用一次方程(组)解决问题同步测试
- 格式:doc
- 大小:0.63 KB
- 文档页数:1
第一篇:七年级数学解一元一次方程同步测试题【基础过关】一、选择题1、方程=x-2的解是()A.5B.-5C.2D.-22、解方程x=,正确的是( )A.x==x=;B.x=,x=C.x=,x=;D.x=,x=3、下列变形是根据等式的性质的是()A.由2x﹣1=3得2x=4B.由x2=x得x=1C.由x2=9得x=3D.由2x﹣1=3x得5x=﹣14、下列变形错误的是()A.由x+7=5得x+7-7=5-7;B.由3x-2=2x+1得x=3C.由4-3x=4x-3得4+3=4x+3xD.由-2x=3得x=-5、已知方程①3x-1=2x+1②③④中,解为x=2的是方程()A.①、②和③;B.①、③和④C.②、③和④;D.①、②和④二、填空题1、判断:方程6x=4x+5,变形得6x+4x=5()改正:________________________________________________.2、方程3y=,两边都除以3,得y=1()改正:________________________________________________.3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、当m=__________时,方程2x+m=x+1的解为x=-4.当a=____________时,方程3x2a-2=4是一元一次方程.6、求作一个方程,使它的解为-5,这个方程为__________.三、解下列方程(1)6x=3x-12 (2)2y―=y―3(3)-2x=-3x+8(4)56=3x+32-2x(5)3x―7+6x=4x―8(6)7.9x+1.58+x=7.9x-8.42【知能升级】1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.2、在代数式|()+6|+|0.2+2()|的括号中分别填入一个数,使代数式的值等于0.答案【基础过关】一、选择题1、A2、C3、A4、D5、D二、填空题1、错,6x-4x=52、错,y=3、24、5,6、x+5=0三、解下列方程1、x=-42、y=3、x=84、x=245、x=6、x=-10【知能升级】1、x=-32、-4,-0.1第二篇:七年级数学《解一元一次方程》教学设计第六章一元一次方程6.2 解一元一次方程(三)——去分母天水市秦州区藉口中学杨文蕴【教学目标】掌握去分母解方程的方法,体会到转化的思想。
2024-2025学年七年级数学上册 第五章一元一次方程 章节同步测试班级___________ 姓名___________ 学号____________ 分数____________考试范围:第5章 一元一次方程,共24题; 考试时间:120分钟; 总分:100分 一、选择题(本大题共10小题,每小题3分,共30分) 1.1.在以下的式子中:+8=3;12-x ;x -y =3;x +1=2x +1;3x 2=10;2+5=7;其中是方程的个数为( ).A .3B .4C .5D .62.下列方程变形一定成立的是( ).A .如果S =,那么b =B .如果=6,那么x =3 C .如果x -3=2x -3,那么x =0 D .如果mx =my ,那么x =y3.若方程()2180m m x ---=是关于x 的一元一次方程,则m =( ) A .1B .2C .3D .1或34.下列方程变形中,正确的是( ) A .方程2332t =,系数化为1得1t = B .方程325(1)x x -=--,去括号得3255x x -=-- C .方程1125x x--=,去分母得5(1)210x x --= D .方程3221x x -=+,移项得3212x x -=-+5.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( ) A .7.4元B .7.5元C .7.6元D .7.7元6. 若“☆”是新规定的某种运算符号,设x ☆y=xy+x+y ,则2☆m=-16中,m 的值为( )A .8B .-8C .6D .-67.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( ) A .x =-4 B .x =-3 C .x =-2D .x =-18.某家具的标价为132元,若降价以九折出售(优惠10%)仍可获利10%(相对于进货价),则该家具的进货价是( ).A .108元B .105元C .106元D .118元9.某出租车收费标准是:起步价6元(即行驶距离不超过3 km 需付费6元),超过3 km 以后,每增加1 km 加收1.5元(不足1 km 按1 km 计算),小王乘出租车从甲地到乙地支付车费18元,那么他乘坐路程的最大距离是( ).A .7 kmB .9 kmC .10 kmD .11 km3x12ab 2S a 12x10.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.如图,圆桌半径为60 cm ,每人离圆桌的距离均为10 cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( )A .=B .C .2π(60+10)×6=2π(60+π)×8D .2π(60-x )×8=2π(60+x )×6二、填空题(本大题共8小题,每小题2分,共16分) 11.已知12x =是关于x 的一元一次方程()2340x a --=的解,则a 的值为______. 12.当x =_____时,整式12x +与x ﹣5的值互为相反数. 13.已知某铁路桥长1600米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是70秒.则这列火车长______米. 14. a ,b ,c ,d 为实数,现规定一种新的运算,=ad -bc ,那么当=18时,x =__________.15.一个三位数的百位数字是1,若把百位数字移到个位,则新数比原数的2倍还多1,则原来的三位数是__________. 16.有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为__________. 17.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有 个.18.甲乙二人在环形跑道上同时同地出发,同向运动,若甲的速度是乙的速度的2倍,则乙运动1周,甲、乙第一次相遇;若甲的速度是乙的速度的3倍,则乙运动12周,甲、乙第一次相遇;若甲的速度是乙的速度的4倍,则乙运动13周,甲、乙第一次相遇;……以此探究正常走时的时钟,时针和分针从重叠位置同时出发,时针旋转周,时针2(6010)6π+2(6010)8x π++2(60)26086x ππ+⨯= a bc d2 4(1) 5x-和分针第一次相遇.三、解答题(本题共6小题,合计54分): 19.解下列方程:(每题4分,共16分)(1)70%x+(30-x)×55%=30×65% (2);(3); (4) 20..20.(5分)方程23y +-m =5(y -m )与方程4y -7=1+3y 的解相同,求2m+1的值.21. (7分)如图,已知,A B 两地相距6千米,甲骑自行车从A 地出发前往C 地,同时乙从B 地出发步行前往C 地.(1)已知甲的速度为16千米/小时,乙的速度为4千米/小时,求两人出发几小时后甲追上乙; (2)甲追上乙后,两人都提高了速度,但甲比乙每小时仍然多行12千米,甲到达C 地后立即返回,两人在,B C 两地的中点处相遇,此时离甲追上乙又经过了2小时.求,A C 两地相距多少千米.22. (8分)公园门票价格规定如表:511241263x x x +--=+1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦432.50.20.05x x ---=某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1422元.