠BAC=90°.(1)如图1,点P,Q在线段BC上,AP=AQ,∠BAP=15°,求∠AQB的度数;(2)点P,Q在线段BC上(不与点B,C重合),AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②用等式表示线段BP,AP,PC之间的数量关系,并证明.14.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,A是△BDC内一点,∠ABC=∠ADB=45°,∠BAC=90°,BD =,直接写出△BDC的面积为.15.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;(2)当a+b=0时,①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.16.已知:在Rt△ABC中,∠C=90°,∠B=30°,BC=6,左右作平行移动的等边三角形DEF的两个顶点E、F始终在边BC上,DE、DF分别与AB相交于点G、H.(1)如图1,当点F与点C重合时,点D恰好在斜边AB上,求△DEF的周长;(2)如图2,在△DEF作平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设C点与F点的距离为x,△DEF与△ABC的重叠部分的面积为y,求y与x的函数关系式,并写出定义域.17.在△ABC中,∠C=90°,AC=2,BC=2,点D为边AC的中点(如图),点P、Q 分别是射线BC、BA上的动点,且BQ=BP,联结PQ、QD、DP.(1)求证:PQ⊥AB;(2)如果点P在线段BC上,当△PQD是直角三角形时,求BP的长;(3)将△PQD沿直线QP翻折,点D的对应点为点D',如果点D'位于△ABC内,请直接写出BP的取值范围.18.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长.(2)如图2,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M,N为边AB上两点满足∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程.19.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.20.【教材呈现】如图是苏科版九年级下册数学教材第92页的第17题.一块直角三角形木板,它的一条直角边AC长为1.5m,面积为1.5m2.甲乙两人分别按图1、图2把它加工成一个正方形的桌面,请说明哪个正方形的面积较大.【解决问题】(1)记图1、图2中的正方形面积分别为S1,S2,则S1S2.(填“>”、“<”或“=”).【问题变式】若木板形状是锐角三角形A1B1C1.某数学兴趣小组继续思考:按图3、图4、图5三种方式加工,分别记所得的正方形面积为S3、S4、S5,哪一个正方形的面积最大呢?(2)若木板的面积S仍为1.5m2.小明:记图3中的正方形为“沿B1C1边的内接正方形”,图4中的正方形为“沿A1C1边的内接正方形”,依此类推.以图3为例,求“沿B1C1边的内接正方形DEFG”的面积.设EF =x ,B 1C 1=a ,B 1C 1边上的高A 1H =h ,则S =ah .由“相似三角形对应高的比等于相似比”易得x =;同理可得图4、图5中正方形边长,再比较大小即可.小红:若要内接正方形面积最大,则x 最大即可;小莉:同一块木板,面积相同,即S 为定值,本题中S =1.5,因此,只需要a +h 最小即可.我们可以借鉴以前研究函数的经验,令y =a +h =a +=a +(a >0).下面来探索函数y =a +(a >0)的图象和性质.①根据如表,画出函数的图象:(如图6)a… 1 2 3 4 … y … 12 9 6 4 3 3 4 4…②观察图象,发现该函数有最小值,此时a 的取值 ;A .等于2;B .在1~之间;C .在~之间;D .在~2之间.(3)若在△A 1B 1C 1中(如图7),A 1B 1=5,A 1C 1=,高A 1H =4.①结合你的发现,得到S 3、S 4、S 5的大小关系是 (用“<”连接). ②小明不小心打翻了墨水瓶,已画出最大面积的内接正方形的△A 1B 1C 1原图遭到了污损,请用直尺和圆规帮他复原△A 1B 1C 1.(保留作图痕迹,不写作法)参考答案1.解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABF中,∠AFB=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠CBF+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AFB=60°,故答案为:∠AFB=60°,AE=BD;(2)(1)中结论仍成立,证明:∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠AFB+∠CBD=∠ACB+∠CAE,∴∠AFB=∠ACB,∵∠ACB=60°,∴∠AFB=60°;(3)在△BCD中,BC+CD>BD,BC﹣CD<BD,∴点D在BC的延长线上时,BD最大,最大为4+3=7,当点D在线段BC上时,BD最小,最小为4﹣3=1,∴1≤BD≤7,即BD长的取值范围为1≤BD≤7.2.解:(1)∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠B=45°,∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC为等腰直角三角形,∴cos∠C==,∵DE∥AB,∴==,故答案为:;(2)由(1)知,△BAC和△CDE均为等腰直角三角形,∴==,又∠BCE=∠ACD=α,∴△BCE∽△ACD,∴==,即=;(3)①如图3﹣1,当点E在线段BA的延长线上时,∵∠BAC=90°,∴∠CAE=90°,∴AE===3,∴BE=BA+AE=4+3=7;由(2)知,=.故AD=.②如图3﹣2,当点E在线段BA上时,AE===3,∴BE=BA﹣AE=4﹣3=1,由(2)知,=.故AD=.综上所述,AD的长为或,故答案为:或.3.解:(1)如图2中,∵AB=10,AD=5,∴AD=DB,∵CA=CB,AD=DB,∴CD⊥AB.(2)如图1中,当AB<AD时,BC=BD.设AB=10k,则AC=BC=6k,∵AD=5,∴10k+6k=5,∴k=,∴BC=6k=.如图1﹣1中,当AB>AD时,BC=BD,同法可得10k﹣6k=5,解得k=,∴BC=6k=,综上所述,BC的值为或.(3)如图3﹣1中,当△ADC≌△BED时,BD=AC=BC,由(2)可知,BC=.如图3﹣2中,当△ADC≌△BCE时,点E与C重合,此时AB=10k=10,∴k=1,BC=6k=6.综上所述,BC的值为或6.(4)如图3中,当CA′∥AB时,∵CA′∥AB,∴∠ADC=∠A′CD,由翻折可知,∠A′CD=∠ACD,∴∠ACD=∠ADC,∴AC=AD=5,∴CA′=CA=5.故答案为5.4.解:(1)结论:BD=AC,BD⊥AC.理由:延长BD交AC于F.∵AE⊥CB,∴∠AEC=∠BED=90°.在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∠CAE=∠EBD,∵∠AEC=90°,∴∠ACB+∠CAE=90°,∴∠CBF+∠ACB=90°,∴∠BFC=90°,∴AC⊥BD,故答案为:BD⊥AC,BD=AC.(2)如图2中,不发生变化,设DE与AC交于点O,BD与AC交于点F.理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,故答案为:BD=AC.②能;设BD与AC交于点F,由①知,△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC的夹角中的锐角的度数为60°.5.解:(1)∵B、C两点关于y轴对称,且C(﹣8,0),∴点B(8,0),BO=CO,又∵AO⊥BC,∴AC=AB,∵∠CAB=90°,AC=AB,CO=BO,∴AO=CO=BO=8,∴点A(0,8);(2)如图1,过点P作PM⊥OB于M,∵点P的横坐标为t,∴OM=t,∴MB=8﹣t,∵∠CAB=90°,AC=AB,∴∠ABO=45°,∴∠BPM=∠ABO=45°,∴PM=MB=8﹣t,∴S△POB=×OB×PM=×8×(8﹣t)=32﹣4t;(3)∵△POB的面积为24,∴32﹣4t=24,∴t=2,∴点P(2,6),如图2,当点Q为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,∵PQ=OP,点P(2,6),∴点Q(4,12),∵∠OQD=90°=∠OHQ=∠QGD,∴∠OQH+∠DQG=90°=∠OQH+∠HOQ,∴∠HOQ=∠GQD,又∵OQ=QD,∴△OHQ≌△QGD(AAS),∴OH=QG=12,HQ=GD=4,∴HG=16,∴点D(16,8);当点D为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,过点D作DN ⊥y轴于N,同理可求△QDG≌△ODN,∴ON=QG,DN=DG,∵DN=QG+HQ=4+QG,DG=HN=12﹣ON,∴ON=QG=4,DN=DG=8,∴点D(8,4),综上所述:点D(16,8)或(8,4).6.解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵∠ACB=90°,AC=BC=6,CH⊥AB,∴AB=CD=6,CH=BH=AB=3,∠CAB=∠CBA=45°,∴DH===3,∴BD=DH﹣BH=3﹣3;(Ⅱ)①如图2,过点E作EF⊥CD'于F,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴CD=CD'=6,∠DCD'=30°=∠CDA=∠CD'A',∴CE=D'E,又∵EF⊥CD',∴CF=D'F=3,EF=,CE=2EF=2,∴DE=DC﹣CE=6﹣2;②如图2﹣1,∵∠ABC=45°,∠ADC=30°,∴∠BCD=15°,∴∠ACD=105°,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴AC=A'C,CD=CD',∠ACA'=∠DCD'=α,∴CB=CA',又∵A′D=BD′,∴△A'CD≌△BCD'(SSS),∴∠A'CD=∠BCD',∴105°﹣α=15°+α,∴α=45°;如图2﹣2,同理可证:△A'CD≌△BCD',∴∠A'CD=∠BCD',∴α﹣105°=360°﹣α﹣15°,∴α=225°,综上所述:满足条件的α的度数为45°或225°;(Ⅲ)如图3,当A'D'⊥AC时,N是AC与A'D'的交点时,MN的长度最小,∵∠A'=45°,A'D'⊥AC,∴∠A'=∠NCA'=45°,∴CN=A'N=3,∵点M为AC的中点,∴CM=AC=3,∴MN的最小值=NC﹣CM=3﹣3;如图4,当点A,点C,点D'共线,且点N与点D'重合时,MN有最大值,此时MN=CM+CN=6+3,∴线段MN的取值范围是3﹣3≤MN≤6+3.7.解:(Ⅰ)∵点A(0,+1),点B(+1,0),点C(0,1),点D(1,0),∴OA=+1,OB=+1,OC=1,OD=1,∴AC=OA﹣OC=+1﹣1=,BD=+1﹣1=,∴AC=BD;(Ⅱ)由题意知,OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC=∠AOB﹣∠COB=90°﹣∠COB,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,如图1(注:点C在x轴上,为了不要出现误解,点C没画在x轴上),延长AC交BD 于D,连接BC,在Rt△AOB中,OA=OB,∴∠OAB=∠OBA=45°,∴∠CAB+∠ABD=∠OAB﹣∠OAC+∠ABO+∠BOD=∠OAB+∠OBA=90°,∴AC⊥BD,∵AC垂直平分BD,∴CD=BC,设点C的坐标为(m,n),∴m2+n2=1①,由旋转知,CD==,∵B(+1,0),[m﹣(+1)]2+n2=2②,联立①②解得,m=1,n=0,∴点C在x轴上,∴旋转角为∠AOC=90°,故答案为:90°;(Ⅲ)如图2,∵OA=OB=+1,∴AB=OA=2+,过点O作OH⊥AB于H,∴S△AOB=OA•OB=AB•OH,∴OH====,过点D作DG⊥AB于G,S△ABD=AB•DG=(2+)DG,要使△ABD的面积最大,则DG最大,由旋转知,点D是以O为圆心,1为半径的圆上,∴点D在HO的延长线上时,DG最大,即DG的最大值为D'H=OD'+OH=1+=,∴S△ABD最大=AB•D'H=(2+)×=,在Rt△AOB中,OA=OB,OH⊥AB,∴∠BOH=45°,∴旋转角∠BOD'=180°﹣45°=135°.8.解:(1)AC=AE+AD.证明:连接CE,∵线段DC绕点D顺时针旋转α交直线AB于点E,α=60°,∵AB=AC,∠BAC=60°,∴CB=CA=AB,∠ACB=60°,∵AD∥BC,∴∠DAF=∠ACB=60°,∵∠FDC=∠EAF=60°,∠AFE=∠DFC,∴△AFE∽△DFC,∴,∴,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴∠DAF=∠FEC=60°,∴△DEC是等边三角形,∴CD=CE,∠ECD=60°,∴∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴BE=AD,∴AB=AE+BE=AE+AD,∴AC=AE+AD;(2)不成立,AD=AC+AE.理由如下:在AC的延长线上取点F,使AF=AD,连接DF,当α=60°时,∠BAC=∠EDC=60°,∵AB=AC,∴△ABC是等边三角形,∴AB=AC=BC∠BCA=60°,∵l∥BC,∴∠DAC=∠BCA=60°,∠EAD=∠ABC=60°,∵AF=AD,∴∠ADF=∠AFD=60°,AD=FD=AF,∴∠EDC=∠ADF=60°,∴∠EDC﹣∠ADC=∠ADF﹣∠ADC,即∠EDA=∠CDF,∵AD=FD,∠EAD=∠AFD=60°,∴△EAD≌△CFD(ASA),∴AE=CF,∴AD=AF=AC+CF=AC+AE;(3)AE的长为或.当点E在线段AB上,过点D作直线l的垂线,交AC于点F,如图3所示.∵△ABC中,∠BAC=90°,AC=AB,∴∠ACB=∠B=45°.∵直线l∥BC,∴∠DAF=∠ACB=45°.∵FD⊥直线l,∴∠DAF=∠DF A=45°.∴AD=FD.∵∠EDC=∠ADF=90°,∴∠ADE=∠FDC.由(1)可知DC=DE,∴△ADE≌△FDC(SAS),∴AE=CF.∵AD=,∴AF=2,∵BC=6,∴AC=AB=3,∴AE=AC﹣AF=3﹣2.当点E在线段AB的延长线上时,如图4所示.过点D作直线l的垂线,交AB于点M,同理可证得△ADC≌△MDE(SAS),∴AC=EM=3,∵AD=,∴AM=2,∴EM+AM=3+2.综合以上可得AE的长为3+2或3﹣2.9.解:(1)当x=0cm时,S=4×4÷2=8cm2;当x=12cm时,S=4×4÷2=8cm2.故答案为:8cm2;8cm2.(2)①当0<x<4时,∵△CAB为等腰直角三角形,∴∠CAB=45°,∴△ADG和△AEF都是等腰直角三角形,∴AD=DG=x,AE=EF=x+4,∴梯形GDEF的面积=×(GD+EF)×DE=×(x+x+4)×4=4x+8.②如图所示:过点C作CM⊥AB于点M.当4<x<8时,梯形GDMC的面积=(GD+CM)×DM=(x+8)(8﹣x)=﹣x2+32,梯形CMEF的面积=(EF+CM)×ME=[16﹣(x+4)+8][(x+4)﹣8]=(20﹣x)(x﹣4)=﹣x2+12x﹣40,S=梯形GDMC的面积+梯形CMEF的面积=(﹣x2+32)+(﹣x2+12x﹣40)=﹣x2+12x ﹣8.综合以上可得,S=.(3)当0<x<4时s最大值小于24,当x=4时,S=24cm2,所以当S=28cm2时,x必然大于4,即﹣x2+12x﹣8=28,解得x1=x2=6,当x=6cm时,阴影部分面积为28cm2.当8<≤12时,由对称性可知s的最大值也是小于24,不合题意舍去.∴当x=6cm时,阴影部分面积为28cm2.10.解:(1)∵△ABC和△CDE都是等边三角形,∴∠B=∠DCE=60°,AB=BC,CE=CD,∴CE∥AB,∵BC≠CD,∴CE≠AB,∴四边形ABCE是梯形,∵点F,G分别是BC,AE的中点,∴FG是梯形ABCE的中位线,∴FG∥AB,∴∠GFC=60°,同理:∠GHB=60°,∴∠FGH=180°﹣∠GFC﹣∠GHB=60°=∠GFC=∠GHB,∴△FGH是等边三角形,故答案为:等边三角形;(2)成立,理由如下:如图1,取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°,又F,G,H分别是BC,AE,CD的中点,∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB,∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°,∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°﹣∠PCE,∴∠FCH=360°﹣∠ACB﹣∠ECD﹣∠PCE=360°﹣60°﹣60°﹣(180°﹣∠GPC)=60°+∠GPC,∴∠FPG=∠FCH,∴△FPG≌△FCH(SAS),∴FG=FH,∠PFG=∠CFH,∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°,∴△FGH为等边三角形;(3)①当点D在AE上时,如图2,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=2,∵△CDE是等边三角形,∴∠CED=∠CDE=60°,CE=CD=DE=4,过点C作CM⊥AE于M,∴DM=EM=DE=2,在Rt△CME中,根据勾股定理得,CM===2,在Rt△AMC中,根据勾股定理得,AM===4,∴AD=AM﹣DM=4﹣2=2,∵∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,连接BE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD=2,∠ADC=∠BEC,∵∠ADC=180°﹣∠CDE=120°,∴∠BEC=120°,∴∠BEA=∠BEC﹣∠CED=60°,过点B作BN⊥AE于N,∴∠BNE=90°,在Rt△BNE中,∠EBN=90°﹣∠BEA=30°,∴EN=BE=1,∴BN=EN=,DN=DE﹣EN=3,连接BD,根据勾股定理得,BD===2,∵点H是CD的中点,点F是BC的中点,∴FH是△BCD的中位线,∴FH=BD=,由(2)知,△FGH是等边三角形,∴△FGH的周长为3FH=3,②当点D在AE的延长线上时,如图3,同①的方法得,FH=,∴△FGH的周长为3FH=3,即满足条件的△FGH的周长为3或3.11.(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).12.解:(1)∵A(0,a),B(a,0)(a>0),∴OA=a,OB=a,∵△AOB的面积为2,∴S△AOB=×a×a=2,∴a=2(负值舍去),∴A(0,2),B(2,0),∵C为线段AB的中点,∴C(1,1),∴OD=BD=CD=1,∴S△CDB=×1×1=.故答案为:.(2)连AC,过点D作DM⊥BC于M,∵△AOB是等腰直角三角形,∴AO⊥BO,AO=BO,∠B=∠OAB=45°,又CO=EO,∴AO是CE的垂直平分线,∴AE=AC,不妨设AE、CD交于F,AO、CD交于G,∴∠CGA=∠OAE+∠AFC=∠OCD+∠COA,∵∠AFC=∠COA=90°,∴∠OAE=∠OCD=∠OAC,又∵∠CAD=∠CAO+∠OAB=∠OCD+∠B=∠CDA,∴CD=CA=EA,∴△AOE≌△CMD(AAS),∴OE=DM,∴===3,∴=2;(3)=2,理由如下:作点C关于y轴的对称点N,连接BN,作DM∥BC交y轴于M,∵OB=OC=ON,∠BON=90°,∴△BON等腰直角三角形,∴∠BNO=∠BMD=45°,∴∠MBD=∠OBE+∠DBE=∠OBE+∠BOE=∠BEN,又∵BD=BE,∴△BMD≌△ENB(AAS),∴EN=BM,BN=DM=BC,又∵∠BFC=∠DFM,∠BCF=∠FDM,∴△BCF≌△MDF(AAS),∴BF=MF,∴CO﹣EO=NO﹣EO=NE=BM=2BF,即=2.13.解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠APQ是△ABC的一个外角,∴∠APQ=∠B+∠BAP,∵∠BAP=15°,∴∠APQ=60°,∵AP=AQ,∴∠APQ=∠AQB=60°.(2)①图形如图2所示.②解:结论:PC2+BP2=2AP2.理由:连接MC.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵AP=AQ,∴∠APQ=∠AQP,∴∠BAP=∠CAQ,∴△ABP≌△ACQ(SAS),∴BP=CQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,CQ=CM,∠CAM=∠CAQ,∠ACM=∠ACQ=45°,∴AP=AM,∠B=∠ACM=45°,∠BAP=∠CAM,BP=CM,∴∠BAC=∠P AM=90°,在Rt△APM中,AP=AM,∠P AM=90°,∴PM=,∵∠ACQ=∠ACM=45°,∴∠PCM=90°,在Rt△PCM中,∠PCM=90°,∴PC2+CM2=PM2,∴PC2+BP2=2AP2.14.【问题背景】证明:如图1,∵∠BAC=∠DAE=90°,∴∠DAB=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).【尝试应用】证明:如图2,过点D作DK⊥DC交FB的延长线于K.∵DK⊥CD,BF⊥AB,∴∠BDK=∠ABK=90°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBK=∠K=45°,∴DK=DB,∵△ABD≌△ACE,∴∠ABD=∠ACE=135°,DB=EC=DK,∴∠ECG=45°,∵BF⊥AB,CA⊥AB,∴AG∥BF,∴∠G=∠DFK,在△ECG和△DKF中,,∴△ECG≌△DKF(AAS),∴DF=EG,∵DE=AE,∴DF+EF=AE,∴EG+EF=AE,即FG=AE.【拓展创新】解:如图3中,过点A作AE⊥AD交BD于E,连接CE..∵∠ADB=45°,∠DAE=90°,∴△ADE与△ABC都是等腰直角三角形,同法可证△ABD≌△ACE,∴CE=BD=2,∵∠AEC=∠ADB=45°,∴∠CED=∠CEB=90°,∴S△BDC=•BD•CE=×2×2=6.故答案为:6.15.解:(1)∵2a2+4ab+4b2+2a+1=0,∴(a+2b)2+(a+1)2=0,∵(a+2b)2≥0 (a+1)2≥0,∴a+2b=0,a+1=0,∴a=﹣1,b=,∴A(﹣1,0)B(0,).(2)①证明:如图1中,∵a+b=0,∴a=﹣b,∴OA=OB,又∵∠AOB=90°,∴∠BAO=∠ABO=45°,∵D与P关于y轴对称,∴BD=BP,∴∠BDP=∠BPD,设∠BDP=∠BPD=α,则∠PBF=∠BAP+∠BP A=45°+α,∵PE⊥DB,∴∠BEF=90°,∴∠F=90o﹣∠EBF,又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,∴∠F=45o+α,∴∠PBF=∠F,∴PB=PF.②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,∵∠BOQ=∠BQF=∠FHQ=90°,∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,∴∠BQO=∠QFH,∵QB=QF,∴△FQH≌△QBO(AAS),∴HQ=OB=OA,∴HO=AQ=PC,∴PH=OC=OB=QH,∴FQ=FP,又∠BFQ=45°∴∠APB=22.5°.16.解:(1)在Rt△ABC中,∠C=90°,∠B=30°,BC=6,∴AC=2,∠A=60°,∵△DEF是等边三角形,∴∠DCE=60°,∴∠ACD=30°,∴∠ADC=90°,∴CD=AC=3,∴△DEF的周长=9;(2)解:结论:CF=DG.理由:∵BC=6,EF=DF=DE=3,∴CF+BE=BC﹣EF=6﹣3=3,∵△DEF是等边三角形,∴∠DEF=60°,∵∠DEF=∠B+∠EGB,∴∠B=∠EGB=∠DGE=30°,∴EG=BE,∵EG+DG=CF+BE=3,∴CF=DG;(3)∵S△DEF=×32=,S△DGH=•GH•DH=•x•x=x2,y=S△DFE﹣S△DHG=﹣x2(0≤x≤3).17.解:(1)在Rt△ABC中,AC=2,BC=2,根据勾股定理得,AB===4,∴=,∵BQ=BP,∴=,∴,∵∠QBP=∠CBA,∴△BPQ∽△BAC,∴∠BQP=∠ACB=90°,∴PQ⊥AB;(2)∵点D是AC的中点,∴AD=CD=AC=1,由(1)知,PQ⊥AB,∴∠AQP=90°,∴∠PQD<90°,∵△PQD是直角三角形,∴①当∠DPQ=90°时,如图1,在Rt△ABC中,AC=2,AB=4,∴sin∠ABC==,∴∠ABC=30°,∴∠QPB=90°﹣∠ABC=60°,∴∠DPC=90°﹣∠BPQ=30°,∴CP===,∴BP=BC﹣CP=,②当∠PDQ=90°时,∴∠ADQ+∠PDC=90°,如图2,过Q作QE⊥AC于E,∴∠DEQ=90°=∠ACB,∴∠ADQ+∠DQE=90°,∴∠DQE=∠PDC,∴△EQD∽△CDP,∴,∴,设BP=t,则CP=BC﹣BP=2﹣t,在Rt△BQP中,BQ=BP cos30°=t,∴AQ=AB﹣BQ=4﹣t,在Rt△AEQ中,QE=AQ cos30°=(4﹣t)•=2﹣t,AE=AQ=2﹣t,∴DE=AD﹣AE=t﹣1,∴,∴t=或t=(大于2,舍去)∴BP=;即BP=或;(3);理由:如图3,①当点D'恰好落在边BC上时,由折叠知,PD'=PD,PQ⊥DD',由(1)知,PQ⊥AB,∴DD'∥AB,∴∠DD'C=∠ABC=30°,∴CD'=CD=,设BP=m,则CP=BC﹣BP=2﹣m,∴DP=D'P=CD'﹣CP=m﹣,在Rt△CDP中,根据勾股定理得,DP2=CP2+CD2,∴(m﹣)2=(2﹣m)2+1,∴m=,②当点D'落在D时,即PQ过点D,在Rt△CDP'中,∠P'=90°﹣∠DD'P'=30°,∴CP'===,∴BP'=BC+CP'=,综上:.18.(1)解:当MN最长时,BN===;当BN最长时,BN===,综合以上可得BN的长为或;(2)证明:如图,把△CBN绕点C逆时针旋转90°,得到△CAN',连接MN',∴△AN'C≌△BNC,∴CN'=CN,∠ACN'=∠BCN,∠CBN=∠CAN',∵∠MCN=45°,∴∠N'CA+∠ACM=∠ACM+∠BCN=45°,∴∠MCN'=∠BCM,∴△MN'C≌△MNC(SAS),∴MN'=MN,∵AC=BC,∠ACB=90°,∴∠B=∠CAM=45°,∴∠CAN'=45°,∴∠MAN'=∠CAN'+∠CAM=45°+45°=90°,在Rt△MN'A中,AN'2+AM2=N'M2,∴BN2+AM2=MN2,∴点M,N是线段AB的勾股分割点.19.问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.20.解:(1)由AC长为1.5m,△ABC的面积为1.5m2,可得BC=2m,如图①,设加工桌面的边长为xcm,∵DE∥CB,∴△ADE∽△ACB,∴=,即=,解得:x=;如图②,设加工桌面的边长为ym,过点C作CM⊥AB,分别交DE、AB于点N、M,∵AC=1.5m,BC=2m,∴AB===2.5(m),∵△ABC的面积为1.5m2,∴CM=m,∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:y=,∴x>y,即S1>S2,故答案为:>.(2)①函数图象如图6所示:②观察图象,发现该函数有最小值,此时a的取值~2之间.故选D.(3)①由(2)可知,S5<S4<S3.故答案为:S5<S4<S3.②如图7,△A1B1C1即为所求作.。
