高一函数的概念
- 格式:ppt
- 大小:687.00 KB
- 文档页数:18
高一数学概念一、函数概念在数学中,函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
函数通常用来描述两个变量之间的关系,并可以进行数学运算和分析。
函数可以用以下的数学表示方式来定义:$$f: X \\rightarrow Y$$其中,f表示函数的名称,f表示函数的定义域(输入值的集合),f表示函数的值域(输出值的集合)。
函数的输入值称为自变量,输出值称为因变量。
当函数f满足以下条件时,称其为一个数学函数:1.每个定义域中的元素都有一个对应的值域元素;2.一个定义域中的元素不能对应到多个值域元素;3.每个值域元素都至少有一个定义域中的元素与之对应。
函数可以通过函数图像、映射关系表、函数关系式等方式进行表示和描述。
函数的概念在高中数学中非常重要,它是学习和理解其他数学概念的基础。
二、三角函数概念三角函数是一种描述三角形边与角度之间关系的函数。
在高中数学中,最常用的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
1.正弦函数(sin):正弦函数描述了一个角的对边与斜边之间的比值。
在一个直角三角形中,角的正弦值等于对边与斜边的比值。
2.余弦函数(cos):余弦函数描述了一个角的邻边与斜边之间的比值。
在一个直角三角形中,角的余弦值等于邻边与斜边的比值。
3.正切函数(tan):正切函数描述了一个角的对边与邻边之间的比值。
在一个直角三角形中,角的正切值等于对边与邻边的比值。
三角函数广泛应用于几何学、物理学、工程学等科学领域,在实际问题中有着重要的作用。
三、导数概念导数是微积分学中的重要概念,描述了函数在某个点上的变化率。
函数的导数可以用以下的数学表示方式来定义:$$f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x + \\Delta x) -f(x)}{\\Delta x}$$其中,f′(f)表示函数f(f)在点f处的导数。
高一函数入门基础知识
高一函数入门基础知识包括函数的定义、函数的表示方法、函数的性质、函数的定义域和值域等。
以下是具体的介绍:
1. 函数的定义:函数是一种数学概念,用来描述两个变量之间的关系。
函数的定义通常包括自变量和因变量两个部分,自变量是函数的输入值,因变量是函数的输出值。
函数可以表示为y=f(x),其中x是自变量,y是因变量,f表示一种对应关系,称为函数关系。
2. 函数的表示方法:函数的表示方法有两种,一种是解析法,即用数学表达式表示函数关系;另一种是图表法,即用图形表示函数关系。
在高一函数入门中,我们主要学习解析法,通过给定的函数表达式来理解函数关系。
3. 函数的性质:函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某一段区间内单调递增或单调递减;奇偶性是指函数是否具有对称性;周期性是指函数是否存在周期性变化。
4. 函数的定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
在高一函数入门中,我们需要掌握如何求函数的定义域和值域,以及理解定义域和值域的概念。
5. 初等函数:初等函数是指常见的函数类型,如一次函数、二次函数、幂函数、对数函数等。
高一函数入门中,我们需要掌握这些函数的表达式、性质和图像。
总之,高一函数入门基础知识是学习函数的基础,需要掌握函数的定义、表示方法、性质、定义域和值域等概念,同时熟悉常见的初等函数的表达式、性质和图像。
高一数学的函数知识点归纳在高一的数学学习中,函数是一个非常重要的知识点。
函数的概念在数学中具有广泛的应用,并且在之后的学习中也会经常用到。
因此,熟练掌握函数的相关知识对于学习数学是非常重要的。
一、函数的定义和表示方式函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素上。
函数可以用多种不同的方式来表示,包括文字描述、图像、表格和公式等。
函数的定义通常形式为“y=f(x)”,其中x是自变量,y是因变量,f(x)表示函数的定义域和值域之间的关系。
二、函数的基本性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是函数输出的所有可能值的集合。
2. 单调性:函数的单调性指函数在自变量增大的过程中是否单调递增或单调递减。
如果函数在整个定义域上都是单调递增,则称为严格递增函数;如果函数在整个定义域上都是单调递减,则称为严格递减函数。
3. 奇偶性:函数的奇偶性指函数图像是否对称于y轴。
如果对于任意x∈定义域,f(-x)=-f(x),则函数为奇函数;如果对于任意x∈定义域,f(-x)=f(x),则函数为偶函数。
4. 周期性:函数的周期性指函数图像是否在某个区间内重复出现。
如果存在一个正数T,对于任意正整数n,有f(x+Tn)=f(x),则函数具有周期T。
三、常见的函数类型1. 线性函数:线性函数是函数图像为一条直线的函数,表示为f(x)=kx+b,其中k和b为常数。