问:(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可比两个班都以班为单位购票省多少元钱?23.(9分)“阶梯水价”充分发挥市场、价格因素在水资源配置、水需求调节等方面的作用,拓展了水价上调的空间,增强了企业和居民的节水意识,避免了水资源的浪费.阶梯式计量水价将水价分为两段或者多段,每一分段都有一个保持不变的单位水价,但是单位水价会随着耗水量分段而增加.某地“阶梯水价”收费标准如下表(按月计算):例如:该地区某户居民3月份用水12m3,则应交水费为2103(1210)26⨯+⨯-=(元).根据上表的内容解答下列问题:(1)用户甲5月份用水16 m3,则该用户5月份应交水费多少元?(2)用户乙5月份交水费50元,则该用户5月份的用水量为多少m3?(3)用户丙5、6两个月共用水30m3,其中6月份用水量超过了15m3,设5月份用水x m3,请用含x的式子表示该户居民5、6两个月共交的水费.24.(9分)对a、b、c、d规定一个运算法则为:a bad bcc d=-(等号右边是普通的减法运算).(1)计算:1234=______,242m nm n-=-+______;(2)求出满足等式211111162x x x--=-的x的值。
3 应用二元一次方程组---鸡兔同笼一、目标导航知识目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.能力目标:通过将实际问题转化成纯数学问题的应用训练,培养学生分析问题、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化.二、基础过关1.某校课外小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x 和应分成的组数y .依题意得( )A .7385y x y x =+⎧⎨+=⎩B .7385x y x y +=⎧⎨-=⎩C .7385y x y x =-⎧⎨=+⎩D .7385y x y x =+⎧⎨=+⎩2.一批宿舍,若每间住1人,有10人无处住,若每间住3人,则有10间无人住,则这批宿舍的房间数为( )A .20B .15C .12D .103.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x +=⎧⎨⨯=⎩C .2190822y x x y +=⎧⎨=⎩D .21902822y x x y +=⎧⎨⨯=⎩4.根据下图提供的信息,可知一个杯子的价格是( )A .51元B .35元C .8元D .7.5元4题图 6题图共计145元共计280元5.学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才出生;你到我这么大时,我已经37岁了.”老师今年岁.6.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据上图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?7.购买一批布料给校文艺队每人做一套演出服,大号每套需要布料4.9米,中号每套需要布料4.2米.若全部做大号,则差布3.9米,若全部做中号,则余布3.8米,请你算一算,校文艺队有几名队员,共购买了多少米布?8.《一千零一夜》中:有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞来一;若从树上飞下去一只,则树上、树下的鸽子只,则树下的鸽子就是整个鸽群的13就一样多了.”你知道树上、树下各有多少只鸽子吗?三、能力提升9.用如图1中的长方形和正方形纸板作侧面和底面,做成如图2中竖式和横式的两种无盖纸盒。
利用一元一次方程解销售问题同步测试1. 某件商品现在的售价为34元,比原价降低了15%,则原来的售价是()A. 51元B. 28.9元C. 35元D. 40元2. 互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品进价为200元,按标价的五折销售,仍可获利10%,设这件商品的标价为x元,根据题意列出方程()A. 0.5x-200=10%×200B. 0.5x-200=10%×0.5xC. 200=(1-10%)×0.5xD. 0.5x=(1-10%)×2003. 一件服装以120元销售,可获利20%,则这件服装的进价是()A. 100元B. 105元C. 108元D. 118元4. 如图是某洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A. 22元B. 23元C. 24元D. 26元5. 小琳买的运动鞋打8折后又减了20元,最终花了196元,则该商品的原价是()A. 196元B. 216元C. 220元D. 270元6. “国际购物中心”在国庆节期间举行优惠活动,规定一次购物不超过500元的不优惠;超过500元的,全部按8折优惠.小丽买了一件服装,付款480元,这件服装的标价是()A. 480元B. 500元C. 600元D. 480元或600元7. 星期天小明到体育用品商店购买一个篮球花了120元,已知篮球按标价打八折,那么篮球的标价是元.8. 某种商品每件的标价为132元,按标价的九折销售时,仍可获利10%,则这种商品每件的进价是元.9. 购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元.10. 某饭店为招揽生意,规定凡是订餐五桌以上,多于五桌的部分按定价的7折收费,某人预订了10桌,交纳现金6800元,则每桌定价为元.11. 某种商品因换季要打折出售,如果按定价的七五折出售将赔25元,按定价的九折出售将赚20元,这种商品的定价元.12. 某文具厂生产某种型号的文具盒,每个成本为2元,利润率为15%,工厂通过改进工艺,降低了成本,在售价不变的情况下,利润率增加了10%,则这种文具盒的成本降低了元.13. 某水果经销商以2元/千克的成本新进了10000千克蜜橘,在运输和贮存时,有10%的损坏,如果该经销商出售这些蜜橘(损坏的不能销售获利)想获得7000元的利润,那么该经销商定价是元/千克.14. 某商品的进价是100元,提高50%后标价售出,在销售旺季过后,经营者想得到5%的销售利润,请你帮他算一算,该商品需打折销售.15. 商场经销甲、乙两种商品,甲种商品每件售价60元,利润率为50%,乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品的利润率为;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2100元,求购进甲种商品多少件?16. 某超市规定,若购买不超过50元的商品,按定价金额收费;若购买超过50元的商品,超过部分按定价的九折收费.某顾客在一次消费中付了212元,则该顾客购买的是定价为多少元的商品?17. 一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款.求每台彩电的原价格.18. 某个体户进了40套服装,以高出进价40元的售价卖出了30套,后因换季,剩下的10套服装以原售价的六折售出,结果40套服装共收款4320元,问每套服装的进价是多少元?这位个体户是赔了还是赚了?赚了或是赔了多少元?19. 某个体商贩在一次买卖中同时卖出两件上衣,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%,请分析在这次买卖中该个体商贩的盈利情况.20. 某校计划购买20张书柜和一批书架(书架不少于20个),现从A,B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每个70元,A超市的优惠政策为每买一张书柜赠送一个书架,B超市的优惠政策为所有商品八折.