2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。
中考数学——初中数学旋转的综合压轴题专题复习含详细答案一、旋转1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD =125.故答案为125. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =2114. 故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.如图,矩形OABC 的顶点A 在x 轴正半轴上,顶点C 在y 轴正半轴上,点B 的坐标为(4,m )(5≤m≤7),反比例函数y =16x(x >0)的图象交边AB 于点D . (1)用m 的代数式表示BD 的长;(2)设点P 在该函数图象上,且它的横坐标为m ,连结PB ,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16,x∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度;发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.【答案】(1)60或240;(2) AC=BD,理由见解析;(3)13+1 2或1312-;(4)PC的最大值=3,PC的最小值=3﹣1.【解析】分析:(1)如图1中,易知当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.(2)结论:AC=BD.只要证明△AOC≌△BOD即可.(3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.详解:(1)如图1中,∵△ABC是等边三角形,∴∠AOB=∠COD=60°,∴当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC=BD,理由如下:如图2中,∵∠COD=∠AOB=60°,∴∠COA=∠DOB.在△AOC和△BOD中,OA OBCOA DOBCO OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD,∴AC=BD;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH3Rt△AOH中,AH22OA OH-13,∴BD=AC=CH+AH113+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =AD +AF =DF =DE ,即AD +BE =DE ;(2)解:如图②,在AD 上截取DF =DE .∵CD ⊥AE ,∴CE =CF ,∴∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =∠DCE +∠DCF =90°,∴∠BCE +∠BCF =∠ECF =90°.又∵∠ACB =90°,∴∠ACF +∠BCF =90°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD =AF +DF =BE +DE ,即AD =BE +DE ;故答案为:AD =BE +DE .(3)∵∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =45°+45°=90°,∴△ECF 是等腰直角三角形,∴CD =DF =DE =6.∵S △BCE =2S △ACD ,∴AF =2AD ,∴AD=112+×6=2,∴AE =AD +DE =2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.8.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.9.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△C P′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.10.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.11.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB 的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.12.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD 的关系式为∵图象过点B (0,4),D (4,)∴,解得∴直线BD 的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.13.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
2023年九年级数学中考复习:旋转综合压轴题(角度问题)1.如图① ,在①ABC 中,AB =AC =4,①BAC =90°,AD ①BC ,垂足为D .(1)S △ABD = .(直接写出结果)(2)如图①,将①ABD 绕点D 按顺时针方向旋转得到①A′B′D ,设旋转角为α (α<90°),在旋转过程中: 探究一:四边形APDQ 的面积是否随旋转而变化?说明理由; 探究二:当α=________时,四边形APDQ 是正方形.2.如图,在等腰Rt ABC 和等腰Rt CDE 中,90ACB DCE ∠=∠=︒.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的关系是_________;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由; (3)拓展延伸:把CDE △绕点C 在平面内转动一周,若10AC BC ==,5CE CD ==,AE 、BD 交于点P 时,连接CP ,直接写出BCP 最大面积_________.3.如图1,在Rt △ABC 中,①A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,请判断线段PM 与PN 的数量关系和位置关系,并说明理由;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =3,AB =7,请直接写出△PMN 面积的最大值.4.如图1,①ABC 为等腰直角三角形,①BAC =90°,AB =AC ,点D 在AB 边上,点E 在AC 边上,AD =AE ,连接DE ,取BC 边的中点O ,连接DO 并延长到点F ,使OF =OD ,连接CF . (1)请判断①CEF 的形状,并说明理由;(2)将(1)中①ADE 绕点A 旋转,连接CE ,(1)中的结论是否仍然成立,若成立,请仅就图2所示情况给出证明,若不成立,请说明理由;(3)若AB =6,AD =4,将①ADE 由图1位置绕点A 旋转,当点B ,E ,D 三点共线时,请直接写出①CEF 的面积.5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是AB 外一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE ,BC 与DE 交于点F ,且AB BD ⊥.(1)如图1,若CB =6CE =,求DE 的长;(2)如图2,若点H 、G 分别为线段CF 、AE 的中点,连接HG ,求证:12HG BF =;(3)如图3,在(2)的条件下,若CE =4CF =,将BDF 绕点F 顺时针旋转角3(060)αα︒<≤︒,得到B D F '',连接B G ',取B G '中点Q ,连接BQ ,当线段BQ 最小时,请直接写出BQB '的面积.6.如图1,矩形ABCD 中,15,20AB BC ==,将矩形ABCD 绕着点A 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于________; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE CE AG CG 、、、,判断线段AE 与CG 的位置关系且说明理由,并求22CE AG +的值;(4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.7.在平面直角坐标系中,O 为原点,点(4,0)A -,点(0,3),B ABO 绕点B 顺时针旋转,得A BO ''△,点A O 、旋转后的对应点为A O ''、,记旋转角为α.(1)如图①,90α=︒,边OA 上的一点M 旋转后的对应点为N ,当1OM =时,点N 的坐标为_____; (2)90α=︒,边OA 上的一点M 旋转后的对应点为N ,当O M BN '+取得最小值时,在图①中画出点M 的位置,并求出点N 的坐标.(3)如图①,P 为AB 上一点,且:2:1PA PB =,连接PO PA ''、,在ABO 绕点B 顺时针旋转一周的过程中,PO A ''的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.8.如图1,①ABC 和①DEC 均为等腰三角形,且①ACB =①DCE =90°,连接BE ,AD ,两条线段所在的直线交于点P .(1)线段BE 与AD 有何数量关系和位置关系,请说明理由. (2)若已知BC =12,DC =5,①DEC 绕点C 顺时针旋转, ①如图2,当点D 恰好落在BC 的延长线上时,求AP 的长;①在旋转一周的过程中,设①P AB 的面积为S ,求S 的最值.9.如图,在菱形ABCD 中,2AB =,60BAD ∠=,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F .()1如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:13MN AC =; ()2如图2,将EDF 以点D 为旋转中心旋转,其两边'DE 、'DF 分别与直线AB 、BC 相交于点G 、P ,连接GP ,当DGP 的面积等于10.如图1,一副直角三角板满足AB=BC ,AC=DE ,①ABC=①DEF=90°,①EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中, (1)如图2,当1CEEA=时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.11.如图1,在①ABC中,①BAC=90°,AB=AC,点D在边AC上,CD①DE,且CD=DE,连接BE,取BE的中点F,连接DF.(1)请直接写出①ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中①ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;①如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.12.已知点E是正方形ABCD的边AB上一点,AB=BE=2.以BE为边向右侧作正方形BEFG,将正方形BEFG绕点B顺时针旋转α度(0≤α≤90°),连结AE,CG(如图).(1)求证:①ABE①①CBG.(2)当点E在BD上时,求CG的长.(3)当90∠时,正方形BEFG停止旋转,求在旋转过程中线段AE扫过的面积.(参考数据:AEB=︒sin28︒≈,sin62︒≈tan28︒≈tan62︒≈)13.如图,矩形ABCD 中,5,6,==AB BC BCG 为等边三角形.点E ,F 分别为,AD BC 边上的动点,且EF AB ∥,P 为EF 上一动点,连接BP ,将线段BP 绕点B 顺时针旋转60︒至BM ,连接,,,PA PC PM GM .(1)求证:=GM PC ;(2)当,,PB PC PE 三条线段的和最小时,求PF 的长;(3)若点E 以每秒2个单位的速度由A 点向D 点运动,点P 以每秒1个单位的速度由E 点向F 点运动.E ,P 两点同时出发,点E 到达点D 时停止,点P 到达点F 时停止,设点P 的运动时间为t 秒. ①求t 为何值时,AEP △与CFP 相似; ①求BMP 的面积S 的最小值.14.如图1,在Rt ABC 中,90,5∠=︒==C AC BC ,点D 是边BC 上的一点,且BD =,过点D 做BC 边的垂线,交AB 边于点E ,将BDE 绕点B 顺时针方向旋转,记旋转角为()0360αα︒≤<︒.(1)【问题发现】当0α=︒时,AECD的值为________,直线,AE CD 相交形成的较小角的度数为________; (2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明; (3)【问题解决】当BDE 旋转至A ,D ,E 三点在同一条直线上时,请直接写出ACD △的面积.15.在中Rt ABC △中.90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E在点B的左侧运动;①当2BE=,BC=EAB∠=_________°;①猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.=,以A,E,C,F为顶点的四边形面积为y,请直接写出(3)点E在射线CB上运动,BC=,设BE xy与x之间的函数关系式(不用写出x的取值范围).16.如图,在①ABC中,AB=,①A=45°,AC=C作直线平行AB,将①ABC绕点A顺时针旋转得到①AB C''(点B,C的对应点分别为B',C'),射线AB',AC'分别交直线l于点P、Q.(1)如图1,求BC的长;(2)如图2,当点C为PQ中点时,求tan①APQ;(3)如图3,当点P,Q分别在线段AB',AC'上时,试探究四边形PQC B''的面积是否存在最大值.若存在,求出其最大值;若不存在,请说明理由.17.已知Rt△ABC中,AC=BC,①C=90°,D为AB边的中点,①EDF=90°,①EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)如图1,当①EDF 绕D 点旋转到DE ①AC 于E 时,易证S △DEF +S △CEF 与S △ABC 的数量关系为__________;(2)如图2,当①EDF 绕D 点旋转到DE 和AC 不垂直时,上述结论是否成立?若成立,请给予证明; (3)如图3,这种情况下,请猜想S △DEF 、S △CEF 、S △ABC 的数量关系,不需证明.18.面直角坐标系中,O 为原点,点(12,0)A ,点(0,5)B ,线段AB 的中点为点C .将ABO 绕着点B 逆时针旋转,点O 对应点为1O ,点A 的对应点为1A .(1)如图①,当点1O 恰好落在AB 上时, ①此时1CO 的长为__________;①点P 是线段OA 上的动点,旋转后的对应点为1P ,连接11,BP PO ,试求11BP PO +最小时点P 的坐标; (2)如图①,连接11,CA CO ,则在旋转过程中,11CAO △的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由.19.如图,在Rt ABC 中,90C ∠=︒,5AB =,3sin 5A =.点P 从点A 出发,以每秒4个单位长度的速度向终点B 匀速运动,过点P 作PD AB ⊥交折线AC ,CB 于点D ,连结BD ,将DBP 绕点D 逆时针旋转90︒得到DEF .设点P 的运动时间为t (秒).(1)用含t 的代数式表示线段PD 的长. (2)当点E 落在AB 边上时,求AD 的长. (3)当点F 在ABC 内部时,求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2 的两部分时,直接写出t 的值.20.如图1,在Rt ABC △中,90B ∠=︒,AB BC =,AO 是BC 边上的中线,点D 是AO 上一点,DE EO ⊥,E 是垂足,DEO 可绕着点O 旋转,点F 是点E 关于点O 的对称点,连接AD 和CF .(1)问题发现:如图2,当1ADDO=时,则下列结论正确的是_______.(填序号)①BE CF =;①点F 是OC 的中点:①AO 是BAC ∠的角平分线;①AD .(2)数学思考:将图2中DEO 绕点O 旋转,如图3,则AD 和CF 具有怎样的数量关系?请给出证明过程;(3)拓展应用:在图1中,若ADx DO=,将DEO 绕着点O 旋转. ①则AD =_______CF ;①若4AB =,1x =,在DEO 旋转过程中,如图4,当点D 落在AB 上时,连结BE ,EC ,求四边形ABEC 的面积.答案21.(1)4(2)四边形APDQ 的面积不会随旋转而变化,理由见详解;当45α=︒时,四边形APDQ 是正方形.22.(1)AE BD =,AE BD ⊥; (2)结论仍成立23.(1)PM =PN ,PM ①PN . (2)△PMN 是等腰直角三角形. (3)S △PMN 最大=25224.(1) ①CEF 是等腰直角三角形;(2)成立,(3)18-18+25.(1)(3)8 26.(1)10;(2)42;(3) AE ①CG 221250CE AG =+;(4)30027.(1)(-3,4);(2)N (-3,92);(3)最大值为283,最小值为8328.(1)BE =AD ,BE 与AD 互相垂直,(2)①AP =8413;①最小47,最大72 29.(2)顺时针或逆时针旋转60.30.探究一:(1)EP=EQ ;证明见解析;(2)1:2,(3)EP :EQ=1:m ,①0<(1)当50cm 2;当75cm 2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.31.(1)①ADF =45°,AD (2)①成立,;①1≤S △ADF ≤4.32.(3)3145S π=33.(3)①73;①34.,45︒;(2)无变化(3)121235.(1)①30;①AC +CF CE ;(2)CA -CF;(3)当点E 在点B 左侧运动时,y =21322x +;当点E 在点B 右侧运动时,y 32+.36.(3)存在;21-37.(1)S △DEF +S △CEF =12S △ABC(2)上述结论S △DEF +S △CEF =12S △ABC 成立(3)S △DEF -S △CEF =12S △ABC38.(1)①1.5 ①20,07⎛⎫ ⎪⎝⎭ (2)存在最大值,最大值为6939.(1)3t (2)258 (3)355374t ≤≤40.(1)①①①(2)AD =,①465。