线性函数的图像是直线,且斜率为k,截距为b。
2. 幂函数:幂函数是形如f(x)=x^a的函数,其中a为常数。
幂函数的图像形状与a的正负和大小有关,当a为正数时,图像从左上方逼近x轴,当a为负数时,图像从右上方逼近x轴。
3. 指数函数:指数函数是形如f(x)=a^x的函数,其中a为正常数且不等于1。
指数函数的图像具有一定的特点,包括过点(0,1)、严格递增或递减等。
4. 对数函数:对数函数是指数函数的反函数,表示为f(x)=loga(x),其中a为正常数且不等于1。
高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。
函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。
函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。
二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。
奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。
周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。
三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。
指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。
对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。
函数y=log_ax(a>0,且a≠1)叫做对数函数。
三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。
四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。
函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。
以上是高一数学函数的主要知识点总结。
在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。
高一的函数知识点总结函数作为数学中的一个核心概念,是高一数学课程中的重要组成部分。
本文将对高一阶段所学的函数知识进行梳理和总结,以帮助学生更好地理解和掌握这一概念。
一、函数的基本概念函数是指一个从一个集合(称为定义域)到另一个集合(称为值域)的映射关系,通常用符号f表示。
对于函数f,如果输入值x属于定义域,那么f(x)就是x在函数f下的对应输出值。
函数可以用多种方式表示,如公式、表格、图形等。
二、函数的性质函数的性质包括单调性、奇偶性、周期性等。
1. 单调性:函数在某个区间内,如果随着x的增加,f(x)也增加,则称函数在该区间内单调递增;如果f(x)减少,则称单调递减。
2. 奇偶性:如果对于所有的x,都有f(-x)=-f(x),则称函数f为奇函数;如果f(-x)=f(x),则称偶函数。
3. 周期性:如果存在一个非零实数T,使得对于所有的x,都有f(x+T)=f(x),那么T是函数f的一个周期。
三、函数的图像函数的图像是函数在坐标平面上的表现形式,通过图像可以直观地了解函数的性质和特点。
1. 直线:表示线性函数,如y=2x+3。
2. 抛物线:表示二次函数,如y=ax^2+bx+c。
3. 曲线:表示其他复杂的函数,如指数函数、对数函数等。
四、函数的应用函数在实际生活中有着广泛的应用,如物理中的运动规律、经济学中的成本收益分析等。
1. 物理中的函数:描述物体运动的速度、加速度等与时间的关系。
2. 经济学中的函数:描述成本、收益与产量的关系。
五、函数的运算函数的运算包括四则运算、复合函数、反函数等。
1. 四则运算:两个函数的和、差、积、商都是新的函数。
2. 复合函数:如果有两个函数f和g,那么(f(g(x)))表示新的函数,称为f和g的复合函数。
3. 反函数:如果函数f的每个y值都有唯一的x值与之对应,那么这个对应关系f的逆称为f的反函数。
六、函数的极限与连续性函数的极限描述了函数值在某个点附近的变化趋势,连续性则是函数图像无间断的属性。
高一数学函数知识点归纳总结大全函数是数学中非常重要的概念之一,在高一阶段的数学学习中,我们会接触到许多有关函数的知识点。
本文将对高一数学函数知识点进行归纳总结,旨在帮助同学们系统地理解和掌握这些内容。
一、函数的定义和表示方法函数是一个将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)的规则。
函数可以用各种方式来表示,常见的有解析式、图像和表格。
1. 解析式表示法:函数可以用解析式来表示,通常采用f(x)或y的形式表示。
例如:f(x) = 2x + 1,y = sin(x)。
2. 图像表示法:函数的图像是用直角坐标系上的点表示的,其中自变量通常对应横坐标,因变量对应纵坐标。
3. 表格表示法:函数可以用表格形式来表示,其中列出自变量的取值和对应的因变量的取值。