(1)若规定只能到其中一个超市购买所有物品,什么情况下到A超市购买合算?(2)若学校想购买20张书柜和100个书架,且可到两家超市自由选购.你认为至少要准备多少货款,请用计算的结果来验证你的说法.参考答案1. D2. A3. A4. C5. D6. D7. 1508. 1089. 2010. 80011. 30012. 0.1613. 314. 七15. 解:(1)40 60%(2)设购进甲种商品x件,则购进乙种商品(50-x)件,依题意,得40x+50(50-x)=2100,解得x=40.答:购进甲种商品40件.16. 解:设顾客购买的是定价为x元的商品,依题意有:50+0.9(x-50)=212,解得x=230.答:该顾客购买的是定价为230元的商品.17. 解:设每台彩电的原价格是x元,则有:10×[(1+40%)x×0.8-x]=2700,解得x=2250.答:每台彩电的原价为2250元.18. 解:设进价为x元,由题意,得30(x+40)+10×0.6(x+40)=4320,解得x=80.则40x=3200,所以这位个体户赚了,赚了4320-3200=1120(元).19. 解:设其中一件上衣的进价为x元,另一件上衣的进价为y元,由题意得:(1+25%)x=135,解得x=108;(1-25%)y=135,解得y=180.因为2×135-(108+180)=-18<0,所以在这次买卖中该个体商贩赔了,赔了18元.20. 解:(1)设购买x个书架时,到A超市合算,根据题意得,到A超市所花钱数为20×210+70(x-20)=(70x+2800)元,到B超市所花钱数为0.8(20×210+70x)=(3360+56x)元,所以当70x+2800=3360+56x时,解得x=40.即当购买40个书架时,到A超市和B超市一样.又x≥20,所以,当购买的书架数量少于40时,到A超市购买合算,不少于20.(2)因为买一张书柜赠一个书架相当于打7.5折,所以应该到A超市购买20张书柜和20个书架,到B 超市购买80个书架,共需20×210+70×80×0.8=8680(元).。
8.3 实际问题与二元一次方程组第1课时利用二元一次方程组解决实际问题要点感知用方程组解应用题的一般步骤是:(1)审题:弄清题意和题目中的__________;(2)设元:用__________表示题目中的未知数,可__________设未知数,也可__________设未知数;(3)列方程组:挖掘题中的所有条件,找出两个与未知数相关的__________,并依此列出__________;(4)解方程组:利用__________法或__________法解所列方程组,求出未知数的值;(5)检验作答:检验所求的解是否符合题目的实际意义,然后作答.预习练习(2014·温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.523220x yx y+=+=⎧⎨⎩B.522320x yx y+=+=⎧⎨⎩C.202352x yx y+=+=⎧⎨⎩D.20 3252 x yx y+=+=⎧⎨⎩知识点1 建立二元一次方程组模型解决实际问题1.捐款/元 1 2 3 4人数 6 ▅▅7表格中捐款2x名同学,捐款3元的有y名同学,根据题意,可列方程组( )A.272366x yx y+=+=⎧⎨⎩B.2723100x yx y+=+=⎧⎨⎩C.273266x yy x+=+=⎧⎨⎩D.27 32100 x yy x+=+=⎧⎨⎩2.(2013·西双版纳)自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天早上七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包?3.(2014·泰州)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.知识点2 建立二元一次方程组模型解决几何问题4.(2013·漳州)如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )A.2753x yy x+==⎧⎨⎩B.2753x yx y+==⎧⎨⎩C.2753x yy x+==⎧⎨⎩D.2753x yx y+==⎧⎨⎩5.(2012·阜新)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是__________.6.(2012·吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm,演员踩在高跷上时,头顶距离地面的高度为224 cm.设演员身高为x cm,高跷的长度为y cm,求x,y的值.7.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分的比为6∶5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y分,根据题意所列的方程组为( )A.65240x yx y==-⎧⎨⎩B.65240x yx y==+⎧⎨⎩C.56240x yx y==+⎧⎨⎩D.56240 x yx y==-⎧⎨⎩8.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的1 3,另一根露出水面的长度是它的15.两根铁棒长度之和为220 cm,此时木桶中水的深度是__________cm.9.(2014·滨州)某公园“6·1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩,请你帮他计算一下,需准备__________元钱买门票.10.A、B两地相距20千米,甲从A地向B地匀速行进,同时乙从B地向A地匀速行进,两个小时后两人在途中相遇,相遇后甲立即以原速返回A地,乙继续以原速向A地行进,甲回到A地时乙离A地还有4千米,求甲、乙两人的速度.11.(2013·凉山)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__________cm ,放入一个大球水面升高__________cm ; (2)如果要使水面上升到50 cm ,应放入大球、小球各多少个?挑战自我12.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,谁的设计符合实际,按照他的设计,鸡场的面积多大?参考答案课前预习要点感知 数量关系 字母 直接 间接 等量关系 方程组 代入消元 加减消元 预习练习 D 当堂训练 1.A2.设这天早上该班分到x 件牛奶,y 件面包.根据题意,得 7,2416144.x y x y +=+=⎧⎨⎩解得4,3.x y ==⎧⎨⎩答:这天早上该班分到4件牛奶,3件面包.3.设去年外来旅游的人数为x 万人,外出旅游的人数为y 万人.由题意得 ()()20,10.310.2226.x y x y -=+++=⎧⎨⎩解得100,80.x y ==⎧⎨⎩∴(1+0.3)x=130,(1+0.2)y=96.答:该市今年外来和外出旅游的人数分别是130万人和96万人. 4.B 5.100 6.根据题意,得: 2,28224.y x y x =+-=⎧⎨⎩解得168,84.x y ==⎧⎨⎩答:x,y 的值分别为168,84. 课后作业7.D 8.80 9.3410.设甲的速度为x 千米/时,乙的速度为y 千米/时.由题意得 2220,4420.x y y +=+=⎧⎨⎩解得6,4.x y ==⎧⎨⎩答:甲的速度为6千米/时,乙的速度为4千米/时.11.(1)2 3(2)设应放入x 个大球,y 个小球.由题意得32502610.x y x y +=-+=⎧⎨⎩,解得46.x y ==⎧⎨⎩,答:应放入4个大球,6个小球.12.根据小王的设计可以设垂直于墙的一边长为x 米,平行于墙的一边长为y 米.根据题意得235,5.x y y x +=-=⎧⎨⎩解得10,15.x y ==⎧⎨⎩ 又因为墙的长度只有14米,所以小王的设计不符合实际.根据小赵的设计可以设垂直于墙的一边长为a 米,平行于墙的一边长为b 米.根据题意得235,2.a b b a +=-=⎧⎨⎩解得11,13.a b ==⎧⎨⎩ 又因为墙的长度有14米,显然小赵的设计符合要求.此时鸡场的面积为11×13=143(平方米).答:小赵的设计符合实际,按照他的设计,鸡场的面积为143平方米.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