2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案1.在正方形ABCD 中,AB =4,O 为对角线AC 、BD 的交点.(1)如图1,延长OC ,使CE=OC ,作正方形OEFG ,使点G 落在OD 的延长线上,连接DE 、AG .求证:DE=AG ;(2)如图2,将问题(1)中的正方形OEFG 绕点O 逆时针旋转α°(0<α<180),得到正方形OE F G ''',连接AE E G '''、.①当α=30时,求点A 到E G ''的距离;①在旋转过程中,直接写出AE G ∆''面积的最小值为 ,并写出此时的旋转角α= .2.已知在矩形ABCD 中,①ADC 的平分线DE 与BC 交于点E ,点P 是线段DE 上一定点(其中EP <PD )(1)如图1,若点F 在CD 边上(不与C ,D 重合),将①DPF 绕点P 逆时针旋转90°后,角的两边PD ,PF 分别交射线DA 于点H ,G .①直接写出PG 与PF 之间的数量关系;①猜想DF ,DG ,DP 的数量关系,并证明你的结论.(2)如图2,若点F 在CD 的延长线上(不与D 重合),将PF 绕点P 逆时针旋转90°,交射线DA 于点G ,判断(1)①中DF ,DG ,DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式.3.在平面直角坐标系中,直线l 与x 轴、y 轴分别交于A (a ,0)、B (0,b )两点,且a +2b ﹣5)2=0(1)求A 、B 两点坐标;(2)如图1,把线段BA 绕B 点顺时针旋转,点A 的对应点为C 点,使BC ①y 轴,E 为线段AC 上一点,EN ①AB 于N ,EM ①BC 于M ,求EM +EN 的值.(3)如图2,点D 为y 轴上点B 上方一点,DE ①AD 交直线CB 于点E ,①DEC 的平分线EF 与①DAO 的邻补角的平分线AF 交点F ,请问:D 点在运动的过程中①AFE 的大小是否变化,若不变,求出其值;若变化,请说明理由.4.(1)发现:如图1,点B 是线段AD 上的一点,分别以AB BD ,为边向外作等边三角形ABC 和等边三角形BDE ,连接AE ,CD ,相交于点O .①线段AE 与CD 的数量关系为:___________;AOC ∠的度数为__________.②CBD ∆可看作ABE ∆经过怎样的变换得到的?____________________________. (2)应用:如图2,若点A B D ,,不在一条直线上,(1)的结论①还成立吗?请说明理由;(3)拓展:在四边形ABCD 中,=AB AC ,=90BAC ∠︒,=45ADC ∠︒,若8AD =,6CD =,请直接写出B ,D 两点之间的距离.5.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出①APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将①BPC绕点B逆时针旋转90°,得到①BP′A,连接PP′,求出①APB的度数;思路二:将①APB绕点B顺时针旋转90°,得到①CP′B,连接PP′,求出①APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,P A=3,PB=1,PC11①APB的度数.6.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究:如图1,在四边形ABCD中,AB=AD,①BAD=60°,①ABC=①ADC =90°,点E、F分别在线段BC、CD上,①EAF=30°,连接EF.(1)如图2,将①ABE绕点A逆时针旋转60°后得到①A′B′E′(A′B′与AD重合),请直接写出①E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸:如图4,在等边①ABC中,E、F是边BC上的两点,①EAF=30°,BE =1,将①ABE绕点A逆时针旋转60°得到①A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM①BC于点M,连接MN,求线段MN的长度.7.已知①AOB,将①AOB绕O点旋转到①COD位置,使C点落在OB边上,连接AC、BD.(1)若①AOB=90°(如图1),小亮发现①BAC=①BDC,请你证明这个结论;(2)若①AOB=60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若①AOB为任意角α(如图3),小亮发现的结论还成立吗?说明理由;8.把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图①,设EF与BC交于点G,当EG=CG时,求点G的坐标;(4)如图①,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.9.把一副三角板如图(1)放置,其中①ACB=①DEC=90°,①A=45°,①D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到①(如图2).这时AB与相交于点O,与相交于点F.(1)填空:①= °; (2)请求出①的内切圆半径; (3)把①绕着点C 逆时针再旋转度()得①,若①为等腰三角形,求的度数(精确到0.1°).10.“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD 中,45EAF ∠=︒,且DE BF =,求证:EG AG =; (2)如图2,正方形ABCD 中,45EAF ∠=︒,延长EF 交AB 的延长线于点G ,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ AE ⊥,垂足为点Q ,交AF 于点N ,连结DN ,求证:45NDC ∠=︒.11.在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点P 是正方形ABCD 内一点,1PA =,2PB =,3PC =,你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将PBC 绕点B 逆时针旋转90︒,得到P BA '△,连接PP ',可求出APB ∠的度数;思路二:将PAB △绕点B 顺时针旋转90︒,得到P CB '△,连接PP ',可求出APB ∠的度数;请参照小明的思路,任选一种写出完整的解答过程;(2)如图2,若点P 是等边三角形ABC 内一点,若150APB ∠=︒,则线段PA ,PB ,PC 满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段PA ,PB ,PC 满足的等量关系.12.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________.(4)当旋转角α=__________时,ABD △的面积最大.13.如图1,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,直线MN 经过C 点垂直于AB ,垂足为D .(1)求证:ADC BDC ∽△△; (2)若直线MN 从图1的位置绕M 点逆时针旋转,如图2,设旋转的角度为()0180αα<<,作AP MN ⊥,垂足为P ,BQ MN ⊥,垂足为Q .①当α的度数为______时,点A ,P ,B ,Q 构成的四边形为平行四边形;①当α的度数为______时,点A ,P ,B ,Q 构成的四边形为矩形.14.已知①ABC 和①ADE 都是等腰三角形,AB =AC ,AD =AE ,①DAE =①BAC .【初步感知】(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB EC .(填>、<或=)(2)发现证明:如图①,将图①中①ADE 的绕点A 旋转,当点D 在①ABC 外部,点E 在①ABC 内部时,求证:DB =EC .【深入研究】(3)如图①,①ABC 和①ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则①CDB 的度数为 ;线段CE ,BD 之间的数量关系为 .(4)如图①,①ABC 和①ADE 都是等腰直角三角形,①BAC =①DAE =90°,点C 、D 、E 在同一直线上,AM 为①ADE 中DE 边上的高,则①CDB 的度数为 ;线段AM ,BD ,CD 之间的数量关系为 .15.把两个等腰直角①ABC 和①ADE 按如图1所示的位置摆放,将①ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角α(0°<α<360°).(①)当DE ①AC 时,旋转角α= 度,AD 与BC 的位置关系是 ,AE 与BC 的位置关系是 ;(①)当点D 在线段BE 上时,求①BEC 的度数;(①)当旋转角α= 时,①ABD 的面积最大.16.如图①,在ABC 中,①ACB =90°,①ABC =30°,AC =1,D 为ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:BDA ①BFE ;(2)当CD +DF +FE 取得最小值时,求证:AD ∥BF .(3)如图①,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断①MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.17.已知ABC 是等腰三角形,AB AC =,将ABC 绕点B 逆时针旋转得到''A BC ,(1)感知:如图①,当'BC 落在AB 边上时,'A AB ∠与'C CB ∠之间的数量关系是 _____(不需要证明);(2)探究:如图①,当'BC 不落在AB 边上时,'A ∠AB 与'C CB ∠是否相等?如果相等;如果不相等,请说明理由;(3)应用:如图①,若90BAC ∠=︒,'AA 、'CC 交于点E ,则'A EC ∠=_____度.18.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DF AE的值_______; (2)将①EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,①EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.19.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,①ABC =①EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是_____,位置关系是_____(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图①位置时,(1)中的结论是否仍然成立?如果成立,请你就图①的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图①,在Rt△ABC和Rt△BDE中,①ABC=①EBD=90°,BC=2AB=8,BD=2BE=4,连接AE,点F是AE的中点,连结CD、BF,将△BDE绕点B在平面内自由旋转,请直接写出BF的取值范围,20.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图①位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置①CDG=37°,求正方形EFGH从图①位置旋转至图①位置时,旋转角的度数.(2)旋转至如图①位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.参考答案:1.(2)①点A 到E G ''的距离为3①在旋转过程中,直接写出AE G ∆''面积的最小值为1682-α=135°.2.(1)①DG +DF 2;(2)不成立,数量关系式应为:DG -DF 2,3.(1)A (﹣3,0)、B (0,4);(2)4;(3)不变,45° 4.(1)①AE CD =,60︒;(2)依然成立,(3)416.(一)(1)30,BE +DF =EF ;(2)BE ﹣DF =EF ;3 8.(1)E (4,13;(2)60°;(3)13(4,)3G ; (4)点H 不在此抛物线上.9.(1)120°;(2)2;(3)37.7°、50.6°10.(1)见解析;(2)结论依然成立11.(1)135,APB 证明见解析;(2)222PC PA PB =+, 12.(1)BD EC =,BD EC ⊥;(2)成立,(3)90︒;(4)90︒或270︒13.(2)①30°或90°;①90°.14.(1)=;(3)60︒,DB CE =;(4)90︒,2AM BD CD += 15.(①)45;垂直;平行;(①)90BEC ∠=︒;(①)90︒或270︒16. ①MPN 的值为定值,30°.17.(1)相等;(2)相等;(3)135︒.18.2(2)2DF =,(3)α的值为30°或150°,19.(1) CD =2BF BF ①CD(2)CD =2BF , BF ①CD 成立,(3)13BF ≤≤20.(1)16°(2)DL =EN +GM ,。
2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题训练(附答案)1.△ABC≌△ADE,AB=1,BC=2,∠B=120°,将两个三角形完全重合,保持△ABC 不动,将△ADE绕点A逆时针方向旋转角α.(1)如图1,ED的延长线交BC于G点,求∠DGB(用含α的式子表示).(2)如图2,若α=60°,连接CD,求∠ADC的度数.(3)如图3,若α=90°,连接CD,EC,求△EDC的面积.2.如图,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB﹣BC 以每秒5单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C 重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点D与点E重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为直角三角形时,求△PDQ与△ABC重叠部分的面积.(4)连结BE,当BE将△ABC的面积分成1:3两部分时,直接写出t的值.3.如图,在平面直角坐标系中,已知A(a,0),B(0,b)两点,且a、b满足+(a+2b﹣1)2=0,点C(m,0)在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题:(1)求A、B两点的坐标;(2)设三角形ABC面积为S△ABC,若4<S△ABC≤7,求m的取值范围;(3)设∠BCA=α,∠AEB=β,请给出α,β满足的数量关系式,并说明理由.4.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示)为;(2)如图2,连接BE,若∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)如图3,在(2)的条件下,连接DE,若∠DEC=45°,求α的值.5.在平面直角坐标系中,O为原点,四边形OABC是矩形,点A,C的坐标分别为(3,0),(0,1).点D是边BC上的动点(与端点B,C不重合),过点D作直线y=﹣x+b交边OA于点E.(Ⅰ)如图①,求点D和点E的坐标(用含b的式子表示);(Ⅱ)如图②,若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(Ⅲ)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.6.如图①,将▱ABCD置于直角坐标系中,其中BC边在x轴上(B在C的左边),点D坐标为(0,4),直线MN:y=x﹣6沿着x轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被▱ABCD截得的线段长度为m,平移时间为t,m与t的函数图象如图②所示.(1)填空:点C的坐标为;在平移过程中,该直线先经过B、D中的哪一点?;(填“B”或“D”)(2)点B的坐标为,n=,a=;(3)在平移过程中,求该直线扫过▱ABCD的面积y与t的函数关系式.7.已知,△ABC中,AB=AC=2,BC=2,∠A=90°.取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处,一条直角边过A点(如图1).三角尺绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.(1)探究:在图2中,线段AE与CF有怎样的大小关系?证明你的结论;(2)求在上述旋转过程中y与x的函数关系式,并写出x的取值范围;(3)若将直角三角尺45°角的顶点放在斜边BC边的中点O处,一条直角边过A点(如图3).三角尺绕O点顺时针方向旋转,使45°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图4).在三角尺绕O点旋转的过程中,△OEF是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.8.如图1,E、F为正方形ABCD对角线AC上两点,∠ABE+∠FBC=45°,将△BEA绕点B逆时针旋转90°得到△BGC,连接FG,△FGC周长为.(1)若F与G关于BC对称,求∠BEF度数;(2)求AC的长;(3)若图1中∠CBG=30°,将△BGC从起始位置绕点B顺时针旋转n°(0<n<360),设点G在运动过程中到AB的距离为d,当△BGC中的两顶点以及A点成共线且不重合三点时,求n°以及(+1)d值.9.在△ABC中,AB=AC,∠ABC=α,过点A作直线MN,使MN∥BC,点D在直线MN 上,作射线BD,将射线BD绕点B顺时针旋转角α后交直线AC于点E.(1)如图1,当α=60°,且点D在射线AN上时,探究线段AB,AD,AE的数量关系,并说明理由.(2)如图2,当α=45°,且点D在射线AN上时,请直接写出线段AB,AD,AE的数量关系.(3)当α=30°时,若点D在射线AM上,∠ABE=15°,AD=3﹣,请直接写出线段AE的长度.10.学习了旋转后,老师对教材的习题进行了改编,得到了下面的问题:已知:如图,△ACB和△DCE都是等边三角形,连接AE,BD交于点O.(1)用旋转的角度观察,图中△ACE以点C为旋转中心,逆时针方向旋转60°后得到的图形是:.(2)试判断线段AE与BD的数量关系,并说明理由.(3)∠AOB=.11.△ABC是等边三角形,AC=2,点C关于AB对称的点为C',点P是直线C'B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.(1)若点P在线段C'B上(不与点C',点B重合).①如图1,若点P是线段C'B的中点,则BP的长为;②如图2,点P是线段C'B上任意一点,求证:PD=P A;(2)若点P在线段C'B的延长线上.①依题意补全图3;②直接写出线段BD,AB,BP之间的数量关系为:.12.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,并说明理由;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.13.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB.(3)如图3,若∠EDF的两边分别交AB、AC的延长线于E、F两点,(2)中的结论还成立吗?如果成立,请证明;如果不成立,请直接写出线段BE、AB、CF之间的数量关系.14.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.15.在平面直角坐标系中,点A、B的坐标分别为(a,0),(0,b),其中a,b满足+|2a﹣5b﹣30|=0.将点B向右平移26个单位长度得到点C,如图①所示.(1)求点A,B,C的坐标;(2)点M,N分别为线段BC,OA上的两个动点,点M从点C向左以1.5个单位长度/秒运动,同时点N从点O向点A以2个单位长度/秒运动,如图②所示,设运动时间为t 秒(0<t<15).①当CM<AN时,求t的取值范围;②是否存在一段时间,使得S四边形MNOB>2S四边形MNAC?若存在,求出t的取值范围;若不存在,说明理由.16.已知△ABC是等边三角形,AB=6,将一块含有30°角的直角三角板DEF如图所示放置,让等边△ABC向右平移(BC只能在EF上移动).如图1,当点E与点B重合时,点A恰好落在三角板DEF的斜边DF上.(1)若点C平移到与点F重合,求等边△ABC平移的距离;(2)在等边△ABC向右平移的过程中,AB,AC与三角板斜边的交点分别为G,H,连接EH交AB于点P,如图2.①求证:EB=AH;②若∠HEF=30°,求EH的长;③判断PG的长度在等边△ABC平移的过程中是否会发生变化?如果不变,请求出PG的长;如果变化,请说明理由.17.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长线上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C 点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.18.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处,(直角三角板只能在直线AB上方旋转)(1)如图1,将三角板MON的一边ON与射线OB重合,则∠MOC=;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON=;∠CON=.(3)将三角板MON绕点O逆时针旋转至∠NOC=5°,求∠AOM的度数.19.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM 位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,….例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA5恰好与OA2重合.解决如下问题:(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是;(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;(3)若α<30°,且∠A2OA4=20°,求对应的α值.20.定义:连接三角形两边中点的线段叫做三角形的中位线.性质:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.理解:如图①,在△ABC中,点D,E分别是AB,AC的中点,那么DE为△ABC的一条中位线.可得DE∥BC且DE=BC.应用:如图②,在△ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE.点M,N,P分别是DE,BC和CD的中点.已知∠BAC=α.(1)当α=90°时,①请直接写出:PM与PN的数量关系;∠MPN=.②是否存在点D,使得以P,M,N为顶点的三角形与△ADE全等?若存在,请求出点D的位置;若不存在,请说明理由.(2)将△ADE绕点A旋转,当点D在△ABC内时(如图③),①试说明PM与PN的数量关系,并求出∠MPN的度数(用含α的式子表示);②连接BD,MN,若AD=BD,直接写出△ADE和△PMN的面积关系:.参考答案1.解:(1)设AC与EG交于点O,∵将△ADE绕点A逆时针方向旋转角α,∴∠EAC=α,∵△ABC≌△ADE,∴∠C=∠E,又∵∠AOE=∠GOC,∴∠EAO=∠OGC=α,∴∠DGB=180°﹣∠EAO=180°﹣α;(2)连接BD,∵将△ADE绕点A逆时针方向旋转角α,∴∠DAB=60°,DA=AB,∴△ABD为等边三角形,∴∠ADB=∠ABD=60°,BD=AB=1,∵∠ABC=120°,∴∠DBC=∠ABC﹣∠ABD=60°,在BC上截取BF=BD,∴△BFD为等边三角形,∴∠BFD=60°,DF=BF=1,又∵BC=2,∴CF=1,∴DF=CF,∴∠FDC=∠DCF=30°,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=60°+90°=150°;(3)过点E作EM⊥AD交AD的延长线于M,过点C作CN⊥AD交AD的延长线于N,∵将△ADE绕点A逆时针方向旋转角α,∴AC=AE,∠EAC=90°,∵∠EAM+∠NAC=90°,∠NAC+∠ACN=90°,∴∠EAM=∠ACN,又∵∠AME=∠ANC,∴△AME≌△CNA(AAS),∴AM=CN,∵∠ABC=∠ADE=120°,∴∠EDM=60°,∴∠DEM=30°,∵DE=AB=1,∴DM=1,EM=,∴AM=2,∴CN=2,AE==,∴S△AEC==7,S△ADE+S△ADC=AD•EM+AD•CN=,∴S△EDC=S△AEC﹣(S△ADE+S△ADC)=7﹣=.2.解:(1)在Rt△ABC中,∠B=90°,AB=4,BC=3,∴AC===5,∴sin A=,cos A=,当点D与E重合时,AE+CD=5,∴3t+2t=5,解得t=;(2)如图①中,当点P在线段AB上时,在Rt△APE中,AE=AP•cos A=4t,∴EC=5﹣4t.如图②中,当点P在线段BC上时,在Rt△PEC中,PC=7﹣5t,cos C=,∴EC=PC•cos C=(7﹣5t)=﹣3t.综上所述,EC=;(3)当△PDQ是直角三角形时,∵DP=DQ,∠PDQ=90°,DE⊥PQ,∴PE=EQ=DE,如图③中,当点P在线段AB上时,在Rt△APE中,PE=P A•sin A=3t,∵DE=AC﹣AE﹣CD=5﹣4t﹣2t=5﹣6t,∵PE=DE,∴3t=5﹣6t,∴t=,∴PE=DE=,∴△PDQ与△ABC重叠部分的面积=××=.如图⑤中,当点P在线段BC上时,在Rt△PCE中,PE=PC•sin C=(7﹣5t)=﹣4t,∵DE=CD﹣CE=2t﹣(7﹣5t)=5t﹣,∴﹣4t=5t﹣,解得t=,∴PE=DE=,∴△PDQ与△ABC重叠部分的面积=××=.综上所述:△PDQ与△ABC重叠部分的面积为或;(4)如图①中,当AE=AB时,即AE=,满足条件,此时AP=AE=,∴t=.如图②中,当CE=AC,即EC=时,满足条件,此时PC=EC=,∴AB+PB=7﹣=,∴t=,综上所述,满足条件的t的值为和.3.解:(1)∵+(a+2b﹣1)2=0,又∵≥0,(a+2b﹣1)2≥0,∴,解得,∴A(﹣3,0),B(0,2);(2)三角形的面积为,由4<S△ABC≤7,可得,4<m+3≤7,∴1<m≤4;(3)如图1中,当点C在线段OA上时,作ON∥BC,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴BC∥AD,∵ON∥BC,∴ON∥AD,∴∠ACB=∠AON,∠AEB=∠BON,∴α﹣β=∠BCA﹣∠AEB=∠NOA﹣∠NOB=∠AOB=90°.如图2中,当点C在AO的延长线上时,ON∥BC,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴BC∥AD,∵ON∥BC,∴ON∥AD,∴∠ACB=∠AON,∠AEB=∠BON,∴α+β=∠BCA+∠AEB=∠FOA+∠FOB=∠AOB=90°.综上所述,α﹣β=90°或α+β=90°.4.解:(1)∵AB=AC,∠BAC=α,∴∠ABC=∠ACB=(180°﹣α),∵∠CBD=60°,∴∠ABD=(180°﹣α)﹣60°=30°﹣α.故答案为:∠ABD=30°−α;(2)结论:△ABE是等边三角形.理由:如图2,连接AD,CD,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∴△BCD为等边三角形,∵∠ABE=∠DBC=60°,∴∠ABD=∠EBC=30°−α,∴BD=CD,在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=α,∵∠BCE=150°,∴∠BEC=180°−∠BCE﹣∠EBC=α,∴∠BAD=∠BEC=α,在△EBC和△ABD中,,∴△EBC≌△ABD(AAS),∴BE=AB,∵∠ABE=60°,∴△ABE是等边三角形;(3)由△BCD为等边三角形,∴∠BCD=60°,∵∠BCE=150°,∴∠DCE=150°−60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°−150°)=15°,∵∠EBC=30°−α=15°,∴α=30°.5.