二、函数的性质了解函数的性质有助于我们更好地理解函数的特点和行为。
1. 定义域和值域:函数的定义域是指所有使得函数有意义的自变量的取值范围,而值域则是函数的所有可能的因变量的取值范围。
2. 奇偶性:如果对于函数的定义域中的任意x值,都有f(-x) =f(x)成立,则函数是偶函数;如果对于函数的定义域中的任意x值,都有f(-x) = -f(x)成立,则函数是奇函数;否则函数既不是偶函数也不是奇函数。
3. 单调性:如果函数的自变量增加时,其对应的因变量是单调递增或单调递减的,我们称这个函数是单调函数。
4. 周期性:如果函数的某个正数T满足对于函数的所有x值都有f(x+T) = f(x)成立,则称函数具有周期性,T是函数的一个周期。
三、常见函数的类型在高一阶段,我们会学习到以下几类常见的函数。
1. 一次函数:一次函数的解析式为f(x) = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一条斜率为a的直线。
2. 二次函数:二次函数的解析式为f(x) = ax^2 + bx + c,其中a、b和c是常数,且a≠0。
二次函数的图像通常是一个开口向上或向下的抛物线。
高一函数的概念与性质高一数学中,函数是一种重要的数学概念,也是解决实际问题的重要工具。
理解函数的概念和性质对于学生学好高中数学非常关键。
本文将详细介绍函数的概念与性质。
一、函数的概念函数是自变量与因变量之间的一种对应关系。
具体来说,设有两个非空数集合A和B,若对于集合A中的每个元素,集合B中都有对应的唯一元素与之对应,则称这种对应关系为函数,记作y=f(x),其中x是自变量,y是因变量。
例如,设A={1,2,3},B={2,4,6},若设f(x)=2x,则可以得到以下对应关系:x,123f(x),246这种对应关系满足每个自变量都对应着唯一的因变量,因此可以称之为函数。
函数还可以通过图象来表示。
函数的图象是平面直角坐标系上的一条曲线,其中自变量x的取值范围对应着横轴,因变量y的取值范围对应着纵轴。
函数的图象有助于我们更直观地理解函数的性质。
二、函数的性质1.定义域和值域函数的定义域是指自变量x可以取的值的集合。
在函数的定义域内,函数是有意义的。
如果一个值不在函数的定义域内,将没有对应的函数值。
函数的值域是函数在定义域内所有可能的函数值的集合。
它是因变量的取值范围。
2.单调性与增减性函数可以具有单调递增性或单调递减性。
函数f(x)是单调递增的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≤f(x2)。
函数f(x)是单调递减的,当且仅当对于定义域内的任意x1和x2,当x1<x2时,有f(x1)≥f(x2)。
若函数在定义域的每一段上都是单调递增或单调递减的,则称该函数为增函数或减函数。
3.奇偶性函数的奇偶性是指函数图象关于坐标系的一些特点的对称性。
一个函数f(x)是奇函数,当且仅当f(-x)=-f(x),即函数图象关于原点对称。
一个函数f(x)是偶函数,当且仅当f(-x)=f(x),即函数图象关于y轴对称。
4.周期性函数的周期性是指函数图象具有其中一种重复性质,即函数值在一定范围内以其中一数值为间隔重复出现。
高一函数换元法知识点总结一、基本概念1.1 函数的概念函数是一种数学关系,它将一个集合的元素映射到另一个集合的元素上。
通常用f(x)表示一个函数,其中x是自变量,f(x)是因变量。
1.2 函数的图像函数的图像是指函数所对应的平面上的点的集合,用曲线或者折线来表示。
1.3 函数的性质函数的性质包括定义域、值域、奇偶性、周期性等。
其中,定义域是自变量的取值范围,值域是函数在定义域上所有可能的取值。
奇偶性是指函数在坐标系中呈现的对称性,周期性是指函数在一定范围内呈现重复性。
1.4 函数的变换函数的变换包括平移、伸缩、翻转等操作,这些变换可以改变函数的图像。
1.5 反函数如果一个函数f(x)的定义域和值域互为对方的集合,并且f(x)在定义域上是一一对应的,那么f(x)的反函数记作f^{-1}(x)。
二、换元法2.1 换元法的概念换元法是解函数积分问题的一种方法。
如何进行函数的换元是判断是否能够积分的关键。
2.2 换元法的基本思路换元法是利用函数的导数和基本积分公式寻找新的自变量,使得原函数可以变成容易求解的函数积分问题。
2.3 换元法的步骤(1)选择合适的新自变量;(2)构造新的微分式;(3)将被积函数转化为以新的自变量表示的函数;(4)对新的函数进行积分。
2.4 换元法的常用换元公式(1)直接代换:y = f(x);(2)三角代换:一般是利用三角函数间的恒等式;(3)二次换元:一般是将被积函数化为完全平方差;(4)分部积分:包括逆微分法、对换法、积分运算法等。
2.5 换元法的应用换元法可以应用于定积分、不定积分等函数积分求解问题。
它是解一些复杂函数积分问题的有效方法。
三、换元法的综合练习3.1 定积分的换元法练习题目:计算定积分\int_{1}^{2}x(x^2-1)^{\frac{3}{2}}dx。
解析:首先,利用换元法,令u = x^2-1,则x = \sqrt{u+1},dx = \frac{1}{2\sqrt{u+1}}du。