5.6 应用一元一次方程——追赶小明(含答案)一.选择题:〔四个选项中只有一个是正确的,选出正确选项填在题目的括号内〕1.甲、乙两人练习赛跑,甲每秒跑4米,乙每秒跑5米,甲先跑6米,乙才开场跑,设乙开场跑后x 秒上甲,依题意可列方程〔 〕A .546x x =-B .546x x =+C .546x x -=D .546x =-2.甲、乙两人从同一地点去某地,假设甲先走2小时,乙从后面追赶,那么当乙追上甲时, 以下说法正确的选项是〔 〕A .甲、乙两人走的路程相等B .乙比甲多走2小时C .乙走的路程比甲多D .以上答案都不对3.在某公路上有相距90千米的两个车站A ,B ,某日8点整,甲、乙两车分别从A ,B 两站同时出发,相向而行;甲车的速度是70千米/小时,乙车的速度是80千米/小时,那么两车相遇的时刻是〔 〕A .8点20分B .8点36分C .8点50分D .9点整4.父子两人早上去公园晨练,父亲从家跑步到公园需30分钟,儿子只需20分钟,假如父亲比儿子早出发5分钟,那么儿子追上父亲需〔 〕A .8分钟B .9分钟C .10分钟D .11分钟5.甲、乙两同学从A 地出发到B 地去,甲每小时走6千米,乙每小时走8千米,甲先出发1小时,结果乙还比甲早到1.5小时;假设设A 地与B 地的间隔 为x 千米,那么以下方程正确的选项是〔 〕A . 1.5 1.568xx +=- B . 1.568x x =- C . 1.5 1.568x x -=+ D .6 1.58 1.5x x -=+ 6.小明同学骑车从学校到家,每分钟行120米,某天回家时,速度进步到每分钟150米,结果提早5分钟到家,设原来从学校到家骑x 分钟,那么列方程为〔 〕A .120x=150〔x +5〕B .120x=150〔x -5〕C .120〔x +5〕=150xD .120〔x -5〕=150x7.某江的水流速度为4千米/时,某轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用4小时,假设船速为30千米/时,那么A 港和B 港相距〔 〕千米A .440B .442C .450D .4608.在400米的环形跑道上有两人练习长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同向出发,〔 〕秒后,两人第一次相遇A .10B .15C .20D .309.我国古代名著?九章算术?中有一题:“今有起南海,七日至北海;雁起北海,九日至南海。
人教版七年级数学上册《5.3实际问题与一元一次方程》同步测试题及答案一、解答题1.列方程解应用题甲乙两车分别从相距605km 的A 、B 两地出发,甲车的速度为60km/h ,乙车的速度为50km/h ,两车同时出发,相向而行.求经过多少小时两车相遇后相距55km ?2.如图,某小区矩形绿地的长宽分别为35m 15m ,.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地的长是宽的2倍,求新的矩形绿地的长与宽;3.如图,已知A B ,为数轴上的两个点,点A 表示的数是30-,点B 表示的数是10.(1)写出线段AB 的中点C 对应的数;(2)若点D 在数轴上,且30BD =,写出点D 对应的数;(3)若一只蚂蚁从点A 出发,在数轴上每秒向右前进3个单位长度;同时一只毛毛虫从点B 出发,在数轴上每秒向右前进1个单位长度,它们在点E 处相遇,求点E 对应的数.4.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?5.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?6.每年农历五月初五是中国民间的传统节日——端午节.今年端午节,某地甲、乙两家超市为吸引更多的顾客,开展促销活动,对某种质量和售价相同的粽子分别推出了不同的优惠方案,甲超市的方案是:购买该种粽子超过80元后,超出80元的部分按九折收费;乙超市的方案是:购买该种粽子超过120元后,超出120元的部分按八折收费.请根据顾客购买粽子的金额,帮顾客判断到哪家超市购买粽子更划算?7.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?8.有一篮苹果,平均分给几个小朋友,每人3个,则多2个;每人4个则少3个.问:有几个小朋友,几个苹果?9.“丰收1号”油菜籽的平均每公顷产量为2 400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3hm2,但是所产油菜籽的总产油量比去年提高3 750kg.这个村去年和今年种植油菜的面积各是多少公顷?10.(列方程)把一批图书分给七年级(11)班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?11.昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?12.把一些图书分给某班学生阅读,如果没人分3本,则余20本,如果每人分4本,则还缺25本。
4.3用一元一次方程解决问题同步练习含答案解析4.3 用一元一次方程解决问题一.选择题1.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元2.某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A.2:1 B.7:5C.17:12 D.24:173.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元4.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.725.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()A.赚了5元B.亏了25元 C.赚了25元D.亏了5元6.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A.7.5秒B.6秒C.5秒D.4秒7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是()A.8折B.7.5折C.6折D.3.3折8.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A、B、C三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是()A.20 B.25 C.30 D.35二.填空题9.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.10.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.11.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件元.12.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.13.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.14.某次数学测验共有20题,每题答对得5分,不答得0分,答错得﹣2分.