解:(1)∵四边形OABC是矩形,∴CB∥x轴,由点A,C的坐标分别为(3,0),(0,1).可得点D的纵坐标为1,当y=1时,y=+b,解得:x=2b﹣2,∴D的坐标为(2b﹣2,1)当y=0时,y=+b,解得:x=2b,∴E的坐标为(2b,0)(Ⅱ)CB与O1A1的交点为M,C1B1与OA的交点为N,如图:∵四边形OABC,四边形O1A1B1C1是矩形,∴CB∥OA,C1B1∥O1A1,∴四边形DMEN是平行四边形,∵矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,∴∠1=∠2,∵CB∥OA,∴∠2=∠3,∴∠1=∠3,∴DM=ME,∴平行四边形DMEN是菱形,过点D作DH⊥OA于点H,由D(2b﹣2,1),E(2b,0),可知CD=2b﹣2,OE=2b,OH=CD=2b﹣2,∴EH=OE﹣OH=2b﹣(2b﹣2)=2,设菱形DMEN的边长为m,在Rt△DHN中,DH=1,HN=EH﹣NE=2﹣m,DN=m,由DH2+HN2=DN2,得12+(2﹣m)2=m2,解得:m=,∴,所以重叠部分菱形DMEN的面积不变,为;(Ⅲ)当NE=1时,菱形面积的最小值是1;当NE=时,菱形面积的最大值是.(D与C重合,A与E重合,设DN=AN=x,在Rt△DNO中利用勾股定理列出方程计算)6.解:(1)令y=0,则x﹣6=0,解得x=8,令x=0,则y=﹣6,∴点M(8,0),N(0,﹣6)∴OM=8,ON=6,由图2可知5秒后直线经过点C,∴CM=5,OC=OM﹣CM=8﹣5=3,∴C(3,0),∵10秒~a秒被截线段长度不变,∴先经过点B;故填:(3,0);B(2)由图2可知BM=10,∴OB=BM﹣OM=10﹣8=2,∴B(﹣2,0),在Rt△OCD中,由勾股定理得,CD==5,∴BC=CD=5,∴▱ABCD是菱形,∵,∴MN⊥CD,∴n=DO=4∵设直线MN向x轴负方向平移的速度为每秒1个单位的长度,平移后的直线解析式为y=(x+t)﹣6,把点D(0,4)代入得,(0+t)﹣6=4,解得t=,∴a=;故答案为:(1)(3,0),B;(2)(﹣2,0),4,;(3)当0≤t≤5时,y=0;当5<t≤10,如图1,该直线与BC、CD分别交于F、E,FC=t﹣5,∵直线CD的解析式为:y=﹣x+4,∴EF⊥CD,∴△CEF∽△COD,∴,∴,∴EF=,CE=,∴y=××==t2﹣t+6,当10<t≤,如图2,直线与AB、CD分别交于G、E,与射线CB交于F,FB=t﹣10,∵△BGF∽△COD,∴∴FG=,BG=,y=S△CEF﹣S△BGF=﹣=(10t﹣75)=t﹣18,当时,如图3,BG=,AG=5﹣,∵△EAG∽△DCO,∵=,∴DG=×(5﹣),∴y=20﹣(5﹣)××(5﹣)=﹣+t﹣,当t≥时y=20.综上所述:y=.7.解:(1)AE=CF.理由:连接AO.如图2,∵AB=AC,点O为BC的中点,∠BAC=90°,∴∠AOC=90°,∠EAO=∠C=45°,AO=OC.∵∠EOF=90°,∠EOA+∠AOF=90°,∠COF+∠AOF=90°,∴∠EOA=∠FOC,在△EOA和△FOC中,∴△EOA≌△FOC(ASA),∴AE=CF.(2)∵AE=CF,∴BE+CF=BE+AE=AB=2,即x+y=2,∴y与x的函数关系式:y=2﹣x.x的取值范围是:0≤x≤2.(3)△OEF能构成等腰三角形.当OE=EF时,如图3,点E为AB中点,点F与点A重合,BE=AE=1,即x=1,当OE=OF时,如图4,BE=BO=CO=CF=,即x=,当EF=OF时,如图5,点E与点A重合,点F为AC中点,即x=2,综上所述:△OEF为等腰三角形时x的值为1或或2.8.解:(1)∵F与G关于BC对称,∴BF=BG,∵将△BEA绕点B逆时针旋转90°得到△BGC,∴BE=BG,∴BE=BF,∵∠ABE+∠FBC=45°,∴∠EBF=45°,∴∠BEF=67.5°;(2)∵将△BEA绕点B逆时针旋转90°得到△BGC,∴AE=CG,∠ABE=∠CBG,BE=BG,∵∠ABE+∠FBC=45°,∴∠EBF=45°,∠FBC+∠CBG=45°,∴∠EBF=∠FBG,又∵BF=BF,∴△BFE≌△BFG(SAS),∴EF=FG,∵△FGC周长为a,∴FG+GC+FC=a=AE+EF+FC,∴AC=a;(3)如图,当点G,点A,点B共线时,当点G'在线段AB的延长线上时,∵∠CBG=30°,∴n°=60°,d=0,∴(+1)d=0,当点G''在线段AB上时,∵∠CBG=30°,∴n°=240°,d=0,∴(+1)d=0,如图,当点C,点A,点B共线时,过点G'''作G'''H⊥BC'''于H,∴n°=90°,在如图1,将△BEA绕点B逆时针旋转90°得到△BGC,∴∠BAC=∠BCG=45°,∵AC=a,∴AB=BC=a,∵将△BGC从起始位置绕点B顺时针旋转,∴BC=BC'''=a,∠BC'''G'''=45°,∠G'''BC'''=30°,∵G'''H⊥BC''',∴G'''H=C'''H=d,BH=G'''H=d,∴BH+HC'''=d+d=(+1)d=a,综上所述:n°的值为60°或90°或240°,(+1)d的值为0或a.9.解:(1)结论:AE=AB+AD.理由:∵当α=60°时,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,又∵AB=AC,∴△ABC是等边三角形,∴AB=CB,∠ACB=60°,∴∠BCE=120°,∵MN∥BC,∴∠BAD=180°﹣∠ABC=120°,∴∠BAD=∠BCE,∴△BAD≌△BCE,∴AD=CE,∴AE=AC+CE=AB+AD;(2)结论:AE=AB+AD.理由:当α=45°时,∠ABC=∠DBE=45°,∴∠ABD=∠CBE,∵AB=AC,∴∠ABC=∠ACB=45°,∠BAC=90°,∴△ABC是等腰直角三角形,∴BC=AB,∵MN∥BC,∴∠BAD=180°﹣∠ABC=135°,∵∠BCE=180°﹣∠ACB=135°,∴∠BAD=∠BCE,∴△BAD∽△BCE,∴==,∴CE=AD,∴AE=AC+CE=AB+AD;(3)由题可得,∠ABC=∠DBE=∠BAD=30°,分两种情况:①如图所示,当点E在线段AC上时,∵∠ABE=15°=∠ABC=∠DBE,∴∠ABD=∠ABE=15°,在BE上截取BF=BD,易得△ABD≌△ABF,∴AD=AF=3﹣,∠ABC=∠BAD=∠BAF=30°,∴∠AFE=∠ABF+∠BAF=15°+30°=45°,又∵∠AEF=∠CBE+∠C=15°+30°=45°,∴∠AFE=∠AEF,∴AE=AF=3﹣;②如图所示,当点E在CA的延长线上时,过D作DF⊥AB于F,过E作EG⊥BC于G,∵AD=3﹣,∠DAF=30°,∴DF=,AF=,∵∠DBF=15°+30°=45°,∴∠DBF=∠BDF,∴BF=DF=,AB=+==AC,∴BC=3,∵∠EBG=15°+30°=45°,∴∠BEG=∠EBG,设BG=EG=x,则CG=3﹣x,∵Rt△CEG中,tan C=,即=,∴x==EG,∴CE=2EG=3﹣3,∴AE=CE﹣AC=3﹣3﹣=2﹣3,综上所述所,线段AE的长度为3﹣或2﹣3.10.解:(1)中△ACE以点C为旋转中心,逆时针方向旋转60°后得到的图形是△BCD.故答案为:△BCD;(2)解:结论:AE=BD.理由:∵△ABC和△DEC都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD;(3)如图,设DB交AC于点J.∵△ACE≌△BCD,∴∠CAE=∠CBD,∵∠AJO=∠BJC,∴∠AOB=∠ACB=60°,故答案为:60°.11.(1)①解:如图1,连接AC′,∵△ABC是等边三角形,∴∠ABC=60°,AB=AC=2,∵点C'与点C关于对称,∴∠C'BA=∠CBA=60°,BC'=BC=BA,∴△ABC'是等边三角形,∵PB=PC',∴PB=1,故答案为:1;②证明:如图2,作∠BPE=60°交射线AB于点E,∵△ABC是等边三角形,∴∠ABC=60°,∵点C'与点C关于对称,∴∠C'BA=∠CBA=60°,∴∠PEB=60°,∴△PBE是等边三角形,∴PB=PE,∠AEP=∠PBD=120°,∵∠BPD+∠DPE=60°,∠APE+∠DPE=60°,∴∠BPD=∠APE,在△PBD和△PEA中,,∴△PBD≌△PEA(ASA),∴PD=P A;(2)解:①补全图3如图3所示,②BD=BP+AB,理由如下:如图3,在BD上取一点E,使BE=BP,连接PE,∵∠EBP=60°,BE=BP,∴△EBP是等边三角形,∴∠BPE=∠APD=60°,∴∠APB=∠DPE,在△BP A和△EPD中,,∴△BP A≌△EPD(SAS),∴AB=DE,∴BD=BE+ED=BP+AB,故答案为:BD=BP+AB.12.解:(1)BD=AC,BD⊥AC,理由:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化,理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,∴△BED≌△AEC(SAS),∴BD=AC,②能.理由:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴∠BDE=∠ACE,BD=AC.∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°或120°.13.解:(1)如图1中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4,∵点D是线段BC的中点,∴BD=DC=BC=2,∵DF⊥AC,即∠CFD=90°,∴∠CDF=30°,又∵∠EDF=120°,∴∠EDB=30°,∴∠BED=90°∴BE=BD=1.(2)如图2中,过点D作DM⊥AB于M,作DN⊥AC于N.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE+CF=BM+EM+NC﹣FN=2BM=BD=AB.(3)结论不成立.结论:BE﹣CF=AB.∵∠B=∠C=60°,BD=DC,∠BDM=∠CDN=30°,∴△BDM≌△CDN,∴BM=CN,DM=DN,又∵∠EDF=120°=∠MDN,∴∠EDM=∠NDF,又∵∠EMD=∠FND=90°,∴△EDM≌△FDN,∴ME=NF,∴BE﹣CF=BM+EM﹣(FN﹣CN)=2BM=BD=AB.14.(1)证明:如图1,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF;(2)如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(3)如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.15.解:(1)∵+|2a﹣5b﹣30=0,且≥0,|2a﹣5b﹣30|≥0,∴,解得:,∴A(30,0),B(0,6),又∵点C是由点B向右平移26个单位长度得到,∴C(26,6);(2)①由(1)可知:OA=30,∵点M从点C向右以1.5个单位长度/秒运动,点N从点O向点A以2个单位长度/秒运动,∴CM=1.5t,ON=2t,∴AN=30﹣2t∵CM<AN,∴1.5t<30﹣2t,解得t<,而0<t<15,∴0<t<;②由题意可知CM=1.5t,ON=2t,∴BM=BC﹣CM=26﹣1.5t,AN=30﹣2t,又B(0,6),∴OB=6,∴S四边形MNOB=OB(BM+ON)=3(26﹣1.5t+2t)=3(26+0.5t),S四边形MNAC=OB (AN+CM)=3(30﹣2t+1.5t)=3(30﹣0.5t),当S四边形MNOB>2S四边形MNAC时,则有3(26+0.5t)>2×3(30﹣0.5t),解得t>>15,∴不存在使S四边形MNOB>2S四边形MNAC的时间段.16.解:(1)等边△ABC未平移时,如图1,∵∠ABC=60°,BD⊥BF,∴∠DBA=30°,∵∠BDF=60°,∴BA⊥DF,∴2AB=BF=BC+CF,∵AB=BC,∴CF=AB=6,即:点C平移到与点F重合时,等边△ABC平移的距离为6;(2)①作EM⊥DF于点M,EN⊥AB于点N,如图2,由(1)知AB⊥DF,∴MENG是矩形,∴GN=EM=AB,∵∠ACB=60°,∠DFE=30°,∴∠CHF=30°,∴∠AHG=30°,∵EN∥DF,∴∠BEN=30°=∠AHG,∵AG+GB=AB,BN+GB=NG=AB,∴BN=AG,在△EBN和△HAG中,,∴△EBN≌△HAG(AAS),∴EB=AH;②如图3,作HI⊥EF于点I,∵∠HEF=30°=∠HFE,∴IE=IF,由(1)知EF=2AB=12,∴IE=6,∴IH=,∴EH=4;③不变.如图2,∵△EBN≌△HAG,∴GH=NE,在△ENP和△HGP中,,∴△ENP≌△HGP(AAS),∴GP=NP=NG==3.17.解:(1)∵AB=6cm,AD=8cm,∴BD=10cm,根据旋转的性质可知B′D′=BD=10cm,CD′=B′D′﹣BC=2cm,∵tan∠B′D′A′=,∴,∴CE=cm,∴S A′B′CE=S A′B′D′﹣S CED′=(cm2);(2)①当0≤x<时,CD′=2x+2,CE=(x+1),∴S△CD′E=x2+3x+,∴y=×6×8﹣x2﹣3x﹣=﹣x2﹣3x+;②当≤x≤4时,B′C=8﹣2x,CE=(8﹣2x)∴y=×(8﹣2x)2=x2﹣x+.(3)①如图1,当AB′=A′B′时,x=0秒;②如图2,当AA′=A′B′时,A′N=BM=BB′+B′M=2x+,A′M=NB=,∵AN2+A′N2=36,∴(6﹣)2+(2x+)2=36,解得:x=,x=(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+,A′M=NB=,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣)2+(2x+)2解得:x=.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、秒、.18.解:(1)∵∠MON=90°,∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°;故答案为:25°;(2)∵OC是∠MOB的角平分线,∴∠MOB=2∠BOC=2×65°=130°,∴旋转角∠BON=∠MOB﹣∠MON=130°﹣90°=40°,∠CON=∠BOC﹣∠BON=65°﹣40°=25°;故答案为:40°,25°;(3)由直角三角板只能在直线AB上方旋转可知:如图2,当ON在∠BOC内部时,∵∠NOC=5°,∠BOC=65°,∴∠BON=∠BOC﹣∠NOC=60°,∵点O为直线AB上一点,∴∠AOB=180°,∵∠MON=90°,∴∠AOM=∠AOB﹣∠MON﹣∠BON,=180°﹣90°﹣60°,=30°;如备用图,当ON在∠AOC内部时,∵∠NOC=5°,∠BOC=65°,∴∠BON=∠NOC+∠BOC=70°,∵点O为直线AB上一点,∴∠AOB=180°,∵∠MON=90°,∴∠AOM=∠AOB﹣∠MON﹣∠BON,=180°﹣90°﹣70°,=20°.综上所述:∠AOM的度数为30°或20°.19.解:(1)如图1所示.∠a=45°,故答案为:45°;(2)解:如图1.1所示.∵α<30°,∴∠A0OA3<180°,4α<180°.∵OA4平分∠A2OA3,∴2(180°﹣6α)+α=4α,解得:α=()°;(3)分四种情况:①当魔法棒从OM位置绕点O顺时旋转到OA4位置(不到ON位置),即OA4和OA3都不从ON回弹时,如图2,3α+4α=20,α=()°;②当魔法棒从OM位置绕点O顺时旋转到ON被弹回到OA4位置(在ON与OA3之间),(180°﹣6α)+180°﹣20°﹣3α)=4α,解得α=()°(不合实际);③当魔法棒从OM位置绕点O顺时旋转到ON被弹回到OA4位置(在OA2与OA3之间),如图3,根据题意得:4α﹣(180﹣6α)+20=3α,α=()°;或者2(180°﹣6α)+(3α﹣20°)=4α,解得,α=()°;④当魔法棒从OM位置绕点O顺时旋转到ON被弹回到OA4位置(在OA1与OA2之间),即OA4在OA2的左边时,如图4,根据题意得:4α﹣(180﹣6α)=3α+20,α=()°;或者2(180°﹣6α)+(3α+20°)=4α,解得,α=()°,综上,对应的α值是()°或()°或()°.20.解:(1)①如图:∵AB=AC,AD=AE,∴AB﹣AD=AC﹣AE,即BD=CE,∵点M,N,P分别是DE,BC和CD的中点,∴MP是△CDE的中位线,PN是△BCD的中位线,∴PM=CE,PN=BD,PM∥CE,PN∥BD,∴PM=PN,∠DPM=∠DCA,∠DPN=∠ADC,∵α=90°,即∠A=90°,∴∠DCA+∠ADC=90°,∴∠DPM+∠DPN=90°,即∠MPN=90°,故答案为:PM=PN,90°;②存在点D,使得以P,M,N为顶点的三角形与△ADE全等,理由如下:连接MN,如图:由①知△PMN是等腰直角三角形,若△PMN≌△ADE,则PN=PM=AD=AE,∵PN=BD,∴AD=BD,∴AD=AB,∴D是AB靠近A的三等分点;(2)连接CE,BD,如图:由旋转可得∠CAE=∠BAD,∵AC=AB,AE=AD,∴△ACE≌△ABD(SAS),∴CE=BD,∠AEC=∠ADB,∵点M,N,P分别是DE,BC和CD的中点,∴MP是△CDE的中位线,PN是△BCD的中位线,∴PM=CE,PN=BD,PM∥CE,PN∥BD,∴PM=PN,∠DPM=∠DCE,∠DPN=180°﹣∠BDP,∴∠MPN=∠DPM+∠DPN=∠DCE+180°﹣∠BDP=∠DCE+180°﹣(360°﹣∠ADB﹣∠ADE﹣∠EDC)=∠DCE+∠AEC+∠ADE+∠EDC﹣180°=∠DCE+∠AED+∠DEC+∠ADE+∠EDC﹣180°,∵∠DCE+∠DEC+∠EDC=180°,∴∠MPN=∠AED+∠ADE,∵∠AED+∠ADE=180°﹣∠EAC﹣∠CAD==180°﹣∠BAD﹣∠CAD=180°﹣∠BAC=180°﹣α,∴∠MPN=180°﹣α;②过E作EG⊥AD于G,过N作NH⊥MP,交MP的延长线于H,如图:由①知PM=PN=BD,∠MPN=180°﹣α,∵AD=BD,∴PM=PN=AD=AE,∵∠HPN=180°﹣∠MPN,∴∠HPN=α=∠BAC=∠DAE,设PM=PN=m,则AE=AD=2m,在Rt△AEG中,EG=AE•sinα=2m•sinα,在Rt△PHN中,HN=PN•sinα=m•sinα,∴S△ADE=×2m×2m•sinα=2m2sinα,S△PMN=×m×m•sinα=m2sinα,∴S△ADE=4S△PMN,∴△ADE和△PMN的面积关系为S△ADE=4S△PMN.。
2020-2021九年级中考数学初中数学 旋转解答题压轴题提高专题练习附答案一、旋转1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明;(3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
【答案】(1)1302α︒-(2)见解析(3)30α=︒ 【解析】解:(1)1302α︒-。
(2)△ABE 为等边三角形。
证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD ,∴BC=BD ,∠DBC=60°。
又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。
在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。
∴11BAD CAD BAC 22α∠=∠=∠=。
∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。
∴BEC BAD ∠=∠。
在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD ,∴△ABD ≌△EBC (AAS )。
∴AB=BE 。
∴△ABE 为等边三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。
又∵∠DEC=45°,∴△DCE 为等腰直角三角形。
∴DC=CE=BC 。
∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。
而1EBC 30152α∠=︒-=︒。
∴30α=︒。
2023年九年级数学中考复习:旋转综合压轴题1.在锐角△ABC 中,AB =AC ,D 是线段BC 上的一点,连接AD ,将AD 绕着点A 顺时针旋转至AE ,使得△EAD =2△BAC ,连接DE 交AB 于点F .(1)如图1,若△BAC =60°,△DAC =15°,BD =4,求AB 的长;(2)如图2,点G 是线段AC 的一点,连接DG ,FG ,若DA 平分△EDG ,求证:FE =DG +FG ;(3)在(1)的条件下,将△BFD 绕D 点顺时针旋转△α(0°<α<180°)得△B 'F 'D ,直线B 'F '交AB 于点M ,交AC 于点N .在旋转过程中,是否存在△AMN 为直角三角形?若存在,请直接写出AM 的长度;若不存在,请说明理由.2.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________.(4)当旋转角α=__________时,ABD △的面积最大.3.如图1,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,直线MN 经过C 点垂直于AB ,垂足为D .(1)求证:ADC BDC ∽△△; (2)若直线MN 从图1的位置绕M 点逆时针旋转,如图2,设旋转的角度为()0180αα<<,作AP MN ⊥,垂足为P ,BQ MN ⊥,垂足为Q .△当α的度数为______时,点A ,P ,B ,Q 构成的四边形为平行四边形;△当α的度数为______时,点A ,P ,B ,Q 构成的四边形为矩形.4.已知△ABC 和△ADE 都是等腰三角形,AB =AC ,AD =AE ,△DAE =△BAC .【初步感知】(1)特殊情形:如图△,若点D ,E 分别在边AB ,AC 上,则DB EC .(填>、<或=)(2)发现证明:如图△,将图△中△ADE 的绕点A 旋转,当点D 在△ABC 外部,点E 在△ABC 内部时,求证:DB =EC .【深入研究】(3)如图△,△ABC 和△ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则△CDB 的度数为 ;线段CE ,BD 之间的数量关系为 .(4)如图△,△ABC 和△ADE 都是等腰直角三角形,△BAC =△DAE =90°,点C 、D 、E 在同一直线上,AM 为△ADE 中DE 边上的高,则△CDB 的度数为 ;线段AM ,BD ,CD 之间的数量关系为 .5.如图1,四边形ABCD和AEFG都是菱形,△DAB=△GAE=60°,点G,E分别在边AD,AB上,点F在菱形ABCD内部,将菱形AEFG绕点A旋转一定角度α,点E、F 始终在菱形ABCD内部.(1)如图2,求证:△DGA△△BEA;(2)如图3,点P、Q分别在AB、AD的延长线上,连接AF并延长与△QDC的平分线交于点H,连接AE并延长与△PBC 的平分线交于K,连接DH、HK、CH、CK.△求证:△ADH△△KBA;△若AB,DH=5,则线段BK的长度为,线段HK的长度为.△菱形AEFG绕点A旋转α度(0°<α<30°),AB=m,△KBC是等腰三角形,则线段HK 的长为.6.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A 顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)求证:△APF△△EPC;(2)求证:P A2=PG•PF(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.。