完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。
我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。
需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。
同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。
在考虑函数的值域时,我们可以使用观察法、配方法或代换法。
函数图象是指在平面直角坐标系中,以函数y=f(x)。
(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。
我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。
区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。
同时,还有无穷区间。
我们可以使用数轴来表示区间。
映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。
我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。
对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。
3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。
高一数学函数的概念知识点详解一、函数的定义和表示方法函数是数学中的重要概念,它描述了输入和输出之间的关系。
函数可以用多种方式来定义和表示,包括集合表示法、公式表示法、图像表示法等。
1.1 集合表示法在集合表示法中,函数可以用有序数对的集合来表示。
例如,如果函数f将集合A中的元素映射到集合B中的元素,则可以表示为f={(a,b)|a∈A, b∈B}。
1.2 公式表示法在公式表示法中,函数可以用一个表达式来表示。
例如,如果函数f将自变量x映射到因变量y,则可以表示为y=f(x)。
1.3 图像表示法在图像表示法中,函数可以通过绘制其图像来表示。
图像是由自变量和因变量的坐标点组成的。
二、定义域和值域在讨论函数时,我们经常会涉及到其定义域和值域。
2.1 定义域定义域是指函数输入的所有可能值的集合。
对于某个函数f,如果自变量x的取值范围在集合D内,则称D为函数f的定义域。
2.2 值域值域是指函数输出的所有可能值的集合。
对于某个函数f,如果因变量y的取值范围在集合R内,则称R为函数f的值域。
三、常见的函数类型在高一数学中,我们会遇到许多常见的函数类型,包括线性函数、二次函数、指数函数、对数函数等。
3.1 线性函数线性函数是指自变量和因变量之间存在一次关系的函数。
它的一般形式为y=ax+b,其中a和b为常数。
3.2 二次函数二次函数是指自变量和因变量之间存在二次关系的函数。
它的一般形式为y=ax^2+bx+c,其中a、b和c为常数。
3.3 指数函数指数函数是指以常数e为底的幂函数。
它的一般形式为y=a^x,其中a为正实数。
3.4 对数函数对数函数是指以某个正实数为底的对数函数。
它的一般形式为y=logₐx,其中a为正实数且不等于1。
四、函数的性质和特点函数有许多重要的性质和特点,包括奇偶性、单调性、极值等。
4.1 奇偶性如果对于任意的x,有f(-x) = f(x),则函数f是偶函数;如果对于任意的x,有f(-x) = -f(x),则函数f是奇函数;如果对于任意的x,既不满足偶函数的性质,也不满足奇函数的性质,则函数f既不是偶函数也不是奇函数。
高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。
2. 定义域:能够输入到函数中的所有可能的x值的集合。
3. 值域:函数输出的所有可能的y值的集合。
4. 函数图像:函数在坐标系中的图形表示。
二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。
2. 表格法:用表格列出x与y的对应值。
3. 图像法:通过函数图像直观表示函数关系。
三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。
2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。
3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。
4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。
四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。
2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。
3. 幂函数:y=x^n,其中n为实数。
4. 指数函数:y=a^x(a>0,a≠1)。
5. 对数函数:y=log_a(x)(a>0,a≠1)。