若小丽这次测验得分是质数,则小丽这次最多答对题.15.李明同学利用暑假外出旅游一周,已知这一周各天的日期之和是126,那么李斌同学回家的日期是号.16.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.三.解答题17.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?18.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.19.小陈妈妈做儿童服装生意,在“六一”这一天上午的销售中,某规格童装每件以60元的价格卖出,盈利20%,求这种规格童装每件的进价.20.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本12 8销售单价18 12生产提成 1 0.8 (1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)22.根据以下对话,分别求小红所买的笔和笔记本的价格.23.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?24.某大型超市的采购人员先后购进两批晋祠大米,购进第一批大米共花费5400元,进货单价为m元/千克,该超市将其中3000千克优等品以进货单价的两倍对外出售,余下的二等品则以1.5元/千克的价格出售.当第一批大米全部售出后,花费5000元购进了第二批大米,这一次的进货单价比第一批少了0.2元.其中优等品占总重量的一半,超市以2元/千克的单价出售优等品,余下的二等品在这批进货单价的基础上每千克加价0.6元后全部卖完,若不计其他成本,则售完第二批大米获得的总利润是4000元(总售价﹣总进价=总利润)(1)用含m的代数式表示第一批大米的总利润.(2)求第一批大米中优等品的售价.25.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物所有商品价格可获九折优惠;优惠二:交纳200元会费成为该超市的一员,所有商品价格可优惠八折优惠.(1)若用x(元)表示商品价格,请你用含x 的式子分别表示两种购物优惠后所花的钱数;(2)当商品价格是多少元时,两种优惠后所花钱数相同;(3)若某人计划在该超市购买价格为2700元的一台电脑,请分析选择那种优惠更省钱?26.如图1,线段AB=60厘米.(1)点P沿线段AB自A点向B点以4厘米/分的速度运动,同时点Q沿直线自B点向A点以6厘米/分的速度运动,几分钟后,P、Q两点相遇?(2)几分钟后,P、Q两点相距20厘米?(3)如图2,AO=PO=8厘米,∠POB=40°,现将点P绕着点O以20度/分的速度顺时针旋转一周后停止,同时点Q沿直线BA沿B点向A点运动,假若P、Q两点也能相遇,求点Q 的速度.27.【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?参考答案与解析一.选择题1.(2016•荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元 D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.【解】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,得:x=80.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,据数量关系列出方程(或方程组)是关键.2.(2016•台湾)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A.2:1 B.7:5 C.17:12 D.24:17【分析】设一楼座位总数为7x,二楼座位总数为5y,分别表示出一、二楼售出、未售出的座位数,由一、二楼未售出的座位数相等得到y关于x的表达式,再列式表示此场音乐会售出与未售出的座位数比,将y代入化简即可得.【解答】解:设一楼座位总数为7x,则一楼售出座位4x个,未售出座位3x个,二楼座位总数为5y,则二楼售出座位3y个,未售出座位2y个,根据题意,知:3x=2y,即y=x,则===,故选:C.【点评】本题主要考查方程思想及分式的运算,根据一、二楼未售出的座位数相等得到关于y关于x的表达式是解题的关键.3.(2016•阜新)商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元【分析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.【解答】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=200.故选:C.【点评】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.4.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()A.赚了5元B.亏了25元C.赚了25元D.亏了5元【分析】可分别设两种计算器的进价,根据赔赚可列出方程求得,再比较两计算器的进价和与售价和之间的差,即可得老板的赔赚情况.【解答】解:设赚了20%的进价为x元,亏了20%的一个进价为y元,根据题意可得:x(1+20%)=60,y(1﹣20%)=60,解得:x=50(元),y=75(元).则两个计算器的进价和=50+75=125元,两个计算器的售价和=60+60=120元,即老板在这次交易中亏了5元.故选D.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.6.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A.7.5秒B.6秒C.5秒D.4秒【分析】应先算出甲乙两列车的速度之和,乘以高速列车驶过窗口的时间即为高速列车的车长,把相关数值代入即可求解.【解答】解:设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x秒,则100÷5×x=80,解得x=4.故选D.【点评】考查了一元一次方程在行程问题中的应用;注意两车相向而行,速度为两车的速度之和,路程为静止的人看到的车长.7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是()A.8折B.7.5折C.6折D.3.3折【分析】设这件衣服的进价为a元,标价为a (1+60%)元,再设打了x折,再由打折销售仍获利20%,可得出方程,解出即可.【解答】解:设这件衣服的进价为a元,打了x 折,依题意有a(1+60%)﹣a=20%a,解得:x=7.5.答:这件玩具销售时打的折扣是7.5折.故选:B.【点评】此题考查一元一次方程的实际运用,掌握销售问题中的基本数量关系是解决问题的关键.8.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A、B、C三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是()A.20 B.25 C.30 D.35【分析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.【解答】解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x==20,②x==25③x==35,④x==25⑤x==35⑥x==40综上所述,折痕对应的刻度可能为20、25、35,40;故选:C.【点评】考查了一元一次方程的应用和图形的剪拼,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的运用.二.填空题(共8小题)9.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180元.