2023年春九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)1.如图,在△ABC中,∠BAC=90°,AB=AC,点D为线段AB上一点,线段CD绕点C 逆时针旋转90°能与线段CE重合,点F为AC与BE的交点.(1)若BC=5,CE=4,求线段BD的长;(2)猜想BD与AF的数量关系,并证明你猜想的结论;(3)设CA=3DA=6,点M在线段CD上运动,点N在线段CA上运动,运动过程中,DN+MN的值是否有最小值,如果有,请直接写出这个最小值;如果没有,请说明理由.2.阅读下列材料,并完成相应的学习任务:图形旋转的应用图形的旋转是全等变换(平移、轴对称、旋转)中重要的变换之一,利用图形旋转中的对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变等性质,可以将一般图形转化成特殊图形,从而达到解决问题的目的.如图1,在Rt△ABC中,∠ACB=90°,CE平分∠ACB,且AC=4,BC=3.过点E作互相垂直的两条直线,即EF⊥ED,EF交AC于点F,ED交BC于点D,求四边形EFCD 的面积.分析:将∠FED以点E为旋转中心顺时针旋转,使得旋转后EF的对应线段所在直线垂直于AC,并且交AC于点M,旋转后ED的对应线段所在直线交BC于点N.则容易证明四边形MENC为正方形.因为∠EMF=∠END=90°,ME=NE,∠MEF=∠NED,所以△MEF≌△NED,所以S四边形EFCD=S正方形MENC.学习任务:(1)四边形EFCD的面积等于;(2)如图2,在Rt△ABC中,∠ACB=90°,①作出△ABC的外接圆O;②作∠ACB的平分线,与⊙O交于点D.要求:尺规作图,不写作法,但保留作图痕迹.(3)在(2)的基础上,若BC+AC=14,则四边形ACBD的面积等于.3.△ABC为等边三角形,AB=4,AD⊥BC于点D,点E为AD的中点.(1)如图1,将AE绕点A顺时针旋转60°至AF,连接EF交AB于点G,求证:G为EF中点.(2)如图2,在(1)的条件下,将△AEF绕点A顺时针旋转,旋转角为α,连接BE,H为BE的中点,连接DH,GH.当30°<α<120°时,猜想∠DHG的大小是否为定值,并证明你的结论.(3)在△AEF绕点A顺时针旋转过程中,H为BE的中点,连接CH,问线段CH何时取得最大值,请说明理由,并直接写出此时△ADH的面积.4.如图,已知△ABC中,∠ABC=45°,CD是边AB上的高线,E是AC上一点,连接BE,交CD于点F.(1)如图1,若∠ABE=15°,BC=+1,求DF的长;(2)如图2,若BF=AC,过点D作DG⊥BE于点G,求证:BE=CE+2DG;(3)如图3,若R为射线BA上的一个动点,以BR为斜边向外作等腰直角△BRH,M 为RH的中点.在(2)的条件下,将△CEF绕点C旋转,得到△CE'F',E,F的对应点分别为E',F',直线MF'与直线AB交于点P,tan∠ACD=,直接写出当MF'取最小值时的值.5.如图1,已知△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点B逆时针旋转一定的角度α得到△A1BC1.(1)若α=90°,则AA1的长为.(2)如图2,若0°<α<90°,直线A1C1分别交AB,AC于点G,H,当△AGH为等腰三角形时,求CH的长.(3)如图3,若0°<α<360°,M为边A1C1的中点,N为AM的中点,请直接写出CN的最大值.6.问题发现:(1)如图1,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AB上一点,且AD=2DB,过点D作DE∥BC,填空:=,=;类比探究:(2)如图2,在(1)的条件下将△ADE绕点A逆时针旋转得到△AMN,连接DM,BM,EN,CN,请求出,的值;拓展延伸:(3)如图3,△ABC和△DEF同为等边三角形,且AB=3EF=6,连接AD,BE,将△DEF绕AC(DF)的中点O逆时针自由旋转,请直接写出在旋转过程中BE﹣AD的最大值.7.【问题提出】如图1,在等边三角形ABC内部有一点P,P A=3,PB=4,PC=5.求∠APB的度数.【数学思考】当图形中有一组邻边相等时,通过旋转可以将分散的条件集中起来解决问题.【尝试解决】(1)将△APC绕点A逆时针旋转60°,得到△AP'B,连接PP',则△APP'为等边三角形.∵P'P=P A=3,PB=4,P'B=PC=5,∴P'P2+PB2=P'B2,△BPP'为三角形,∴∠APB的度数为.(2)如图2,在等边三角形ABC外部有一点P,若∠BP A=30°,求证:P A2+PB2【类比探究】=PC2.【联想拓展】(3)如图3,在△ABC中,∠BAC=90°,AB=AC.点P在直线BC上方且∠APB=45°,PC=BC=2,求P A的长.8.如图(1),已知△ABC中,∠BAC=90°,AB=AC;AE是过A的一条直线,且B,C 在AE的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=DE+CE;(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的数量关系如何?请给予证明.(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE在不同位置时BD与DE,CE的数量关系.9.(1)如图1,等腰直角△ABC,∠B=90°,点D为AC的中点,点E为边AB上的一点,作DE垂直DF交BC于点F,求证:DE=DF.(2)如图2,等腰直角△ABC,∠B=90°,点D为AC的中点,点E为边AB上的一点,线段DE绕着点D逆时针旋转90°得到线段DF,求证:点F在线段BC上;(3)如图3,直角△ABC,点D为AC的中点,点E为边AB上的一点,线段DE绕着点D逆时针旋转90°得到线段DF,若AB=6,BC=8,①直接写出线段EF=时,BE的长;②直接写出△ACF是等腰三角形时,BE的长;③直接写出△BEF面积的最大值.10.在平面直角坐标系中,O为原点,点A(﹣4,0),点B(0,3),△ABO绕点B顺时针旋转,得△A'BO',点A、O旋转后的对应点为A'、O',记旋转角为α.(1)如图①,α=90°,边OA上的一点M旋转后的对应点为N,当OM=1时,点N 的坐标为;(2)在(1)的条件下,当O'M+BN取得最小值时,在图②中画出点M的位置,并求出点N的坐标.(3)如图③,P为AB上一点,且P A:PB=2:1,连接PO'、P A',在△ABO绕点B顺时针旋转一周的过程中,△PO'A'的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.11.如图①,△ABC为直角三角形,∠ACB=90°,∠BAC=30°,点D在AB边上,过点D作DE⊥AC于点E,取BC边的中点F,连接DF并延长到点G,使FG=DF,连接CG.(如需作图或作辅助线,请先将原题草图画在对应题目的答题区域后再作答.)问题发现:(1)填空:CE与CG的数量关系是,直线CE与CG所夹的锐角的度数为.探究证明:(2)将△ADE绕点A逆时针旋转,(1)中的结论是否仍然成立,若成立,请仅就图②所示情况给出证明,若不成立,请说明理由;问题解决:(3)若AB=4,AD=3,将△ADE由图①位置绕点A逆时针旋转α(0°<α<180°),当△ACE是直角三角形时,请直接写出CG的值.12.如图,两直角三角形ABC和DEF有一条边BC与EF在同一直线上,且∠DFE=∠ACB =60°,BC=1,EF=2.设EC=m(0≤m≤4),点M在线段AD上,且∠MEB=60°.(1)如图1,当点C和点F重合时,=;(2)如图2,将图1中的△ABC绕点C逆时针旋转,当点A落在DF边上时,求的值;(3)当点C在线段EF上时,△ABC绕点C逆时针旋转α度(0<α<90°),原题中其他条件不变,则=.13.在△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,连接DE,将△AED 沿直线AE翻折得到△AEF(点D与点F为对应点),连接DF,过点D作DG⊥DE交BE于点G.(1)如图1,求证:四边形DFEG为平行四边形;(2)如图2,连接CF,若tan∠ABE=,在不添加任何辅助线与字母的情况下,请直接写出图2中所有正切值等于2的角.14.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.15.(1)如图1.在Rt△ACB中,∠ACB=90°,CA=8,BC=6,点D、E分别在边CA,CB上,且CD=3,CE=4,连接AE,BD,F为AE的中点,连接CF交BD于点G,则线段CG所在直线与线段BD所在直线的位置关系是.(提示:延长CF到点M,使FM=CF,连接AM)(2)将△DCE绕点C逆时针旋转至图2所示位置时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将△DCE绕点C逆时针在平面内旋转,在旋转过程中,当B,D,E三点在同一条直线上时,CF的长为.16.在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE=AC,连接EC,点G是EC中点,将△AEF绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=AB+GC;(3)如图3,若AB=3,在△AEF旋转过程中,当GB﹣GC最大时,直接写出直线AB,AC,BG所围成三角形的面积.17.如图,在等腰Rt△ABC中,∠ACB=90°,点D,E分别在AB,BC上运动,将线段DE绕点E按顺时针方向旋转90°得到线段EF.(1)如图1,若D为AB中点,点E与点C重合,AF与DC相交于点O,求证:OE=OD;(2)如图2,若点E不与C,B重合,点D为AB中点,点G为AF的中点,连接DG,连接BF,判断线段BF,CE,AD的数量关系并说明理由;(3)如图3,若AB=4,AD=3BD,点G为AF的中点,连接CG,∠GDE=90°,请直接写出CE的长.18.如图,在平面直角坐标系中,点O为坐标原点,点A(x,y)中的横坐标x与纵坐标y 满足+|y﹣8|=0,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足AD﹣OD=OE,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG 的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当S=26时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线AB→BC向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标19.如图:直线l1:y=﹣x+6与x轴交于点A,与y轴交于点B,将△AOB沿直线l1翻折后,设点O的对应点为点C,已知双曲线y=(x>0)经过点C.(1)求点A,B的坐标.(2)求k的值.(3)将直线l1绕着点A逆时针旋转得到直线l2.直线l2与y轴交于点B′,将△AOB′沿直线l2翻折得到△AB′C',当四边形OAC′B′为正方形时停止转动,求转动过程中点C运动到点C′的路径长.20.图形的旋转变换是研究数学相关问题的重要手段之一.小华和小芳对等腰直角三角形的旋转变换进行研究.如图(1),已知△ABC和△ADE均为等腰直角三角形,点D,E分别在线段AB,AC上,且∠C=∠AED=90°.(1)观察猜想小华将△ADE绕点A逆时针旋转,连接BD,CE,如图(2),当BD的延长线恰好经过点E时,①的值为;②∠BEC的度数为度;(2)类比探究如图(3),小芳在小华的基础上,继续旋转△ADE,连接BD,CE,设BD的延长线交CE于点F,请求出的值及∠BFC的度数,并说明理由.(3)拓展延伸若AE=DE=,AC=BC=,当CE所在的直线垂直于AD时,请你直接写出BD 的长.参考答案1.解:(1)在Rt△ABC中,AB=AC,BC=5,∴AB=AC=BC=5,由旋转知,CD=CE=4,在Rt△ADC中,AD===,∴BD=AB﹣AD=5﹣;(2)猜想:BD=2AF,理由:如图1,延长BA至G,使AG=AB,连接EG,则CG=CB,∴∠ABC=∠AGC,在Rt△ABC中,AB=AC,∴∠ABC=45°,∴∠AGC=45°,∴∠BCG=90°,由旋转知,CD=CE,∠DCE=90°=∠BCG,∴∠BCD=∠GCE,∴△BCD≌△GCE(SAS),∴BD=GE,∠CBD=∠CGE=45°,∴∠BGE=∠CGB+∠CGE=90°=∠BAC,∴AC∥GE,∴,∴=,∴EG=2AF,∴BD=2AF;(3)存在,如图2,延长DA至P,使AP=AD,∵∠BAC=90°,∴点P,点D关于AC对称,∴MN+DN=MH+PN,过点P作PH⊥CD于H,要使MN+DN最小,则点P,N,M在同一条线上,且PM⊥CD,即MN+DN的最小值为PH,∵CA=3DA=6,∴AD=2,∴DP=2AD=4,CD===2,连接CP,∴S△CDP=DP•AC=CD•PH,∴PH===,即DN+MN的最小值为.2.解:(1)如图1中,∵EC平分∠ACB,EM⊥AC,EN⊥BC,∴EM=EN,∵∠EMC=∠DNC=∠MCN=90°,∴四边形EMCN是矩形,∵EM=EN,∴四边形EMCN是正方形,设正方形的边长为m,则×AC×BC=×AC×m+×BC×m,解得m=,∵EF⊥ED∴∠MEN=∠FED=90°,∴∠MEF=∠NDF,∵∠EMF=∠END=90°,∴△EMF≌△END(AAS),∴S四边形EFCD=S正方形EMCN=,故答案为:;(2)①如图2中,⊙O即为所求作.②如图2中,射线CD即为所求作.(3)如图2中,过点D作DM⊥CB交CB的延长线于M,DN⊥AC于N.∵∠DMC=∠DNC=∠MCN=90°,∴四边形DMCN是矩形,∵DC平分∠ACB,DM⊥CB,DN⊥AC,∴DM=DN,∴四边形DMCN是正方形,∴CM=CN,∵∠ACD=∠BCD,∴=,∴DB=DA,∵DM=DN,∠DMB=∠DNA=90°,∴Rt△DMB≌Rt△DNA(HL),∴BM=AN,S四边形ACBD=S正方形DMCN,∴AC+BC=CM﹣BM+CN﹣AN=2CM=14,∴CM=7,∴S四边形ACBD=49.故答案为:49.3.(1)证明:∵△ABC是等边三角形,AD⊥BC,∴∠BAD=∠CAD=∠BAC=30°,∵∠EAF=60°,∴∠GAE=∠GAF=30°,∵AE=AF,∴FG=EG.(2)解:结论:∠EHD=120°,是定值.理由:如图2中,连接BF,CE.∵AB=AC,AD⊥BC,∴BD=CD,∵BH=EH,∴DH∥EC,∴∠HDB=∠ECB,∵FG=GE,EH=HB,∴GH∥BF,∴∠EHG=∠EBF,∵∠EAF=∠BAC=60°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE(SAS),∴∠ACE=∠ABF,∵∠EHD=∠HDB+∠HBD,∴∠DHG=∠EHG+∠EHD=∠EBF+∠HDB+∠HBD=∠ABF﹣∠ABE+∠ECB+∠ABD+∠ABE=∠ACE+∠ECB+∠ABD=∠ACB+∠ABC=120°.(3)解:如图3中,取AB的中点N,连接AH,HN,CH,CH交AD于M,过点H作HT⊥AD于T.∵EH=BH,AN=BN,∴NH为△ABE的中位线,∴HN=AE=,∴点H在以N为圆心,为半径的圆上,当C,N,H共线时,CH的值最大,∵△ABC是等边三角形,∴CN⊥AB,∴∠ACM=∠MCB=30°,∵AD=2,∴CN=AD=2,在Rt△CMD中,CD=2,∠MCD=30°,∴CM==,∴MN=CN﹣CM=,∴HM=HN+MN=+=,∴HT=HM•sin60°=,∴S△ADH=•AD•HT=.4.(1)解:如图1中,过点F作FH⊥BC于H.∵CD⊥AB,∴∠BDC=90°,∵∠DBC=45°,∴∠DCB=90°﹣45°=45°,∵FH⊥CH,∴∠FHC=90°,∴∠HFC=∠HCF=45°,∴CH=FH,设FH=CH=m,∵∠ABE=15°,∴∠FBC=45°﹣15°=30°,∴BH=HF=m,∴m+m=+1,∴m=1,∴CF=CH=,∵CD=BC=,∴DF=CD﹣CF=﹣=.(2)证明:如图2中,连接DE,过点D作DH⊥DE交BE于H.∵∠ADC=∠FDB=90°,DB=DC,BF=AC,∴Rt△BDF≌Rt△CDA(HL),∴∠DBF=∠ACD,∵∠BFD=∠CFE,∴△BFD∽△CFE,∴=,∴=,∵∠DFE=∠BFC,∴△DFE∽△BFC,∴∠DEF=∠BCF=45°,∵DH⊥DE,∴∠HDE=90°,∴∠DHE=∠DEH=45°,∴DH=DE,∵∠BDC=∠EDH=90°,∴∠BDH=∠CDE,∵DB=DC,DH=DE,∴△BDH≌△CDE(SAS),∴BH=EC,∵DH=DE,DG⊥EH,∴GH=EG,∴DG=EH,∴BE=BH+HE=EC+2DG.(3)解:如图3中,过点M作MJ⊥BC于J,过点P作PK⊥BC于K.∵△BHR,△DBC都是等腰直角三角形,∴∠DBC=∠HBR=45°,∴∠HBC=90°,∵∠H=∠HBJ=∠MJB=90°,∴四边形BHMJ是矩形,∴BH=MJ,HM=BJ,∵BH=HR,HM=MR,∴MJ=2BJ,∴tan∠MBJ==2,∴点M的在射线BM上运动,∴当C,F′,M共线,且CM⊥BM时,F′M的值最小.设AD=m,∵tan∠ACD==,∴CD=BD=3m,DF=AD=m,CF=CF′=2m,BC=3m,∵∠CMB=90°,tan∠CBM==2,∴BM=m,CM=m,∴BJ=HM=m,JM﹣BH=HR=m,∴MR=m,设BK=PK=n,CK=2n,∴n=m,∴BK=PK=m,CK=2m,PC=m,∴PF′=PC﹣CF′=m﹣2m,∴==.5.解:(1)∵∠C=90°,AC=4,CB=3,∴AB===5,∵α=90°,∴△ABA1是等腰直角三角形,AA1=AB=5.故答案为:5.(2)如图2﹣1中,当AG=AH时,∵AG=AH,∴∠AHG=∠AGH,∵∠A=∠A1,∠AGH=∠A1GB,∴∠AHG=∠A1BG,∴∠A1GB=∠A1BG,∴AB=AG=5,∴GC1=A1G﹣C1G=1,∵∠BC1G=90°,∴BG===,∴AH=AG=AB﹣BG=5﹣,∴CH=AC﹣AH=4﹣(5﹣)=﹣1.如图2﹣2中,当GA=GH时,过点G作GM⊥AH于M.同法可证,GB=GA1,设GB=GA1=x,则有x2=32+(4﹣x)2,解得x=,∴BG=,AG=5﹣=,∵GM∥BC,∴=,∴=,∴AM=,∵GA=GH,GM⊥AH,∴AM=HM,∴AH=3,∴CH=AC﹣AM=1.综上所述,满足条件的CH的值为﹣1或1.(3)如图3中,取AB的中点J,连接BM,CJ,JN.∵AJ=BJ,∠ACB=90°,∴CJ=AB=,∵BC1=BC=3,MC1=MA1=2,∠BC1M=90°,∴BM===,∵AJ=BJ,AN=NM,∴JN=BM=,∵CN≤CJ+JN,∴CN≤,∴CN的最大值为.6.解:(1)如图1中,在Rt△ABC中,,∵AD=2DB,∴AB=AD+DB=3DB,∵DE∥BC,∴,∵,∴,即,∴,故答案为:,.(2)由旋转性质可知:AD=AM,AE=AN,∠BAM=∠CAN,∵,∠BAM=∠CAN,∴△ABM∽△ACN,∴,∠ABM=∠ACN,∵,∠ABM=∠ACN,∴△DBM∽△ECN,∴.(3)如图3中,连接OB,OE,由三线合一性质可知∠BOC=∠DOE=90°,∴∠BOD=∠COE,∴∠AOB+∠BOD=∠BOC+∠COE,即∠AOD=∠BOE,∵,∠AOD=∠BOE,∴△AOD∽△BOE,∴,∵AB=3EF=6,∴,,在△BOE中,由三边关系可得,BE<BO+OE,当B、O、E三点共线时,BE存在最大值为,∵,∴当BE存在最大值时,BE﹣AD的最大值=.7.(1)解:如图1,将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.∵PP′=P A=3,PB=4,P′B=PC=5,∴P′P2+PB2=P′B2.∴△BPP′为直角三角形.∴∠APB的度数为90°+60°=150°.故答案为:直角;150°.(2)证明:如图2中,将△P AB绕点B逆时针旋转60°得到△TCB,连接PT.∵BP=BT,∠PBT=60°,∴△PBT是等边三角形,∴PT=PB,∠PTB=60°,由旋转的性质可知:△P AB≌△TCB,∴∠APB=∠CTB=30°,P A=CT,∴∠PTC=∠PTB+∠CTB=60°+30°=90°,∴PC2=PT2+CT2,∵PB=PT,P A=CT,∴P A2+PB2=PC2.(3)解:过点C作CT⊥PB于T,连接AT,设CT交AB于O.∵PC=BC=2,CT⊥PB,∴PT=BT,∵∠CAO=∠BTO=90°,∠AOC=∠BOT,∴∠ACT=∠ABP,∠ATC=∠ABC=45°,∵∠CTB=90°,∴∠ATP=∠CTA=∠APT=45°∵AC=AB,∴△CAT≌△BAP(AAS),∴CT=PB=2PT,∵PC2=PT2+CT2,∴(2)2=m2+(2m)2,解得m=2或﹣2(舍弃),∴PT=2,∴P A=PT=.8.解:(1)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=AE,AD=EC,∴BD=DE+CE.(2)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=DE﹣CE.(3)同(2)的方法得出,BD=DE﹣CE.(4)归纳:由(1)(2)(3)可知:当B,C在AE的同侧时,BD=DE﹣CE.当B,C在AE的异侧时,BD=DE+CE.9.(1)证明:如图1中,连接BD.∵△ABC是等腰直角三角形,AD=DC,∴BD⊥AC,BD=DA=DC,∴BD⊥AC,∵ED⊥DF,∴∠EDF=∠BDC=90°,∴∠EDB=∠FDC,∵∠DBE=∠C=45°,∴△EDB≌△FDC(ASA),∴DE=DF.(2)证明:如图2中,连接DB,CF.∵∠BDC=∠EDF=90°,∴∠BDE=∠CDF,∵DB=DC,DE=DF,∴△EDB≌△FDC(SAS),∴∠DBE=∠DCF=45°,∴点F在线段BC上.(3)①如图3﹣1中,过点D作DT⊥AB于T.∵∠ATD=∠ABC=90°,∴DT∥CB,∵AD=DC,∴AT=TB=3,∴DT=BC=4,∵△DEF是等腰直角三角形,EF=,∴DE=DF=,∴ET===1,∴BE=TB+ET=3+1=4,当点E在点T的下方时,BE=3﹣1=2,综上所述,满足条件的BE的值为4或2.②如图3﹣2中,∵△ACF是等腰三角形,又∵AD=DC=DF,∴∠AFC=90°,∴△AFC是等腰直角三角形,∴点E与A重合,∴BE=6.③如图3﹣3中,过点D作DT⊥AB于T,过点F作FR⊥DT于R.∵∠DTE=∠FRD=90°,∠EDT=∠DFR,DE=DF,∴△DTE≌△FRD(AAS),∴ET=DR,DT=FR=4,设ET=DR=m,则RT=4﹣m,∴S△EFB=(3+m)(4﹣m)=(﹣m2+m+12)=﹣(m﹣)2+,∵﹣<0,∴△BEF的面积有最大值,最大值为.10.解:(1)∵点A(﹣4,0),点B(0,3),∴OA=4,OB=3,由旋转的性质可知,BO=BO′=3,OM=O′N=1,∠OBO′=90°,∴N(﹣3,4).故答案为:(﹣3,4).(2)如图②中,∵BM=BN,∴O′M+BN=O′M+BM,作点B关于OA的对称点B′,连接O′B′交OA于M,连接BM,O′M+BM的值最小.∵O′(﹣3,3),B′(0,﹣3),∴直线O′B′的解析式为y=﹣2x﹣3,∴M(﹣,0),∴O′N=OM=,∴N(﹣3,).(3)存在.理由:如图③﹣1中,当点O′落在AB的延长线上时,△PO′A′的面积最大.由题意,OA=4,OB=3,∴AB===5,∴P A:PB=2:1,∴PB=,∴PO′=PB+PO′=,∴△PO′A′的面积的最大值=×4×=.如图③﹣2中,当点O′落在AB上时,△PO′A′的面积最小,最小值为×4×(3﹣)=.11.解:(1)如图①中,过点D作DT⊥BC于T.∵DE⊥AC,∴∠DEC=∠ECT=∠DTC=90°,∴四边形ECTD是矩形,∴DT=EC,DT∥AC,∴∠TDB=∠A=30°,∴DT=BD,∵FC=FB,∠CFG=∠BFD,FG=FD,∴△CFG≌△BFD(SAS),∴CG=BD,∠FCG=∠B=60°,∴EC=CG,∴∠ACG=90°+60°=150°,∴直线CE与CG所夹的锐角的度数为30°,故答案为:EC=CG,30°.(2)成立.理由如下:连接CD,BG,延长BD交CE的延长线于H,设BH交AC于点O.在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=30°,∴cos∠BAC==,cos∠EAD==,∠EAC=∠DAB,∴==,∴△ACE∽△ABD,∴==,∠ACE=∠ABD,∵∠HOC=∠AOB,∴∠H=∠OAB=30°,∵CF=FB,DF=FG,∴四边形DCGB是平行四边形,∴CG=BD,CG∥BH,∴∠1=∠H=30°,∴EC=CG,直线CE与CG所夹的锐角的度数为30°.(3)如图③﹣1中,当∠AEC=90°时,由题意AC=AB=2,AE=AD=,∴EC===,∴CG=EC=,如图③﹣2中,当∠EAC=90°时,可得EC==,∴CG=EC=5.综上所述,CG的值为或5.12.解:(1)由题意得,在Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=1,∴AC=2,BC=,在Rt△DEC中,∠DEC=90°,∠DCE=60°,EF=2,∴DC=4,DE=2,∴∠DCA=180°﹣∠DCE﹣∠ACB=60°,∴AC=EF,∠DCE=∠DCA,DC=DC,∴△DEF≌△DAC(SAS),∴AD=DE=2,∠EDC=∠CDA=30°,∵∠MEC=60°,∴∠DEM=30°,∴∠DME=180°﹣∠DEM﹣∠EDM=180°﹣∠DEM﹣2∠EDC=90°,∴DM=DE=,∴AM=AD﹣DM=,∴=1,故答案为:1;(2)如图2,连接AE,∵AC=EF=2,∠ACE=60°,∴△AEC是等边三角形,∴AE=2,∠EAC=∠AEC=60°,∴∠AEB+∠BEC=∠AEC=60°,∵∠MEB=60°,∴∠AEB+∠MEA=60°,∴∠BEC=∠MEA,∵∠DAE=∠ECB=120°,AE=EC,∴△AME≌△CBE(ASA),∴AM=BC=1,∵AD=DC﹣AC=2,∴DM=AD﹣AM=1,∴=1;(3)如图3,过点B作BG⊥BE交EM延长线于点G,连接AG,BG,∵∠CBA=∠EBG=90°,∴∠EBC=∠GBA,∵∠MEB=∠ACB=60°,∴,∴△ECB∽△GAB,∴,∠AGB=∠CEB,∴AG=m,∵∠CEB+∠DEG=30°,∠AGB+∠EGA=30°,∴∠AGM=∠DEM,∴AG∥DE,∴△AGM∽△DEM,∴,∵DE=EF=2,∴==.