6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。
五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。
2. 函数的乘积:(f*g)(x)=f(x)g(x)。
3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。
六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。
2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。
七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。
高一数学函数的概念(一)(一)函数的概念:函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。
显然,值域是集合B 的子集。
(1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ;(2)二次函数2y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a ﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。
(3)反比例函数(0)k y k x=≠的定义域是{}0x x ≠,值域是{}0y y ≠。
(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1) 满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2) 满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3) 满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。
(数轴表示见课本P 17表格)符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。
我们把满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。
巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0}(三)例题讲解:例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。
高一函数概念与性质知识点归纳在高一数学中,函数是一个非常重要的概念。
理解函数的概念及其性质,对于学习高中数学以及解决实际问题都具有重要的意义。
下面将对高一函数概念与性质的知识点进行归纳总结。
一、函数的定义函数是一个相互对应的关系,它将一个集合的元素(称为自变量)与另一个集合的元素(称为因变量)一一对应。
通常表示为:y = f(x)。
二、函数的图像与曲线函数的图像是自变量与因变量之间的关系在平面直角坐标系中的表现形式。
函数的图像通常为曲线,曲线上的点表示自变量和因变量之间的对应关系。
三、函数的性质1. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
2. 奇偶性:如果函数满足对任意x,有f(-x) = f(x),则函数为偶函数;如果对任意x,有f(-x) = -f(x),则函数为奇函数。
3. 单调性:函数的单调性指的是函数在定义域上的取值的增减情况。
可以分为增函数和减函数。
4. 周期性:如果对任意x,有f(x+T) = f(x),其中T>0,则函数为周期函数,T称为函数的周期长度。
5. 极值与最值:函数在定义域内某一点上的函数值称为该点的函数值。
如果函数在某一区间内的函数值都小于(或大于)其他点的函数值,则该点对应的x值称为函数在该区间内的极小值(或极大值)。
函数在定义域上的极值称为最值。
6. 对称轴:函数的对称轴是指曲线关于某一直线对称。
四、基本函数与常用函数1. 一次函数:y = kx + b,其中k为斜率,b为常数。
2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数。
3. 幂函数:y = x^a,其中a为常数。
4. 指数函数:y = a^x,其中a为常数且a>0且a≠1。
5. 对数函数:y = loga(x),其中a为常数且a>0且a≠1。
6. 三角函数:包括正弦函数、余弦函数和正切函数等。
五、函数的运算与性质1. 四则运算:函数之间可以进行加、减、乘、除的运算。
高一函数知识点总结高一函数知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的'被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇某奇=偶偶某偶=偶奇某偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。