【分析】设该件服装的成本价是x元.根据“利润=标价×折扣﹣进价”即可得出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程300×﹣x=60.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.10.(2016•荆门)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有16台.【分析】设购置的笔记本电脑有x台,则购置的台式电脑为(100﹣x)台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为(100﹣x)台,依题意得:x=(100﹣x)﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16【点评】本题考查了一元一次方程的应用,解题的关键是列出方程x=(100﹣x)﹣5.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.11.(2016•牡丹江)某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件150元.【分析】设该商品的标价为每件为x元,根据八折出售可获利20元,可得出方程:80%x﹣100=20,再解答即可.【解答】解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.【点评】此题考查了一元一次方程的应用,关键是仔细审题,得出等量关系,列出方程,难度一般.12.(2016•绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296元.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x 区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.13.(2016•赤峰)甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.【分析】直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.【解答】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.【点评】此题主要考查了一元一次方程的应用,根据题意结合时针与分针转动的时间得出等式是解题关键.14.某次数学测验共有20题,每题答对得5分,不答得0分,答错得﹣2分.若小丽这次测验得分是质数,则小丽这次最多答对17题.【分析】由于题目是求小丽最多答对的题数,此时小丽得分最高.因为0乘以任何数是0,根据小丽这次成绩是质数可知,她答对的题为奇数,因为5乘以任何数奇数才是奇数,2乘以任何数是偶数,所以她最多答对19,17,15,然后根据测验规则,逐一检验即可.【解答】解:最多答对17道.原因如下:如果答对19道,若另一道不答,是95分,不符合题意;若另一道答错,得93分,也不符合题意.如果答对17道,若另三道不答,是85分,不符合题意;若另两道不答,一道答错,得83分,符合题意.故答案为:17.【点评】本题考查了一元一次方程的应用,解题的关键在于根据得分是质数判断做对题的个数.15.李明同学利用暑假外出旅游一周,已知这一周各天的日期之和是126,那么李斌同学回家的日期是21号.【分析】日历中横行相邻两天相差为1,利用这个关系可把外出的一周都用一个未知数表示出来,用日期之和为,126作为相等关系列方程,求解.【解答】解:设李斌同学回家的日期是x号,由题意得:(x﹣6)+(x﹣5)+(x﹣4)+(x﹣3)+(x﹣2)+(x﹣1)+x=126,解得x=21.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题利用的日历上横行中的数据关系要知道.16.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三.解答题17.(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【分析】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.18.(2016•海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少?【分析】设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x)元,依题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.。
北师大版八年级数学上册第五章5.3应用二元一次方程组---鸡兔同笼同步测试一.选择题1.某部队第一天行军5h,第二天行军6h,两天共行军120km,且第二天比第一天多走2km,设第一天和第二天行军的速度分别为xkm/h和ykm/h,则符合题意的二元一次方程是()A.5x+6y=118 B.5x=6y+2 C.5x=6y﹣2 D.5(x+2)=6y 2.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.42{43x yx y+==B.42{34x yx y+==C.42{1134x yx y-==D.42{43y xx y+==3.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C. D.4.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为()A.B.C.D.5.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.B.C.D.6.如图,直线a∥b,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为()A .⎩⎨⎧=+-=18056y x y xB .⎩⎨⎧=++=18056y x y x C .⎩⎨⎧=+-=9056y x y x D .⎩⎨⎧=++=9056y x y x7.某班分组活动,若每组6人,则余下5人:若每组7人,则又少4人.设总人数为x ,组数为y ,则可列方程组( )A .B .C .D .8.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .B .C .D .二.填空题9.甲、乙两人各工作5天,共生产零件80件.设甲每天生产零件x 件,乙天生产零件y 件,可列二元一次方程 .10.为了奖励数学社团的同学,张老师恰好用100元的网上购买《数学史话》、《趣味数学》两种书(两种书都购买了若干本),已知《数学史话》每本10元,《趣味数学》每本6元,则张老师最多购买了 《数学史话》11.甲班有男生x 人,女生y 人,其中男生比女生的2倍少8人,列出关于x ,y 的二元一次方程 .12.某车间有56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,其他y 名工人生产螺母,每天生产的螺栓和螺母按1:2配套,则列方程组为 .13.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x 匹,大马有y 匹,依题意,可列方程组为 .14.如下图,在长方形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是 .三.解答题15.设甲数为x ,乙数为y ,根据下列语句,列出二元一次方程:(1)甲数的一半与乙数的的和为100;(2)甲数与乙数的2倍的和为﹣5;(3)甲数的2倍与乙数的的差为﹣1;(4)甲数翻一番后与乙数的差的一半等于9.16.