故答案为:.13.(1)证明:如图1中,∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴∠GDE=∠DEF=90°,DG=DE=EF,∴DG∥EF,∴四边形DFEG是平行四边形.(2)解:如图2中,设AD交BE于P,过点P作PT⊥AB于T.∵tan∠ABE==,∴可以假设PT=a,BT=3a,∵△ABD是等腰直角三角形,∴∠P AT=45°,∵PT⊥AB,∴∠ATP=90°,∴∠P AT=∠APT=45°,∴AT=PT=a,∴P A=a,AB=4a,AD=BD=2a,∴P A=PD=a,∴tan∠BPD==2,∵BE⊥AC,∴∠ADC=∠PEC=90°,∴∠EPD+∠ACD=180°,∵∠EPD+∠BPD=180°,∴∠BPD=∠ACD,根据对称性可知,∠ACD=∠ACF,∠ADF=∠AFD,AC⊥DF,∴∠ACD=∠ACF=∠BPD,∵∠ADF+∠CDF=90°,∠CDF+∠ACD=90°,∴∠ADF=∠ACD,∴∠ACD=∠ACF=∠ADF=∠AFD=∠BPD,∴正切值等于2的角有:∠ACD,∠ACF,∠ADF,∠AFD.14.解:(1)∵∠BAC=90°,AB=AE,∴△BAE为等腰直角三角形,∵AG⊥BE,∴AH是△BAE的中线,∴BE=2AH=4,∵∠BEA=45°,∴∠BEC=135°,在△BCE中,过点C作CD⊥BE交BE的延长线于点D,如图1,∵∠DEC=45°,∴△DEC是等腰直角三角形,设ED=x,则DC=x,CE=x,在Rt△BCD中,BC2=BD2+DC2,即,∴x1=1或x2=﹣5(舍去),∴CE=;(2)如图2,过H作HD⊥HM交AM于点D,连接BD,∵AB=AE,∠BAC=90°,∴△ABE是等腰直角三角形,∵AG⊥BE,∴△ABH为等腰直角三角形,∴BH=AH,∠BAN=45°,∠BHA=90°,∵AB=BM,∴∠BAM=∠BMA,∵∠HMG=∠MAH,∴∠BAM﹣∠MAH=∠BMA﹣∠HMG,即∠BAH=∠AMH=45°,∵HD⊥HM,∴△DHM为等腰直角三角形,∴DH=HM,∠DHM=90°,∵∠BHD=∠BHA+∠AHD,∠AHM=∠DHM+∠AHD,∴∠BHD=∠AHM,在△BHD与△AHM中,,∴△BHD≌△AHM(SAS),∴∠DBH=∠MAH,BD=AM,∴∠BHA=∠BDA=90°,∵BA=BM,∴D是AM的中点,∴AM=2DM=2HM,即AM=2HM;(3)∵H是BE的中点,M是BC的中点,∴MH是△BCE的中位线,∴MH∥CE,∴∠AMH=∠MAC,∵∠BAC=90°,∴AM=BM,∴∠MAB=∠ABM,∵点B与点N关于线段AM对称,∴∠ABM=∠ANM,AB=AN,∴AE=AN,∴∠AEN=∠ANE,在△AEN中,∠NAE+2∠ANE=180°①,∵∠ANE=∠ANM+∠MNE,∠ABM=∠ANM=∠MAB=90°﹣∠MAC,∴∠ANE=90°﹣∠MAC+∠MNE,∴∠ANE=90°﹣∠AMH+∠MNE②,将②代入①,得:∠NAE+2×(90°﹣∠AMH+∠MNE)=180°,∴∠NAE+180°﹣2∠AMH+2∠MNE=180°,∴∠NAE+2∠MNE=2∠AMH.15.解:(1)结论:CG⊥BD.理由:延长CF到点M,使得FM=CF,连接AM.∵F A=FE,∠AFM=∠EFC,FM=FC,∴△AMF≌△ECF(SAS),∴AM=CE=4,∠AMF=∠ECF,∴AM∥CE,∴∠MAC=∠DCB=90°,∵==,∴△MAC∽△DCB,∴∠DBC=∠ACM,∵∠ACM+∠GCB=90°,∴∠DBC+∠GCB=90°,∴∠CGB=90°,∴CG⊥BD.故答案为:CG⊥BD.(2)结论仍然成立.理由:延长CF到点M,使得FM=CF,连接AM.∵F A=FE,∠AFM=∠EFC,FM=FC,∴△AMF≌△ECF(SAS),∴AM=CE=4,∠AMF=∠ECF,∴AM∥CE,∴∠MAC+∠ACE=180°,∴∠MAC=180°﹣∠ACE,∵∠DCB=∠DCE+∠ACB﹣∠ACE=90°+90°﹣∠ACE=180°﹣∠ACE,∴∠MAC=∠DCB,∵==,∴△MAC∽△DCB,∴∠DBC=∠ACM,∵∠ACM+∠GCB=90°,∴∠DBC+∠GCB=90°,∴∠CGB=90°,∴CG⊥BD.(3)如图3中,当点E在线段BD上时,∵△AMC∽△CDB,∴==,在Rt△DCE中,CD=3,CE=4,∴DE===5,∵CG⊥DE,∴CG==,在Rt△CGB中,CB=6,CG=中,∴BG===,在Rt△DCG中,DG===,∴BD=BG+DG=,∴CM=BD=,∴CF=CM=如图4中,当点E在线段BD的延长线上时,同法可得CF=CM=.综上所述,满足条件的CF的值为或.16.(1)解:如图1中,过点F作FH⊥AE于H.在Rt△ABC中,∠ACB=90°,AB=2,∠C=30°,∴AC=2AB=4,BC=AB=2,∵AE=EC=AC=2,EG=GC,∴EG=CG=1,∵∠AFE=90°,∠AEF=30°,∴EF=AE•cos30°=,∴FH=EF=,HE=FH=,∴GH=HE+EG=,∴FG===.(2)证明:如图2中,取AC的中点M,连接BM,GM,BF.∵AM=MC,∠ABC=90°,∴BM=AM=CM,∵AC=2AB,∴AB=AM=BM,∴∠BAM=∠AMB=∠ABM=60°,∴∠BMC=120°,∵AE=2AF,∠EAF=60°,∴∠BAF=120°+∠EAC,∵AM=MC,EG=GC,∴GM=AE=AF,GM∥AE,∴∠CMG=∠EAC,∴∠BMG=120°+∠CMG=120°+∠EAC=∠BAF,∴△BAF≌△BMG(SAS),∴∠ABF=∠MBG,BF=BG,∴∠FBG=∠ABM=60°,∴△BFG是等边三角形,∴BG=FG,∴BG=EF+EG=AE+CG=AB+CG.(3)解:如图3中,取AC的中点M,连接BM,GM,BF.在MC上取一点D,使得MD=MG,连接DG,BD.同法可证:△BAF≌△BMG(SAS),∴∠ABF=∠MBG,BF=BG,∴∠FBG=∠ABM=60°,∴△BFG是等边三角形,∴BG=FG,∵AM=CM,EG=CG,∴MG=AE,∵AB=3,∠ABC=90°,∠ACB=30°,∴AC=2AB=6,AM=CM=3,∵AE=AC=3,MG=,∴MD=MG=,∵==,∠DMG=∠GMC,∴△MDG∽△MGC,∴==,∴DG=CG,∴GB﹣CG=GB﹣DG≤BD,∴当B,D,G共线时,BG﹣CG的值最大,最大值为BD的长,∴直线AB,AC,BG围成的三角形为△ABD,∵AD=AM+DM=3+=,∴S△ABD=××=,∴当GB﹣GC最大时,直线AB,AC,BG所围成三角形的面积为.17.(1)证明:如图1中,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∵∠DEF=∠ADC=90°,DE=EF,∴AD=EF,∵∠AOD=∠EOF,∴△AOD≌△FOE(AAS),∴OE=OD.(2)解:结论:AD﹣BF=CE.理由:如图2中,过点E作ET⊥BC交AB于T,过点T作TR⊥AC于R.则四边形ECRT 是矩形,△ART,△EBT都是等腰直角三角形,可得EC=RT,AT=RT=EC.∵∠TEB=∠DEF=90°,∴∠TED=∠BEF,∵ET=EB,ED=EF,∴△TED≌△BEF(SAS),∴DT=BF,∵AD﹣DT=AT,∴AD﹣BF=CE.(3)解:如图3中,取AB的中点R,连接GR,BF,过点E作EM⊥AB于M.设GR =x,EM=BM=y.由(2)可知,△TED≌△BEF(SAS),∴∠ETD=∠EBF=45°,∴∠ABC=45°,∴∠FBA=90°,∵AG=GF,AR=RB=2,∴GR∥BF,BF=2GR=2x,∴∠GRA=∠FBA=90°,∵GR⊥AB,∵AB=4,AD=3BD,∴AD=3,BD=,∴DR=AD﹣AR=3﹣2=,∵∠GRD=∠EMD=∠EDG=90°,∴∠GDR+∠DGR=90°,∠GDR+∠EDM=90°,∴∠DGR=∠EDM,∴△DRG∽△EMD,∴=,∴=①又∵AD﹣BF=CE,∴3﹣2x=(4﹣y)②,由①②可得y=(不合题意的解已经舍弃).∴EC=4﹣()=.18.解:(1)∵+|y﹣8|=0,又∵≥0,|y﹣8|≥0,∴x=2,y=8,∴A(2,8),∵AD⊥x轴,∴OD=2,AD=8,∵AD﹣OD=OE,∴OE=6,∴E(﹣6,0).(2)如图1中,连接OG.由题意G(10,m).∵AD=DE=8,∠ADE=90°,∴∠AED=45°,∴∠OEF=∠OFE=45°,∴OE=OF=6,∴F(0,6),∴S=S△ODG+S△OFG﹣S△OFD=×2×m+×6×10﹣×2×6=m+24(0≤m≤8).(3)如图2中,设FG交AD于J,P(2,t),当点P在DJ上,点Q在AB上时,当S=26时,m=2,∴G(10,2),∵F(0,6),∴直线FG的解析式为y=﹣x+6,∴J(2,),由题意,•(﹣t)×10=2××2t×6,解得t=,∴P(2,),当点P在AJ上,点Q在BG上时,同法可得,•(t﹣)×10=2××(14﹣2t)×8,解得t=,∴P(2,).综上所述,满足条件的点P的坐标为(2,)或(2,).19.解:(1)当x=0时,y=6,∴B(0,6),当y=0时,﹣x+6=0,∴x=6,∴A(6,0);(2)如图1,过点C作CM⊥x轴于M,Rt△ABO中,OA=6,OB=6,∴AB==12,∴∠ABO=30°,由翻折得:∠ABC=∠ABO=30°,∠AOB=∠ACB=90°,AC=OA=6,∴∠CAM=60°,∴∠ACM=90°﹣60°=30°,∴AM=AC=3,CM=3,∴C(9,3),∴k=9×3=27;(3)分两种情况:①如图2,当点B'在y轴的负半轴上时,。
2023年九年级数学中考专题:旋转综合压轴题(线段问题)1.在△ABC与△EDC中,∠ACB=∠ECD=60°,∠ABC=∠EDC,△EDC可以绕点C旋转,连接AE,BD(1)如图1①若BC=3DC,直接写出线段BD与线段AE的数量关系;②求直线BD与直线AE所夹锐角的度数;(2)如图2,BC=AC=3,当四边形ADCE是平行四边形时,直接写出线段DE的长2.有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,DE,M是BF的中点【观察猜想】(1)线段DE与AM之间的数量关系是,位置关系是;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,线段DE与AM之间的关系是否仍然成立?并说明理由.(3) 若正方形ABCD的边长为4,将其沿EF翻折,点D的对应点G恰好落在BC边上,直接写出DG+DH 的最小值3.复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC 内部任意一点,将AP绕点A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ,CP,则BQ=CP.”(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明;(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明;若不成立,请说明理由.4.如图所示,正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,连接EF,FG.(1)如图1,直接写出EF与FG的关系______;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.△;①求证:HFE≌PFG②直接写出EF、EH、BP三者之间的关系;5.在Rt ABC 中,∠BAC =90°,∠ABC =30°,AC =2,将ABC 绕点C 顺时针旋转α(0°<α≤360°)得到A B C ''△,其中点A ,B 的对应点分别为点A ',B '.(1)如图1,当B '落在CA 的延长线上时, ①连接BB ',求线段BB '的长.②求从初始状态到此位置时,线段AB 扫过的面积.(2)如图2,连接AA ',BB ',AA '所在直线与BB '所在直线交于点M ,AA '所在直线与B C '交于点N ,当0°<α≤180°时,是否存在α使得MB '=2MN ,若存在,请求出α;若不存在,请说明理由.(3)如图3,AA '所在直线与BB '所在直线交于点M ,K 为边AB 的中点,连接MK ,请直接写出在旋转过程中,MK 长度的取值范围.6.婆罗摩笈多(Brahmagupta )约公元598年生,约660年卒,在数学、天文学方面有所成就.婆罗摩笈多是印度印多尔北部乌贾因地方人,原籍可能为巴基斯坦的信德.婆罗摩笈多的一些数学成就在世界数学史上有较高的地位.例如下列模型就被称为“婆罗摩笈多模型”:如图1,2,3,△ABC 中,分别以AB ,AC 为边作Rt △ABE 和Rt △ACD ,AB =AE ,AC =AD ,∠BAE =∠CAD =90°,则有下列结论: ①图1中S △ABC =S △ADE ;②如图2中,若AM 是边BC 上的中线,则ED =2AM ; ③如图3中,若AM ⊥BC ,则MA 的延长线平分ED 于点N .(1)上述三个结论中请你选择一个感兴趣的结论进行证明,写出证明过程;(2)能力拓展:将上述图形中的某一个直角三角形旋转到如图4所示的位置:△ABC 与△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,连接BD ,CE ,若F 为BD 的中点,连接AF ,求证:2AF =CE .7.若△ABC,△ADE为等腰三角形,AC=BC,AD=DE,将△ADE绕点A旋转,连接BE,F为BE中点,连接CF,DF.(1)若∠ACB=∠ADE=90°,如图1,试探究DF与CF的关系并证明;(2)若∠ACB=60°,∠ADE=120°,如图2,请直接写出CF与DF的关系.8.问题背景:在解决“半角模型”问题时,旋转是一种常用方法.如图①,在四边形ABCD中,AB AD=,120∠=︒,90BAD∠=︒,连接EF,探究线段BE,EAFB ADC∠=∠=︒,点E,F分别是BC,CD上的点,且60EF,DF之间的数量关系.(1)探究发现:小明同学的方法是将ABE △绕点A 逆时针旋转120°至ADG △的位置,使得AB 与AD 重合,然后证明AGF AEF ≌△△,从而得出结论:____________; (2)拓展延伸:如图②,在正方形ABCD 中,E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,连接EF ,(1)中的结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由. (3)尝试应用:在(2)的条件下,若3BE =,2DF =,求正方形ABCD 的边长.9.在ABC 中,AB AC =,BAC α∠=,点P 是平面内不与点B ,C 重合的一动点,连接PC ,将线段PC 绕点P 顺时针旋转α得到线段PQ ,连接BQ ,CQ ,AP ,点M ,N 分别是线段CB ,CQ 的中点,连接MN .(1)【观察猜想】如图1,当点P 与点B 在直线CA 两侧,60α=︒时,MNPA的值是______,直线MN 与直线P A 所成的锐角的度数是______;(2)【类比探究】如图2,当点P 与点B 在直线CA 两侧,120α=︒时,求MNPA的值及直线MN 与直线P A 所成的锐角的度数;(3)【解决问题】当点P 在直线BC 上方,90α=︒,且点A ,P ,Q 在同一条直线上时,连接BP ,已知12BCP BCA S S =△△,请直接写出MNPA的值.10.在平面直角坐标系中,△AOB 为直角三角形,点O (0,0),点A (0,3),点B 在x 轴的正半轴上,∠OAB =30°,点P 为AB 的中点.(1)如图①,求点P 的坐标;(2)以点O 为中心,顺时针旋转△AOP ,得到△A 1OP 1,记旋转角为α(0180α︒<<︒),点A ,P 的对应点分别为A 1,P 1.①如图②,线段OA 1交线段AB 于点M ,线段OP 1交线段AB 于点N ,当△OMN 为等腰三角形时,求点A 1的坐标;②直线OA 1交直线AB 于点M ,直线OP 1交线段AB 于点N ,当△OMN 为等腰三角形时,求α的度数(直接写出结果即可).11.在等边ABC 中,点D 是BC 边上一点,点E 是直线AB 上一动点,连接DE ,将射线DE 绕点D 顺时针旋转120︒,与直线AC 相交于点F .(1)若点D 为BC 边中点.①如图1,当点E 在AB 边上,且DE AB ⊥时,请直接写出线段DE 与DF 的数量关系________; ②如图2,当点E 落在AB 边上,点F 落在AC 边的延长线上时,①中的结论是否仍然成立?请结合图2说明理由;(2)如图3,点D 为BC 边上靠近点C 的三等分点.当:3:2AE BE =时,直接写出CFAF的值.12.射线AB 与直线CD 交于点E ,∠AED =60°,点F 在直线CD 上运动,连接AF ,线段AF 绕点A 顺时针旋转60°得到AG ,连接FG ,EG ,过点G 作GH AB ⊥于点H .(1)如图1,点F 和点G 都在射线AB 的同侧时,EG 与GH 的数量关系是______;(2)如图2,点F 和点G 在射线AB 的两侧时,线段EF ,AE ,GH 之间有怎么样的数量关系?并证明你的结论;(3)若点F 和点G 都在射线AB 的同侧,1AE =,2EF =,请直接写出HG 的长.13.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连AF取AF的中点M,EF的中点N,连接MD、MN.(1)请判断MD与MN之间的数量关系,直接写出结论;(2)将图1中的直角三角板ECF绕点C顺时针旋转180°得到图2,其他条件不变,则(1)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.(3)连接DN,若AB=3,CE=2,将图1中的直角三角板ECF绕点C在平面内自由旋转,其他条件不变,请直接写出△DMN面积的最大值和最小值.14.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.15.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点P 是AB 边上一动点,作PD BC ⊥于点D ,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE ,PE .(1)求证:四边形PDCE 是矩形;(2)如图2所示,当点P 运动BA 的延长线上时,DE 与AC 交于点F ,其他条件不变,已知2BD CD =,求APAF的值;(3)点P 在AB 边上运动的过程中,线段AD 上存在一点Q ,使QA QB QC ++的值最小,当QA QB QC ++的值取得最小值时,若AQ 的长为2,求PD 的长.16.【问题提出】如图1,在ABC 中,每个内角都小于120°,在ABC 内有一点P ,请确定点P 的位置,使PA PB PC ++最小.(1)【问题解决】如图2,把CAP 绕点C 顺时针旋转60°得到CED △,连接PD 和AE ,当点B ,P ,D ,E四点共线时,PA PB PC ++的最小值即为线段BE 的长,此时APB ∠=________度;(2)【问题拓展】如图3,在Rt ABC 中,AB AC =,90BAC ∠=︒,点P 是ABC 内一点,若135APC ∠=︒,2PA =,1PC =,求PB 的长;(3)【实际应用】如图4,ABC 是A ,B ,C 三座城市位置的平面示意图,要在ABC 内规划建设一个物流基地(用点P 表示),连接P A ,PB ,PC ,并使PA PB PC ++最小;经测量:40km AC =,30km BC =,60ACB ∠=︒,求PA PB PC ++的最小值.17.已知正方形ABCD 和等腰直角三角形BEF ,BE =EF ,∠BEF =90°,按图1放置,使点F 在BC 上,取DF 的中点G ,连接EG ,CG .(1)探索EG ,CG 的数量关系和位置关系并证明;(2)将图(1)中BEF △绕点B 顺时针旋转45°,再连接DF ,取DF 中点G (见图2),(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中BEF △绕点B 顺时针转动任意角度(旋转角在0°到90°之间),再连接DF ,取DF 中点G (见图3),(1)中的结论是否仍然成立?证明你的结论.18.如图1,ACB △和DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE .(1)填空:①AEB ∠的度数为______;②线段AD ,BE 之间的数量关系为_______;(2)如图2,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A ,D ,E 在同一直线上,CM 为DCE 中DE 边上的高,连接BE ,请判断AEB ∠的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由;(3)如图3,在ABC 中,90ACB ∠=︒,5AC BC ==,平面上一动点P 到点B 的距离为3,将线段CP 绕点C 顺时针旋转90︒,得到线段CD ,连DA ,DB ,PB ,则BD 是否有最大值和最小值,若有直接写出,若没有说明理由?19.已知ABC 为等边三角形,边长为4,点D 、E 分别是BC 、AC 边上一点,连接AD 、BE .AE CD =.(1)如图1,若2AE =,求BE 的长度;(2)如图2,点F 为AD 延长线上一点,连接BF 、CF ,AD 、BE 相交于点G ,连接CG ,已知60,∠=︒=EBF CE CG ,求证:2+=BF GE CF ;(3)如图3,点P 是ABC 内部一动点,顺次连接PA PB PC 、、++的最小值.20.在Rt ABC 中,90ACB ∠=︒,60A ∠=︒,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转()60120αα︒<<︒得到线段ED ,且ED 交线段BC 于点G .CDE ∠的平分线DM 交BC 于点H .过点C 作CF DE ∥交DM 于点F ,连接EF 、BE .(1)如图1,若90α=︒,①判断线段BE 与DH 的数量关系,并说明理由;②求证:BE FH = (2)如图2,若2AC =,()tan 60m α-︒=,请直接写出BE FH 的值(用含m 的式子表示).参考答案:1.(1)①BD =3AE ,②直线BD 与AE 所夹锐角为60°(2)DE =2.(1)DE =2AM ,DE ⊥AM ;(2)成立,(3)3.(2)成立,4.(1)EF FG ⊥,EF FG =;(2)EH BP += 5.(1)①4;②2π;(2)存在,α=60°;(3)1≤MK ≤37.(1)DF =CF 且DF ⊥CF(2)DF ⊥CF且CF8.(1)EF=BE+DF(2)成立,(3)69.(1)12,60°;(2)MN PA MN 与直线P A 所成的锐角的度数30°;(3)MN PA =10.(1)P 32,)(2)①A 1的坐标为(22,);②α的度数为45°或90°或135°11.(1)①DE DF =;②仍然成立;(2)213或412.(1)HG =;(2))GH AE EF =-,13.(1)MD =MN(2)成立,(3)14.(1)①60°;②4;③150°;(2)当OA 、OB 、OC 满足OA 2+2OB 2=OC 2时,∠ODC =90°, 15.(2)35AP AF = (3)PD =16.(1)120°(2)3(3)17.(1)EG =CG 且EG ⊥CG ,(2)(1)中的结论仍然成立,(3)(1)中的结论仍然成立,18.(1)60︒,AD BE =(2)AEB 90∠=︒;2AE CM BE =+;(3)当45PBC ∠=︒时,BD 的最小值为3,当B 、D 、A 三点在同一条直线上时,BD 的最大值为319.(1)(3)20.(1)①BE DH =,(2)BE FH 的值为。
2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。
2023年九年级数学中考复习:旋转(面积问题)综合压轴题1.一节数学课上,老师提出一个这样的问题:如图,点P是正方形ABCD内一点,P A=1,PB=2,PC=3,你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将∠PBC绕点B逆时针旋转90°,得到∠P'BA,连接P P',求出∠APB的度数.思路二:将∠APB绕点B顺时针旋转90°,得到∠C P'B,连接P P',求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.2.如图,已知在∠ABC中,AB=AC,D、E是BC边上的点,将∠ABD绕点A旋转,得到∠AC D,连接D E.(1)当∠BAC=120°,∠DAE=60°时,求证:DE=D E;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,∠D EC是等腰直角三角形?(直接写出结论,不必证明)AC BD相交于点O,3.如图,平行四边形ABCD中,,1,5AB AC AB BC⊥==,BC AD于点E,F.将直线AC绕点O顺时针旋转,分别交,(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)证明:在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,当AC 绕点O 顺时针旋转多少度时,四边形BEDF 是菱形,请给出证明.4.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.5.将两块完全相同的且含60°角的直角三角板ABC 和AFE 按如图1所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)若AMC 是等腰三角形,则旋转角α的度数为______.(2)在旋转过程中,连接AP ,CE ,求证:AP 所在的直线是线段CE 的垂直平分线.(3)在旋转过程中,CPN是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.6.旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.如图∠,在四边形ABCD中,AD CDADC∠=︒,2∠=︒,60=,120ABCAB=,1BC=.【问题提出】(1)如图∠,在图∠的基础上连接BD,由于AD CD=,所以可将DCB绕点D顺时针方向旋转60°,得到DAB',则BDB'的形状是_______;【尝试解决】(2)在(1)的条件下,求四边形ABCD的面积;【类比应用】(3)如图∠,等边ABC的边长为2,BDC是顶角120∠=︒的等腰三角形,以D为顶BDC点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求AMN的周长.7.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.。
几何综合压轴问题专项练习答案(40题)(1)将CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将CDE 绕顶点C 逆时针旋转120︒(如图2),求MN 【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出,CM CN 解;(2)过点N 作NP MC ⊥,交MC 的延长线于点P ,根据旋转的性质求得进而可得1CP =,勾股定理解Rt ,Rt NCP MCP ,即可求解.【详解】(1)解:依题意,112CM DE ==,12CN AB =当M 在NC 的延长线上时,,M N 的距离最大,最大值为(2)解:如图所示,过点N 作NP MC ⊥,交MC 的延长线于点∵CDE 绕顶点C 逆时针旋转∴120BCE ∠=︒,∵45BCN ECM ∠=∠=︒,∴MCN BCM ECM ∠=∠-∠=∴60NCP ∠=︒,∴30CNP ∠=︒,∴112CP CN ==,在Rt CNP 中,2NP NC =-在Rt MNP △中,MP MC CP =+∴2234MN NP MP =+=+【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点【答案】(1)见解析(2)22BE =+△∵点G 是DE 的中点,∴GH 是FCD 的中位线,∴11122GH CD AD ===,设BE a =,则CH EH ==(1)如图1,求AB边上的高CH的长.''.(2)P是边AB上的一动点,点,C D同时绕点P按逆时针方向旋转90︒得点,C D①如图2,当点C'落在射线CA上时,求BP的长.△是直角三角形时,求BP的长.②当AC D''∴90C PQ PC Q '∠+∠='︒∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,设C D ''与射线BA 的交点为作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,【答案】(1)①见解析;②AD DF BD =+,理由见解析;【分析】(1)①证明:ABE CBD ∠=∠,再证明ABE ≅△可得DF DC =.证明AE DF =,从而可得结论;(2)如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒,证明2DE BD =,证明2AB BC =,ABE CBD ∠=∠,可得②AD DF BD=+.理由如下:∵DF和DC关于AD对称,=.∴DF DC=,∵AE CD∴AE DF=.∴AD AE DE DF BD=+=+∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴2DE BD =.∵AB AC AF ==,∴()11222HF BF BD DF ==-=,222262210BC BD CD =+=+=∴2221022AF AC BC ===⨯=25HF (2)知识应用:如图2Y是菱形;①求证:ABCD②延长BC至点E,连接OE交【答案】(1)见解析5∴1BG BO GC OD==,∴115222CG BC AD ===,∴552OF GC .处从由60PC P C PCP ''=∠=︒,,可知PCP '△为①三角形,故PP PC '=,又P A PA ''=,故PA PB PC PA PB PP A B '''++=++≥,由②可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,如图2,最小值为(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知4km 23km AC BC ==,,建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄A ,B ,C 元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为___________用含的式子表示)∵ACP A CP ''∠=∠,∴ACP BCP A CP BCP ∠+∠=∠+∠''又∵60PCP '∠=︒过点A '作A H BC '⊥,垂足为H ,∵60ACB ∠=︒,90ACA '∠=︒,∴30A CH '∠=︒,1猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点∵1122 CHGS CH HG=⋅=∴154302CG HE⋅=⨯=,①求证:PD PB =;②将线段DP 绕点P 逆时针旋转,化时,DPQ ∠的大小是否发生变化?请说明理由;③探究AQ 与OP 的数量关系,并说明理由.【答案】(1)①见解析;②不变化,(2)AQ CP =,理由见解析【分析】(1)①根据正方形的性质证明②作,PM AB PN AD ⊥⊥,垂足分别为点∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,∴四边形AMPN 是矩形,∴90MPN ∠=︒,∵四边形ABCD 是正方形,∴45BAC ∠=︒,90AOB ∠=∴45AEP ∠=︒,四边形OPEF=作PM AB⊥于点M,则QM MB=,∴QA BE=.∴AQ CP(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF 满足0360α︒<<︒,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.【答案】初步尝试:(1)1MN AC =;MN AC ∥;(2)特例研讨:(1)30BCF ∠=︒;(2)CD∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒∵将BMN 绕点B 顺时针旋转α∴,BE BM BF BN ==;BEF ∠=∵点,,A E F 在同一直线上时,2∵,ADN BDE ANB BED ∠=∠∠=∠∴ADN BDE ∽,∴2222DN AN DE BE ===,设DE x =,则2DN x =,在Rt ABE △中,2,2BE AE ==在Rt ADN △中,22AD DN AN =+∵AB AC =,∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,∵MN 是ABC 的中位线,∴MN AC∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN ≌,MBE NBF α∠=∠=,∴EBF EFB θ∠=∠=∴1802BEF θ∠=︒-,∵点,,C E F 在同一直线上,∴2BEC θ∠=∴180BEC BAC ∠+∠=︒,∴,,,A B E C 在同一个圆上,∴EAC EBC αθ∠=∠=-∴()()1802BAE BAC EAC θαθ∠=∠-∠=︒---180αθ=︒--∵ABF αθ∠=+,∴180BAE ABF ∠∠=+︒;如图所示,当F 在EC 上时,∵,BEF BAC BC BC∠=∠=∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,∵BFE EBF θ∠=∠=,EFB FBC FCB∠=∠+∠∴ECB FCB EFB FBC θβ∠=∠=∠-∠=-,∵ EBEB =∴EAB ECB θβ∠=∠=-∴BAE ∠ABF=∠综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.10.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形,90,,ACB DCE CB mCA CE mCD ∠=∠=︒==,连接AD ,BE ,探究AD ,BE 的位置关系.(1)如图1,当1m =时,直接写出AD ,BE 的位置关系:____________;(2)如图2,当1m ≠时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当3,47,4m AB DE ===时,将CDE 绕点C 旋转,使,,A D E 三点恰好在同一直线上,求(2)解:成立;理由如下:∵90DCE ACB ∠=∠=︒,∴DCA ACE ACE ∠+∠=∠+(3)解:当点E 在线段AD设AD y =,则AE AD DE =+根据解析(2)可知,DCA △∴3BE BC m AD AC===,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;∵PM 平分A MA '∠∴90PMA ∠=︒∴PM AB∥∴DNM DBA V V ∽∴DN DM MN DB DA BA ==∵8,6,90AB DA A ==∠=︒,∴2226BD AB AD =+=+∴2103sin 3BQ BP DBA ===∠,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B '处,若24,6BC CE AB ⋅==,求BE 的值;(3)如图③,在ABC 中,45,BAC AD BC ∠=︒⊥,垂足为点,10,D AD AE ==于点F ,连接DF ,且满足2DFE DAC ∠=∠,直接写出53BD EF +的值.∵EF BC ∥,∴2CDF DFE ∠=∠=∴CDH FDH ∠=∠,又∵DH DH =,CHD ∠∴(ASA CHD FHD ≌【点睛】本题考查矩形的性质、翻折性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质、锐角三角函数等知识,综合性强,较难,属于中考压轴题,熟练掌握相关知识的联系与运用,添加辅助线求解是解答的关键.13.(2023·湖南郴州·=,连接点E,使CE AD(1)如图1,当点D在线段AB上时,猜测线段CF与BD的数量关系并说明理由;(2)如图2,当点D在线段AB的延长线上时,①线段CF与BD的数量关系是否仍然成立?请说明理由;②如图3,连接AE.设4AB=,若AEB DEB∠=∠,求四边形BDFC的面积.【答案】(1)1CF BD=,理由见解析∴60,ADG ABC AGD ∠=∠=︒∠=∠∴ADG △为等边三角形,∴AD AG DG ==,∵AD CE =,AD AB AG AC -=-∴DG CE =,BD CG =,于点由①知:ADG △为等边三角形,∵ABC 为等边三角形,∴4,AB AC BC BH CH =====∴2223AH AB BH =-=,(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当90FEC ∠=︒时,求证:AEF DCE ∽△△;②如图2,当2tan 3FCE ∠=时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当1,sin 3GE DE FCE =∠=时,求证:,可得结论;正方形ABCD 中,①ADC BAD ∠=∠ ∴AEF CED ∠+∠=AEF ECD ∴∠=∠,延长DA ,CF 交于点G ,作GH CE ⊥,垂足为H ,90EDC EHG ∠=∠=︒ 且∠问题探究:(1)先将问题特殊化,如图(2),当90α=︒时,直接写出GCF ∠的大小;(2)再探究一般情形,如图(1),求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120α=︒时,若12DG CG =,求BE CE 的值.故答案为:45︒.(2)解:在AB上截取ANABC BAE AEB∠+∠+∠=∠=∠,ABC AEF22⎝⎭(3)解:过点A作CD的垂线交CD的延长线于点【点睛】此题考查菱形性质、三角形全等、三角形相似,解题的关键是熟悉菱形性质、三角形全等、三角形相似.16.(2023·山西·统考中考真题)问题情境:“综合与实践沿对角线剪开,得到两个全等的三角形纸片,表示为∠=∠=︒∠=∠.将ABCACB DEF A D90,和DFE△(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE绕点B逆时针方向旋转,使点问题.∠①“善思小组”提出问题:如图3,当ABE②“智慧小组”提出问题:如图AH的长.请你思考此问题,直接写出结果.【答案】(1)正方形,见解析(2)①AM BE=,见解析;【分析】(1)先证明四边形形;∠(2)①由已知ABE【点睛】本题考查了旋转的性质、全等三角形的判定与性质、正方形的判定与性质、相似三角形的判定与性质、三角函数、勾股定理等知识点,适当添加的辅助线、构造相似三角形是解题的关键.17.(2023·湖北十堰·统考中考真题)过正方形E ,连接AE ,直线AE 交直线(1)如图1,若25CDP ∠=︒,则DAF ∠=___________(2)如图1,请探究线段CD ,EF ,AF 之间的数量关系,并证明你的结论;(3)在DP 绕点D 转动的过程中,设AF a =,EF 【答案】(1)20︒。
2023年内蒙古九年级数学中考模拟题分项选编:旋转一、单选题1.(2023·内蒙古呼伦贝尔·统考二模)如图,若点是等边的边上任意一点,将绕点顺时针旋转得到,且点在边上,连接,则下列结论一定正确的是()A.B.C.D.2.(2023·内蒙古呼和浩特·统考一模)如图,在中,,.将绕点按顺时针方向旋转至的位置时,点恰好落在边的中点处,则的长为( )A.1B.C.2D.3.(2023·内蒙古包头·二模)如图,在中,,在同一平面内,将绕点A旋转到的位置,使得,则()A.B.C.D.4.(2023·内蒙古呼和浩特·模拟预测)如图,将绕点按照顺时针方向旋转得到,交于点若,则()A.B.C.D.5.(2023·内蒙古包头·模拟预测)如图,点是等边三角形内一点,,,,则与的面积之和为()A.B.C.D.6.(2023·内蒙古包头·模拟预测)如图,中,,,,平行于轴,以点为旋转中心,将逆时针旋转,得到,则点的坐标为()A.B.C.D.7.(2023·内蒙古呼伦贝尔·统考三模)如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.80°C.84°D.86°8.(2023·内蒙古呼伦贝尔·模拟预测)如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移39.(2023·内蒙古呼伦贝尔·统考二模)我国古代典籍《周易》中的“八卦”思想对我国建筑有一定的影响.如图是受“八卦”的启示,创作的正八边形窗户平面图,则对该图的对称性表述正确的是()A.只是轴对称图形B.只是中心对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,又不是中心对称图形10.(2023·内蒙古呼和浩特·统考一模)下列图标中是中心对称图形的是( )A.B.C.D.11.(2023·内蒙古包头·一模)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.12.(2023·内蒙古包头·模拟预测)下列四个交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(2023·内蒙古呼和浩特·模拟预测)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.14.(2023·内蒙古通辽·统考一模)以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.15.(2023·内蒙古鄂尔多斯·三模)如图,在中,顶点,,,将与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转,则第70次旋转结束时,点D的坐标为( )A.B.C.)D.16.(2023·内蒙古呼和浩特·模拟预测)下列四张扑克牌图案,属于中心对称图形的是()A.B.C.D.二、填空题17.(2023·内蒙古包头·二模)已知:如图,在中,,cm,cm.将绕顶点O,按顺时针方向旋转到处,此时线段与的交点D恰好为的中点,则线段=_____cm.三、解答题18.(2023·内蒙古赤峰·统考三模)问题情境:如图①,点为正方形内一点,,将绕点按顺时针方向旋转,得到点的对应点为点,延长交于点,连接.猜想证明:(1)试判断四边形的形状,并说明理由;(2)如图②,若,请猜想线段与的数量关系并加以证明;解决问题:(3)如图①,若,,请直接写出的长.19.(2023·内蒙古包头·二模)如图1,在中,,点D,E分别在边上,,连接,点F,P,G分别为的中点.(1)如图1中,线段与的数量关系是____________,位置关系是____________;(2)若把绕点C逆时针方向旋转到图2的位置,连接,判断的形状,并说明理由;(3)若把绕点C在平面内自由旋转,,请直接写出面积的最大值为____________.20.(2023·内蒙古包头·模拟预测)如图1,和均为等边三角形,点,,在同一直线上,连接.(1)填空:①的度数为______;②线段,之间的数量关系为_______;(2)如图2,和均为等腰直角三角形,,点,,在同一直线上,为中边上的高,连接,请判断的度数及线段,,之间的数量关系,并说明理由;(3)如图3,在中,,,平面上一动点到点的距离为3,将线段绕点顺时针旋转,得到线段,连,,,则是否有最大值和最小值,若有直接写出,若没有说明理由?参考答案:1.C【分析】根据等腰三角形的性质,旋转的性质,平行线的判定即可求解.【详解】解:是等边三角形,∴,将绕点顺时针旋转得到,根据旋转的性质,∴,,∴,∴是等边三角形,选项,∵的大小,即旋转角度不确定,∴不确定,故选项不正确;选项,,∵,∴的大小不确定,故选项不正确;选项,∵是等边三角形,∴,故选项正确;选项,∵,即旋转角度不确定,∴不确定,故选项不正确.故选:.【点睛】本题主要考查等边三角形的变换,掌握等边三角形的性质,旋转的性质,平行的判定等知识是解题的关键.2.B【分析】根据题意,判断出斜边的长度,根据勾股定理算出的长度,且,所以为等边三角形,可得旋转角为,同理,,故也是等边三角形,的长度即为的长度.【详解】解:∵在中,,,将其进行顺时针旋转,落在的中点处,∴是由旋转得到,∴,∵,点恰好落在边的中点处,∴,根据勾股定理:,又∵,且,∴为等边三角形,∴旋转角,∴,且,∴也是等边三角形,∴,故选:B.【点睛】本题主要考查了旋转性质的应用以及勾股定理的计算,解题的关键在于通过题中所给的条件,判断出图形旋转的度数,知道图形旋转的角度后,有关线段的长度也可求得.3.A【分析】根据,,可得,再有旋转图形的性质,可得,,在中,由三角形内角和定理可得,,最后运用旋转图形的性质求得的值.【详解】解:∵,,∴,∵绕点A旋转到,∴,∴.在中,,∵绕点A旋转到,∴.故选:A.【点睛】本题主要考查了旋转图形的性质,熟练掌握旋转图形的性质是解题的关键.4.C【分析】由旋转的性质得出,,再根据三角形内角和定理即可求解.【详解】解:将绕点按照顺时针方向旋转得到,,,,,故选:.【点睛】本题考查了旋转的性质,明确旋转前后对应边,对应角相等是解题的关键.5.C【分析】将绕点B顺时针旋转得,连接,得到是等边三角形,再利用勾股定理的逆定理可得,从而求解.【详解】解:将绕点顺时针旋转得,连接,,,,是等边三角形,,∵,,,,与的面积之和为.故选:C.【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将与的面积之和转化为,是解题的关键.6.D【分析】过点向作垂线,垂足为点,利用勾股定理可得,,结合点在第二象限,可得点的坐标为.【详解】解:过点向作垂线,垂足为点,如图,∵,,∴∵轴,∴,∴,将逆时针旋转,得到,∴,∴,∴点在y轴上,由旋转的性质得,∴,∴∵,∴,∴由勾股定理得,∵点在第二象限,∴点的坐标为故选:D.【点睛】本题主要考查了坐标与图形,勾股定理,30°角所对的直角边等于斜边的一半,确定点的坐标等知识,正确识别图形是解答本题的关键.7.B【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B =∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【详解】由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故选B.【点睛】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.8.A【详解】根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.【点睛】本题考查坐标与图形变化-旋转,坐标与图形变化-平移.掌握旋转和平移的性质是解题关键.9.C【分析】直接利用中心对称和轴对称图形的定义得到答案.【详解】创作的正八边形窗户平面图,是轴对称图形,也只中心对称图形,故选C.【点睛】本题考查中心对称和轴对称图形的定义,正确把握定义是解题的关键.10.B【分析】根据中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【详解】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:B.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.D【分析】中心对称图形的定义:把一个图形绕某一点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既不是轴对称图形也不是中心对称图形,故此选项符合题意;D.是轴对称图形,也是中心对称图形,故此选项不合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.12.B【分析】根据轴对称图形和中心对称图形的概念即可判断.【详解】A.该图形既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.【点睛】本题考查轴对称图形和中心对称图形的概念,解题的关键是掌握相关概念.13.D【分析】根据中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.【详解】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.14.A【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.15.D【分析】先求出,再利用正方形的性质确定,由于,所以第70次旋转结束时,相当于与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【详解】解:,,,四边形ABCD为正方形,,,,每4次一个循环,第70次旋转结束时,相当于与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转,点D的坐标为.故选D.【点睛】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:,,,,.16.B【分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B17.1.5【分析】先在直角中利用勾股定理求出cm,再利用直角三角形斜边上的中线等于斜边的一半得出cm.然后根据旋转的性质得到cm,那么cm.【详解】∵在中,,,.∴,∵点D为的中点,∴cm.∵将绕顶点O,按顺时针方向旋转到处,∴cm,∴cm.故答案为1.5.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.18.(1)四边形是正方形,证明见解析(2),证明见解析(3)【分析】(1)由旋转的性质可得,,,由正方形的判定可证四边形是正方形(2)过点D作于H,由等腰三角形的性质可得,,由“”可得,可得,由旋转的性质可得,可得结论;(3)作于,根据勾股定理求出,可得,由(2)可得,进而求出,根据勾股定理计算的长.【详解】(1)解:四边形是正方形,理由如下:∵将绕点B按顺时针方向旋转,∴,,,又∵,∴四边形是矩形,又∵,∴四边形是正方形;(2),证明如下:如图②所示,过点D作,垂足为H,则,∴,∵,,∴,∵四边形是正方形,∴,,∴,∴,在和中,,∴,∴,由(1)知四边形是正方形,∴,∴,由旋转的性质可得:,∴,∴,(3)解:如图①所示,作于,∵四边形是正方形∴,在中,∵,,∴,∴,∴,由(2)可知:,∴,∴.【点睛】本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,全等三角形的判定和性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.19.(1)(2)是等腰直角三角形理由见解析(3)【分析】(1)根据三角形中位线定理得到,,再由,即可推出.(2)先证明,得到,由三角形中位线定理得到,,,则可证明,再证明,即可得到是等腰直角三角形;(3)由(2)知,是等腰直角三角形,则最大时,面积最大,进而得到当最大时,面积最大,再由得到,由此即可得到答案.【详解】(1)解:如图1,在中,,.点F,P分别为的中点.是的中位线,.同理,..故答案是:;(2)解:是等腰直角三角形,理由如下:由旋转的性质知,,,,,利用三角形的中位线得,,,,,是等腰三角形,∵,,,,,,,,,是等腰直角三角形;(3)解:由(2)知,是等腰直角三角形,∴最大时,面积最大,∴当最大时,面积最大,又∵∴..【点睛】本题主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判定和质,属于几何变换综合题,熟练掌握这些性质和判定是解此题的关键.20.(1),(2);;理由见解析(3)当时,的最小值为,当、、三点在同一条直线上时,的最大值为【分析】(1)由和均为等边三角形证得,进而得到答案.(2)由和均为等腰直角三角形证得,进而得到的度数及线段,,之间的数量关系.(3)动点是以点为圆心,3为半径的圆,当、、三点在同一条直线上时,有最小值和最大值.【详解】(1)解:∵和均为等边三角形,∴,,,∴,在和中,,∴,∴,又,∴;②由①知,,∴;故答案为:,(2)解:∵和均为等腰直角三角形,,∴,,,即,在和中,,∴,∴,,∴;结论:,在等腰直角三角形中,为斜边上的高,∴,∴.∴,∴(3)解:如图3,∵点到点的距离是3,∴点是以点为圆心,3为半径的圆,当、、三点在同一条直线上时,有最小值,∵,,∴,在与中,,∴,∴,,在中,,∴,∴,此时时,的最小值为,同理可得:如图4,当、、三点在同一条直线上时,的最大值为:.【点睛】本题考查全等形证明,等边三角形、等腰直角三角形的性质,旋转综合;熟练掌握相关知识是解题的关键.。