列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后3小时相遇;如果乙比甲先走2小时,那么在甲出发后2.5小时相遇.甲、乙两人每小时各走多少千米?17.为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知八年级一班在8场比赛中得到13分,问八年级一班胜、负场数分别是多少?18.北京2008年奥运会跳水决赛的门票价格如下表:等级 A B C票价(元/张)未知未知150小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.(1)若小聪购买1张A等票和7张B等票共需花费多少元?(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为张.(该小题直接写出答案,不必写出过程.)19.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.两项工程同时施工又同时完工,问乙、丙二队合作了多少天?20.甲、乙、丙三人到文具店购买同一种笔记本和钢笔,甲、乙两人购买的数量及总价分别如表:(1)求笔记本和钢笔的单价;(2)丙购买24本笔记本和若干支钢笔共花去526元,甲发现丙的总价算错了,请通过计算加以说明.21. 二果问价九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?答案提示1.C.2.B 3.D.4.A.5.B.6.B.7.D.8.C.9. 5(x+y)=80.10.7本.11.x=2y﹣8.12..13..14.44cm2.15.解:如果设甲数为x,乙数为y,那么:(1)甲的一半为x,乙数的为y,那么方程可列为x+y=100;(2)甲数与乙数的2倍分别为x,2y,那么方程可列为x+2y=﹣5;(3)甲数的2倍与乙数的分别为2x,y,所以方程可列为2x﹣y=﹣1;(4)甲数翻一番后为2x,甲数翻一番后与乙数的差的一半为(2x﹣y),那么方程可列为:(2x﹣y)=9.16.解:设甲,乙速度分别为x,y千米/时,,,甲的速度是3.6千米每小时,乙的速度是6千米每小时.17.5,3.18.解:(1)设购买1张A等票需要x元,1张B等票需花费y元,根据题意可得:,解得:,故500+7×300=2600(元),答:小聪购买1张A等票和7张B等票共需花费2600元;(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为8或9或10张.故答案为:8或9或10.19.解:设乙、丙二队合作了x 天,丙队与甲队合作了y 天.将工程A 视为1,则工程B 可视为1+25%=,由题意得,由此可解得x =15,答:乙、丙二队合作了15天.20.解:(1)设笔记本的单价为x 元,钢笔的单价为y 元,依题意可知:20123121525330x y x y ⎨⎩++⎧==, 解得126x y ⎧⎨⎩==. 答:笔记本的单价为12元,钢笔的单价为6元.(2)526-24×12=238(元),所以买钢笔的总钱数为238元,所以钢笔的支数=238÷6=3923, 这与钢笔支数为整数不符合,故总价算错了.21.分析:这首古诗词翻译成白话文,即:九百九十九文钱可买一千个甜果和苦果,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买多少个?买甜果、苦果各需多少文钱?解:设甜果x 个,苦果y 个,根据题意,得⎩⎨⎧ x +y =1 000,119x +47y =999. 解得⎩⎨⎧ x =657,y =343.因为119x =803,47y =196, 所以甜果657个需803文钱,苦果343个需196文钱.。
2022-2023学年北师大版七年级数学上册《5.6应用一元一次方程—追赶小明》同步达标测试题(附答案)一.选择题(共10小题,满分40分)1.我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问银子共有几两?设银子共有x两,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.2.某种商品每件的进价为80元,标价为120元,为了拓展销路,商店准备打折销售,若使利润率为20%,设商店打x折销售,则依题意得到的方程是()A.120×﹣80=120×20%B.120x﹣80=120×20%C.120×﹣80=80×20%D.120x﹣80=80×20%3.某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/时,求两个码头之间的距离,若设两个码头之间的距离为x千米,则可得方程为()A.+4B.C.D.4.《九章算术》中有这样一道数学问题,原文如下:清明游园,共坐八船,大船满六,小船满四,三十八学子,满船坐观.请问客家,大小几船?其大意为:清明时节出去游园,所有人共坐了8只船,大船每只坐6人,小船每只坐4人,人刚好坐满,问:大小船各有几只?若设有x只小船,则可列方程为()A.4x+6(8﹣x)=38B.6x+4(8﹣x)=38C.4x+6x=38D.8x+6x=385.如图,一个棱长为10cm的立方块固定在一个长、宽、高分别为20cm,20cm,30cm的长方体容器的底部,现将一个直径为20cm,高为20cm的圆柱形容器盛满水倒入长方体容器内,则此时长方体容器内水面的高度约为()cm(不计耗损,π取3)A.15B.17.5C.22.5D.306.父亲和女儿的年龄之和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的,则女儿现在的年龄是()岁.A.24B.26C.28D.307.某次篮球比赛计分规则为:胜一场积2分,负一场积1分,没有平场,八一队在篮球联赛共14场比赛中积23分,那么八一队胜了()场.A.6B.7C.8D.98.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件.现要用6m3钢材制作这种仪器,为了使制作的A、B部件恰好配套,设应用xm3钢材制作A部件,则可列方程为()A.40x×3=240×(6﹣x)B.40x=240×(6﹣x)×3C.40×(6﹣x)×3=240x D.40×(6﹣x)=240x×39.下图是某月的月历,在此月历上可以用一个“十”字图出5个数(如3,9,10,11,17)照此方法,若圈出的5个数中,最大数与最小数的和为38,则这5个数的和为()A.50B.85C.95D.10010.一商店以每件75元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商店卖这两件商品总的盈亏情况是()A.亏损10元B.盈利10元C.亏损20元D.不盈不亏二.填空题(共5小题,满分30分)11.用一根长为10米的铁丝围成一个长方形,使该长方形的长比宽多1.4米,则这个长方形的长为米.12.《诗经》是我国第一部诗歌总集,共分为《风》《雅》《颂》三部分.其中《颂》有40篇,比《风》的篇数少,《风》有篇.13.某市城区为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为立方米.14.A、B两地相距215千米,甲骑自行车从A地去B地,乙开汽车从B地去A地,若汽车的速度是自行车速度的4倍,若2小时后两车相距25千米,则自行车的速度为千米/时.15.有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的,则这个两位数是.三.解答题(共5小题,满分50分)16.2022年三八妇女节期间,太原市某单位送给该区所有中学女教师的礼物是每位老师一条“粉水晶樱花项链”,送给该区所有小学女教师的礼物是每位老师一条“天然淡水珍珠项链”,该单位用54800元购买了“粉水晶樱花项链”和“天然淡水珍珠项链”共400条,已知每条“粉水晶樱花项链”是130元,每条“天然淡水珍珠项链”140元,向该单位共买了“粉水晶樱花项链”和“天然淡水珍珠项链”各多少条?17.为响应国家节能减排政策,某班开展了节电竞赛活动.通过随手关灯、提高夏季空调温度、及时关闭电源等行为,小明和小玲两位同学半年共节电55度.据统计,节约1度电相当于节约0.4千克“标准煤”,在节电55度产生的节煤量中,小明“节煤量”的2倍比小玲多8千克.设小明半年节电x度.请回答下面的问题:(1)用含x的代数式表示小玲半年节电量为度,用含x的代数式表示这半年小明节电产生的“节煤量”为千克,用含x的代数式表示这半年小玲节电产生的“节煤量”为千克;(不需要化简)(2)请列方程求出小明半年节电的度数.18.将一段长为1.2千米河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24米,乙队每天整治16米,求甲、乙两队分别整治河道多少米?19.某服装厂生产一种西装和领带,西装每套定价300元,领带每条定价50元.厂方在国庆节期间开展促销活动期间,向客户提供两种优惠方案:国庆特惠方案一:买一套西装送一条领带;方案二:西装和领带都按定价的九折付款.(1)某客户要到该服装厂购买西装20套,领带30条.通过计算说明此时按哪种方案购买较为合算.(2)若客户要到该服装厂购买西装20套,领带x条(x>20).①若该客户按方案一购买需付款元(用含x的代数式表示);②若该客户按方案二购买,需付款元(用含x的代数式表示);③当x=时,两种优惠方案所付的钱数相同.(直接填空,不说明理由)20.列方程解应用题十七中学刚完成校舍的修建,有一些相同的办公室需要粉刷墙面.一天5名一级技工去粉刷了8个办公室外还多粉刷了60平方米的展示厅墙面;同样时间内4名二级技工粉刷了7个办公室,结果有10平方米的墙面未来得及粉刷完,已知每名一级技工比二级技工一天多粉刷10平方米的墙面.(1)求每个办公室需要粉刷的墙面面积.(2)已知每天需要给每名一级技工支付费用180元,每天需要给每名二级技工支付费用160元.十七中学有40个办公室的墙面和600平方米的展览墙需要粉刷,现有5名一级技工的甲工程队,4名二级技工的乙工程队,要来粉刷墙面.十七中学有两个选择方案,方案一:全部由甲工程队粉刷;方案二:全部由乙工程队粉刷;若使得总费用最少,十七中学应如何选择方案,请通过计算说明.参考答案一.选择题(共10小题,满分40分)1.解:∵银子共有x两,每人7两,还剩4两,∴分银子的人共人;∵银子共有x两,每人9两,还差8两,∴分银子的人共人.又∵分银子的人数不变,∴可列方程组=.故选:D.2.解:设商店应打x折,依题意得120×﹣80=80×20%,故选:C.3.解:设若设两个码头之间的距离为x千米,因此可列方程为﹣4=+4,故选:A.4.解:设有x只小船,则有大船(8﹣x)只,由题意得:4x+6(8﹣x)=38,故选:A.5.解:设长方体容器内水面的高度为xcm,依题意得:20×20×10﹣10×10×10+20×20(x﹣10)=3×()2×20,解得:x=17.5,∴此时长方体容器内水面的高度约为17.5cm.故选:B.6.解:设女儿现在年龄是x岁,则父亲现在的年龄是(91﹣x)岁,根据题意得:91﹣x﹣x=2x﹣(91﹣x),解得:x=28.答:女儿现在的年龄是28岁.故选:C.7.解:设八一队胜了x场,根据题意得:2x+(14﹣x)=23,解得:x=9,答:八一队胜了9场;故选:D.8.解:设应用xm3钢材做A部件,则应用(6﹣x)m3钢材做B部件,由题意得40x×3=240×(6﹣x),故选:A.9.解:设中间数为x,则最大的数(下面的数)为:x+7,最小的数(上面的数)为:x﹣7,左边的数为:x﹣1,右边的数为:x+1,∴总和为:x+x﹣7+x+7+x﹣1+x+1=5x,∵最大数与最小数的和为38,∴x+7+x﹣7=38,解得:x=19,和为:5×19=95,故选C.10.解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:75﹣x=25%x,75﹣y=﹣25%y,解得:x=60,y=100,∴75+75﹣60﹣100=﹣10(元).故选:A.二.填空题(共5小题,满分30分)11.解:设这个长方形的长为x米,则宽是(x﹣1.4)米,根据题意得2(x+x﹣1.4)=10,解得x=3.2,答:这个长方形的长为3.2米.故答案为:3.2.12.解:设《风》有x篇,根据题意得x(1﹣)=40,解得:x=160,故答案为:160.13.解:设这户居民5月的用水量为x立方米.列方程为:7×1+(x﹣7)×2=17,解得x=12.故答案为:12.14.解:设自行车的速度为x千米/时,则汽车的速度为4x千米/时,根据题意得:2x+8x=215+25或2x+8x=215﹣25,解得x=19或x=24,∴自行车的速度为19或24千米/时,故答案为:19或24.15.解:设十位上的数字是x,则个位上的数字是x+3,这个两位数是10x+(x+3),根据题意得:x+(x+3)=[10x+(x+3)],解得x=3,∴10x+(x+3)=10×3+(3+3)=36,答:这个两位数是36.故答案为:36.三.解答题(共5小题,满分50分)16.解:设该单位购买了“粉水晶樱花项链”x条,则购买“天然淡水珍珠项链”(400﹣x)条,依题意得:130x+140(400﹣x)=54800,解得:x=120,∴400﹣x=400﹣120=280.答:该单位买了“粉水晶樱花项链”120条,“天然淡水珍珠项链”280条.17.解:(1)由题意知,小玲半年节电量为55﹣x,这半年小明节电产生的“节煤量”为0.4x,这半年小玲节电产生的“节煤量”为0.4(55﹣x),故答案为:(55﹣x),0.4x,0.4(55﹣x);(2)由题意知,0.4x×2﹣8=0.4(55﹣x),解得:x=25,答:小明半年节电的度数为25度.18.解:设甲整治河道为x米,则乙整治河道为(1200﹣x)米,由题意得,,解得:x=720,1200﹣x=480(米),答:甲、乙两队分别整治河道720米、480米.19.解:(1)选择方案一所需费用为300×20+50×(30﹣20)=6500(元),选择方案二所需费用为300×0.9×20+50×0.9×30=6750(元).∵6500<6750,∴选择方案一购买较为合算;(2)①若该客户按方案一购买,需付款300×20+50(x﹣20)=(5000+50x)(元),故答案为:(5000+50x);②若该客户按方案二购买,需付款300×0.9×20+50×0.9x=(5400+45x)(元),故答案为:(5400+45x);③依题意得:5000+50x=5400+45x,解得:x=80,∴当x=80时,两种优惠方案所付的钱数相同.故答案为:80.20.解:(1)设每个办公室需要粉刷墙面的面积为xm2,根据题意得,﹣=10,解得x=30.答:每个办公室需要粉刷墙面的面积为30m2;(2)40×30+600=1800(m2).方案一:甲队每日工作量:8×30+60=300(m2),1800÷300=6(天),6×5×180=5400(元);方案二:乙队每日工作量:7×30﹣10=200(m2),1800÷200=9(天),9×4×160=5760(元),∵5400<5760,∴选择方案二总费用少.。
【编者按】要想学好数学,多做试题是难免的,这样才能够掌握各种试题类型的解题思路。
在考试中应用自如,使自己的水平得到正常甚至超长发挥。
3.4用一次方程(组)解决问题水平测试一、填得圆圆满满(每小题3分,共24分)1.设甲数为,乙数为,且甲数的倍与乙数的的和是,则可列方程________.2.设有节车厢,吨货物,若每节装吨,则还剩下吨未装下;若每节装吨,则刚好剩下节车厢,则可列方程组为__ ______.3.两数之和为,两数之差为,则这两个数分别为________.4.两地相距千米,一艘船航行于两地之间,若顺流需用小时,逆流需用小时,则船在静水中的速度与水流的速度分别是________.试题下载:用一次方程(组)解决问题同步测试查字典数学网初一数学课件栏目。