2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)1.(1)阅读理解:如图1,在ABC 中,若3AB =,5AC =.求BC 边上的中线AD 的取值范围,小聪同学是这样思考的:延长AD 至E ,使DE AD =,连接BE .利用全等将边AC 转化到BE ,在BAE 中利用三角形三边关系即可求出中线AD 的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是___________,中线AD 的取值范围是___________;(2)问题解决:如图2,在ABC 中,点D 是BC 的中点,DM DN ⊥.DM 交AB 于点M ,DN 交AC 于点N .求证:BM CN MN +>;(3)问题拓展:如图3,在ABC 中,点D 是BC 的中点,分别以AB AC ,为直角边向ABC 外作Rt ABM 和Rt ACN △,其中90BAM NAC ∠=∠=︒,AB AM =,AC AN =,连接MN ,请你探索AD 与MN 的数量与位置关系,并直接写出AD 与MN 的关系.2.(1)如图1,在ABC 中,AB =4,AC =6,AD 是BC 边上的中线,延长AD 到点E 使DE =AD ,连接CE ,把AB ,AC ,2AD 集中在ACE 中,利用三角形三边关系可得AD 的取值范围是 ;(2)如图2,在ABC 中,AD 是BC 边上的中线,点E ,F 分别在AB ,AC 上,且DE ⊥DF ,求证:BE +CF >EF ;(3)如图3,在四边形ABCD 中,∠A 为钝角,∠C 为锐角,∠B +∠ADC =180°,DA =DC ,点E ,F 分别在BC ,AB 上,且∠EDF =12∠ADC ,连接EF ,试探索线段AF ,EF ,CE 之间的数量关系,并加以证明.3.(1)阅读理解:如图①,在ABC 中,若85AB AC =,=,求BC 边上的中线AD 的取值范围.可以用如下方法:将ACD △绕着点D 逆时针旋转180得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠︒=,CB CD =,100BCD ∠︒=,以C 为顶点作一个50︒的角,角的两边分别交AB AD 、于E 、F 两点,连接EF ,探索线段BE DF EF ,,之间的数量关系,并说明理由.4.如图,在锐角ABC ∆中,60A ∠=︒,点D ,E 分别是边,AB AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且,BD CE BCD CBE =∠=∠,求CFE ∠的度数;(2)如图2,若=AB AC ,且=BD AE ,在平面内将线段AC 绕点C 顺时针方向旋转60°得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段,,BF CF CN 之间存在的数量关系,并证明你的猜想.5.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC 的边BC 到D ,使DC =BC ,过D 作DE ∥AB 交AC 延长线于点E ,求证:△ABC ≌△EDC .【理解与应用】如图2,已知在△ABC 中,点E 在边BC 上且∠CAE =∠B ,点E 是CD 的中点,若AD 平分∠BAE .(1)求证:AC =BD ;(2)若BD =3,AD =5,AE =x ,求x 的取值范围.6.如图1,在△ABC 中,若AB =10,BC =8,求AC 边上的中线BD 的取值范围.(1)小聪同学是这样思考的:延长BD 至E ,使DE =BD ,连接CE ,可证得△CED ≌△ABD .①请证明△CED ≌△ABD ;②中线BD 的取值范围是 .(2)问题拓展:如图2,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中,AB =BM ,BC =BN ,∠ABM =∠NBC =∠90°,连接MN .请写出BD 与MN 的数量关系,并说明理由.7.已知ABC 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD ∠=∠,求证:AE EC =.(3)如图3,点D 在ABC 内部,且满足AD BC =,BAD DCB ∠=∠,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.8.在△ABM 中,AM ⊥BM ,垂足为M ,AM =BM ,点D 是线段AM 上一动点.(1)如图1,点C 是BM 延长线上一点,MD =MC ,连接AC ,若BD =17,求AC 的长;(2)如图2,在(1)的条件下,点E 是△ABM 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .(3)如图3,当E 在BD 的延长上,且AE ⊥BE ,AE =EG 时,请你直接写出∠1、∠2、∠3之间的数量关系.(不用证明)9.已知:等腰Rt ABC 和等腰Rt ADE △中,AB AC =,AE AD =,90BAC EAD ∠=∠=︒.(1)如图1,延长DE 交BC 于点F ,若68BAE ∠=︒,则DFC ∠的度数为;(2)如图2,连接EC 、BD ,延长EA 交BD 于点M ,若90AEC ∠=︒,求证:点M 为BD 中点; (3)如图3,连接EC 、BD ,点G 是CE 的中点,连接AG ,交BD 于点H ,9AG =,5HG =,直接写出AEC △的面积.10.(1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围,小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE.利用全等将边AB转化到CE,在△BCE中利用三角形三边关系即可求出中线BD的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是;中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=∠NBC=90°,连接MN,探索BD与MN的关系,并说明理由.11.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.12.如图,点P是∠MON内部一点,过点P分别作P A∥ON交OM于点A,PB∥OM交ON于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD 交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO =∠CEB,求△CDH的面积(用含a,b的代数式表示).13.(1)基础应用:如图1,在△ABC中,AB=5,AC=7,AD是BC边上的中线,延长AD到点E使DE =AD,连接CE,把AB,AC,2AD利用旋转全等的方式集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)推广应用:应用旋转全等的方式解决问题如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;∠BAD,试问线段(3)综合应用:如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°且∠EAF=12EF、BE、FD具有怎样的数量关系,并证明.14.(1)阅读理解:如图1,在△ABC中,若AB=5,AC=8,求BC边上的中线AD的取值范围.小聪同学是这样思考的:延长AD至E,使DE=AD,连接BE.利用全等将边AC转化到BE,在△BAE中利用三角形三边关系即可求出中线AD的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是_________,中线AD的取值范围是_________;(2)问题解决:如图2,在△ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM⊥DN.求证:BM+CN>MN;(3)问题拓展:如图3,在△ABC中,点D是BC的中点,分别以AB,AC为直角边向△ABC外作Rt△ABM 和Rt△ACN,其中∠BAM=∠NAC=90°,AB=AM,AC=AN,连接MN,探索AD与MN的关系,并说明理由.15.如图,在等边△ABC 中,点D ,E 分别是AC ,AB 上的动点,且AE =CD ,BD 交CE 于点P .(1)如图1,求证:∠BPC =120°;(2)点M 是边BC 的中点,连接P A ,PM ,延长BP 到点F ,使PF =PC ,连接CF ,①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 .②如图3,若点A ,P ,M 三点不共线,问①中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.16.(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围. 解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE 中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.17.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.18.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC △≌EDB △的理由是______.(2)求得AD 的取值范围是______.【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】⊥,求证:(3)如图2,在ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM DNBM CN MN+>.。
2023年九年级数学中考专题:旋转综合压轴题1.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN ______填(“是”或“不是”)“等垂线段”.(2)ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由. (3)拓展延伸把ADE 绕点A 在平面内自由旋转,若2DE =,4BC =,请直接写出PM 与PN 的积的最大值.2.如图乙,ABC 和ADE 是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,点P 为射线BD ,CE 的交点.(1)如图甲,将ADE 绕点A 旋转,当C 、D 、E 在同一条直线上时,连接BD 、BE ,求证:BD CE =;(2)若6AB =,3AD =,把ADE 绕点A 旋转: ①当90CAE ∠=︒时,求PB 的长;①若M 为线段BC 中点,直接写出旋转过程中线段DM 长的最大值.3.综合与实践九年级(1)班同学在数学老师的指导下,以“三角形的旋转”为主题,开展数学活动. 操作探究:(1)如图1,ABC 为等边三角形,将ABC 绕点A 旋转180︒,得到ADE ,连接BE ,则CBE =∠______︒.若F 是BE 的中点,连接AF ,则AF 与DE 的数量关系是______. 迁移探究:(2)如图2,(1)中的其他条件不变,当ABC 绕点A 逆时针旋转30︒,得到ADE ,求出此时EBC ∠的度数及AF 与DE 的数量关系. 拓展应用:(3)如图3,在Rt ABC △中,2AB AC ==,90BAC ∠=︒,将ABC 绕点A 旋转,得到ADE ,连接BE ,F 是BE 的中点,连接AF .当15EBC ∠=︒时,求AF 的长.4.在等腰ADC △和等腰BEC 中,90ADC BEC ∠=∠=︒,<BC CD .将BEC 绕点C 逆时针旋转,连接AB .点O 为线段AB 的中点,连接DO ,EO(1)如图1,当点B 旋转到CD 边上时,线段DO 与EO 的数量和位置关系是 . (2)如图2,当点B 旋转到AC 边上时,(1)中的结论是否成立?若成立,写出证明过程,若不成立,请说明理由(3)若2BC =,CD =BEC 绕点C 逆时针旋转的过程中,当60ACB ∠=︒时,求线段OD 的长5.如图,ABC 和DCE △都是等腰直角三角形,90ACB DCE ∠=∠=︒.(1)猜想:如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是_______,位置关系是______________;(2)探究:把DCE △绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)拓展:把DCE △绕点C 在平面内自由旋转,若3AC =,2CE =,当A ,E ,D 三点在同一直线上时,则AE 的长是_______________.6.如图 1,在Rt ABC 中,90ACB ∠=︒,60ABC ∠=︒,2BC =,点1A 、1B 分别为边AC 、BC 的中点,连接11A B ,将11A B C 绕点 C 逆时针旋转 α(0360α︒≤≤︒).(1)如图1,当0α=︒时,易知 1AA 和 1BB 的位置关系为11AA BB ⊥;线段 1AA 和 1BB 的数量关系为 ;(2)将11A B C 绕点 C 逆时针旋转至图 2 所示位置时,(1)中1AA 和1BB 的关系是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)当11A B C 绕点 C 逆时针旋转过程中. ①1ABA △面积的最大值为 ;①当11A B A 、、三点共线时,线段1AA 的长为 .7.在锐角ABC 中,4AB =,5BC =,45ACB ∠=︒,将ABC 绕点B 按逆时针方向旋转,得到11A BC .(1)如图1,当点1C 在线段CA 的延长线上时,11CC A ∠的度数为________︒; (2)如图2,连接1AA ,1CC .若1ABA △的面积为4,求1CBC △的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是1P ,直接写出线段1EP 长度的最大值与最小值.8.在等腰Rt ABC 中,AB AC =,90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC 斜边BC 上两动点,且45DAE ∠=°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF . ①求证:BE CF =;①试判断BE 、DE 、CD 三条线段之间的关系,并说明理由.(2)如图2,点D 是等腰Rt ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点顺时针作等腰Rt ADE △,当3BD =,9BC =时,直接写出DE 的长.9.(1)如图1,在正方形ACDE 中,点F ,G 分别在边AE ,AC 上,若45FDG ∠=︒,则FG ,EF ,CG 之间的数量关系为: ;(提示:以点D 为旋转中心,将DCG ∆顺时针旋转90)︒解决问题:(2)如图2,若把(1)中的正方形改为等腰直角三角形,90ADC ∠=︒,E ,F 是底边AC 上任意两点,且满足45EDF ∠=︒,试探究AE ,EF ,FC 之间的关系; 拓展应用:(3)如图3,若把(1)中的正方形改为菱形ACDE ,60E ∠=︒,菱形的边长为8,G ,F 分别为边AC ,AE 上任意两点,且满足60FDG ∠=︒,请直接写出四边形DFAG 的面积.10.如图1,正方形ABCD 对角线AC 、BD 交于点O ,E 、F 分别为正方形ABCD 边AB 、AD 上的点,EF AC ⊥交于点M ,且ME MF =,N 为BF 中点.(1)请直接写出ON 与OM 的数量关系(2)若将AEF △绕点A 旋转到图2所示位置时,(1)中的结论是否成立,若成立请证明;若不成立,请说明理由;(3)若8AB =,E 为AB 中点,AEF △绕点A 旋转过程中,直接写出点M 与点C 的最大距离______.11.在ABC 中,AB AC =,30ABC ∠=︒,点D 是边AB 上的一动点,点F 是边CD 上的动点,连接AF 并延长至点E ,交BC 于G ,连接BE ,60AFC ∠=︒,且180E BDF ∠+∠=︒,(1)如图1,若BC =2BE =,求AE 的长;(2)如图2,若D 是AB 的中点,连接DE 、BF ,求证:DF EF +=;(3)如图3,在(2)问的条件下,将BDE △绕点B 顺时针旋转,旋转中的三角形记为11D BE △,取11D E 的中点为M ,连接CM .当CM 取最大时,将ADF △沿直线CM 翻折,得到111A D F △,直接写出212A M EM 的值.12.把两个等腰直角三角形ABC 和ADE 按图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为(0360)αα︒<<︒.(1)如图1,BD 与EC 的数量关系是______,BD 与BC 的位置关系是______;(2)如图2,()1中BD 与EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立,请说明理由;(3)如图3,当点D 在线段BE 上时,求证:BE CE ⊥; (4)当旋转角α=______(填度数)时,ABD △的面积最大.13.【提出问题】在一次数学探究活动中,李老师给出了一道题.如图①,点P 是等边ABC 内的一点,连接PA 、PB 、PC .当3PA =,4PB =,5PC =时,求APB ∠的度数. 【解决问题】小明在解决此题时,将点P 绕点B 逆时针方向旋转60︒得到点D ,连接DA 、DP 、DB ,并结合已知条件证得ABD CBP △≌△.请利用小明的作法及结论求APB ∠的度数.【方法应用】如图①,点P 是正方形ABCD 内一点,连接PA 、PB 、PC .若PA =,2PB a =,PC =,则APB ∠=______________°.14.如图①,将一个直角三角形纸片ABC 放置在平面直角坐标系中,点()2,0A -,点()6,0B ,点C 在第一象限,90ACB ∠=︒,30CAB ∠=︒.(1)求点C 的坐标;(2)以点B 为中心,顺时针旋转三角形ABC ,得到三角形BDE ,点A ,C 的对应点分别为D ,E .如图①,当DE AB ∥时,BD 与y 轴交于点F ,求点F 的坐标;(3)以点B 为中心,顺时针旋转三角形ABC ,得到三角形BD E '',点A ,C 的对应点分别为D ,E '.在(2)的条件下,点F 不变,记P 为线段FD '的中点,Q 为线段D E ''的中点,求PQ 的取值范围(直接写出结果即可).15.在等腰ABC 中,90ABC ∠=︒,AB BC =,将斜边AC 绕点A 逆时针旋转一定角度得到线段AD ,AD 交BC 于点G ,过点C 作CF AD ⊥于点F .(1)如图1,当旋转22.5︒时,若1BG =,求AC 的长;(2)如图2,当旋转30︒时,连接BD ,恰好使BD AC ∥,延长CF 交BD 于点E ,连接EG ,求证:AG CE EG =+;(3)如图3,点M 是AC 边上一动点,在线段BM 上存在一点N ,使NB NA NC ++的值最小时,若2NA =,请直接写出CNM 的面积.16.如图,在三角形ABC 中,90BAC ∠=︒,AB AC =,点P 为ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 逆时针旋转90︒得到'AP ,连接PP ',CP '.(1)用等式表示CP '与BP 的数量关系,并证明; (2)当135BPC ∠=︒时,①直接写出P CP '∠的度数为________;①若M 为BC 的中点,连接PM ,请用等式表示PM 与AP 的数量关系,并证明.17.在平面直角坐标系中,矩形OABC ,O 为原点,()()()3,0,3,4,0,4A B C ,将OBC △绕点B 逆时针旋转,点,O C 旋转后的对应点为,O C ''.(1)如图(1),当30CBC '∠=︒时,求C '的坐标;(2)如图(2),当点O '恰好落在x 轴上时,O C ''与AB 交于点D . ①此时DB 与DO '是否相等,说明理由; ①求点D 的坐标;(3)求AO C ''面积的最大值.(直接写出答案即可)18.在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,2AC =,将ABC 绕点B 顺时针旋转一定的角度α得到DEB ,点A ,C 的对应点分别是D ,E ,连接AD .(1)如图1,当点E 恰好在AB 上时,求ADE ∠的大小;(2)如图2,若60α=︒,点F 是AB 的中点,判断四边形CEDF 的形状,并证明你的结论. (3)如图3,若点F 为AD 中点,①求证:C 、E 、F 三点共线.②求CF 的最大值.参考答案:1.(1)是(2)是 (3)922.(2)①或;①3+3.(1)90;12AF DE =(2)15︒;AF =(3)14.(1)DO EO =,DO EO ⊥(2)成立,(3)线段OD 的长为15.(1)BE AD =,BE AD ⊥;(2)成立,6.(1)113AA BB(2)(1)中1AA 和1 BB 的关系仍然成立,(3)①7.(1)90︒(2)254(3)58.(1)①222DE CD BE =+;(2)9.(1)FG EF CG =+;(2)222AE FC EF +=;(3)10.(1)OM =(2)成立,(3)11.(1)12.(1)BD EC =,且BD EC ⊥,(2)成立(4)90︒或270︒13.解决问题:150APB ∠=︒;方法应用:APB ∠=135︒14.(1)(4,C (2)F (3)22PQ ≤≤15.(1)216.(1)CP BP '=,(2)①45P CP '∠=︒,①AP =,17.(1)532 C⎛⎫' ⎪ ⎪⎝⎭(2)①DB DO=';①73,8 D⎛⎫ ⎪⎝⎭(3)1418.(1)15︒(2)四边形CEDF是平行四边形,(3)①4。