(完整版)二元一次方程组测试及答案
- 格式:doc
- 大小:165.86 KB
- 文档页数:4
《二元一次方程组》试卷(满分:100分时间:120分钟)姓名:一、选择题(每小题5分,共40分)1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(•)A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题(每小题2分,共14分)9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.11.写出一个解为12xy=-⎧⎨=⎩的二元一次方程组__________.12.a-b=2,a-c=12,则(b-c)3-3(b-c)+94=________.13.已知32111x xy y==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______.14.若2x5a y b+4与-x1-2b y2a是同类项,则b=________.15.方程mx-2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t+-==4的解为________.三、解答题17.解方程组(每小题4分,共8分)(1)257320x yx y-=⎧⎨-=⎩33(2)255(2)4x yx y+⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x,求代数式2322x xy yx xy y+---的值.(本小题5分)19.已知方程组256351648x y x yax by bx ay+=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b)2004的值.(本小题5分)20.已知x=1是关于x的一元一次方程ax-1=2(x-b)的解,y=1是关于y•的一元一次方程b(y-3)=2(1-a)的解.在y=ax2+bx-3中,求当x=-3时y值.(本小题5分)21.甲、乙两人同解方程组542ax y x by +=⎧⎨=-⎩a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075(410x b a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m 3木料可以做方桌的桌面50•个或做桌腿300条,现有10m 3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A 、B 两地同时相向而行,上午10时相距36km ,•二人继续前行,到12时又相距36km ,已知甲每小时比乙多走2km ,求A ,B 两地的距离.(•本小题6分)。
初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。
第十章 二元一次方程组 单元测试第Ⅰ卷(选择题,共16分)一、选择题(每题2分 ,共16分)1.下列方程中,属于二元一次方程的是( ) A .3-5x=2x+2 B .8-x=1y+1 C .m -3n=5s D .3s+11=5t 2.原创题若x 、y 都是质数,则二元一次方程2005x y += 的解有( ) A.1组; B.2组; C.3组; D.无数组. 3.自编题 设x ay b=⎧⎨=⎩是方程3x -y=0的一个解,那么 ( )A. a,b 一定为正数;B. a,b 一定是负数;C. a,b 必同为0;D. a,b 不可能异号.4. 自编题 若二元一次方程组22x y k k x y +=⎧⎪⎨-=⎪⎩的解也是二元一次方程3x -4y=6的解,则k 的值为 ( )A. -6B. 6C. 4D. 8 5. 原创题若|3523+-y x |+(6x+5y -8)2=0,则x 2-xy+y 2的值为 ( A)A.943 B. -943 C. 957D. 957-6.一列快车和一列慢车的长度分别为180米和225米,若同向行驶,从快车追及慢车到全部超过81秒,如果快、慢车速分别为x 米/秒和y 米/秒,那么表示其等量关系的方程是 ( ) A. 81(x -y)=225; B. 81(x -y)=180; C. 81(x -y)=225-180; D. 81(x -y)=225+1807. 原创题一张试卷一共只有25道选择题,做对一题得4分,做错一题倒扣2分,李明同学做了全部试题,得了88分,那么他做对了( )A 、21题B 、22题C 、23题D 、24题8.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )住院医疗费(元) 报销率(%) 不超过500元的部分 0 超过500~1000元的部分 60 超过1000~3000元的部分 80 ……A 、1000元B 、1250元C 、1500元D 、2000元第Ⅱ卷(非选择题,共84分)二、填空题(每题2分 ,共16分) 9. 自编题如果方程6123=+y x 变形为用y 的代数式表示x,那么____________. 10. 自编题方程3x+4y=10正整数解是_______________. 11.若x :y =3:2,且1323=+y x ,则=x ,y = . 12.若100,2x x y y =-=⎧⎧⎨⎨==⎩⎩是二元一次方程mx -ny -10=0的解,则m+n=______. 13.自编题方程组20,x y x y a+=⎧⎨-=⎩的解是15,,x y b =⎧⎨=⎩,则a=_______,b=________.14.自编题方程组200,2_____x y x y +=⎧⎨-=⎩的解是150,_____.x y =⎧⎨=⎩15.原创题某种商品的市场需求量E (千件)和单价F (元/件)服从需求关系13E+F -173=0,•则当单价为4元时,市场需求量为________;若出售一件商品要在原单价4元的基础上征收税金1元,市场需求变化情况是__________.16.甲、乙两种糖果,售价分别为20元/千克和24元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现在糖果的售价有了调整:甲种糖果的售价上涨了8%,乙种糖果的售价下跌了10%.若这种混合糖果的售价恰好保持不变,则甲、乙两种糖果的混合比例应为甲︰乙= .三、解答题(第17题每题4分 ,第18、19题每题6分,其余每题8分共68分) 17. 用适当的方法解下列二元一次方程组: (1)解方程组7,28.x y x y +=⎧⎨-=⎩①②(2)00000042,0.8 1.1421.x y x y +=⎧⎨+=⨯⎩18.原创题若方程组4322,(3) 3.x ymx m y+=⎧⎨+-=⎩①②的解满足x=2y,求m的值.19.原创题用一根长60cm的铁丝围成一个长方形,且使长方形的宽是长的57,•求长方形的长与宽.20.用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身、多少张制盒底,可以正好制成整套罐头盒?21.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?22.甲、乙两人环绕长为400米的环形跑道散步.如果两人从同一点背道而行,•那么经过2分钟相遇;如从同一点同向而行,那么经过20分钟两人相遇,如甲的速度比乙快,求两人散步速度各是多少?23.商场销售A、B两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A种衬衣降价20%出售,B 种衬衣按原价出售,调整后,一周内A种衬衣的销售量增加了20件,B种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?24. 原创题有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?25.原创题 阅读理解.解方程组⎪⎪⎩⎪⎪⎨⎧=-=+1412723yxy x 时,如果设n y m x ==1,1,则原方程组可变形为关于m 、n 的方程组⎩⎨⎧=-=+142723n m n m 。
- 二元一次方程组习题及答案100道1.2x+9y=813x+y=342.9x+4y=358x+3y=303.7x+2y=527x+4y=624.4x+6y=549x+2y=875.2x+y=72x+5y=196.x+2y=213x+5y=567.5x+7y=525x+2y=228.5x+5y=65- . - 总结资料-精心整理7x+7y=2039.8x+4y=56 x+4y=21 10.5x+7y=4115.9x+4y=46 7x+4y=42 16.9x+7y=1354x+y=41精心整理. .17.3x+8y=51x+6y=2718.9x+3y=994x+7y=9519.9x+2y=383x+6y=1820.5x+5y=457x+9y=6921.8x+2y=287x+8y=6222.x+6y=143x+3y=2723.7x+4y=672x+8y=2624.5x+4y=527x+6y=7425.7x+y=9. .word.zl.精心整理4x+6y=1626.6x+6y=486x+3y=4227.8x+2y=16答案:x=48y=47 (2)18x+23y=2303 74x-y=1998答案:x=27y=79 精心整理. .(3)44x+90y=779644x+y=3476答案:x=79y=48(4)76x-66y=408230x-y=2940答案:x=98y=51(5)67x+54y=854671x-y=5680答案:x=80y=59(6)42x-95y=-141021x-y=1575答案:x=75y=48(7)47x-40y=85334x-y=2006答案:x=59y=48(8)19x-32y=-178675x+y=4950. .word.zl.精心整理答案:x=66y=95(9)97x+24y=7202 58x-y=2900答案:x=50y=98(13)80x-87y=2156 22x-y=880答案:x=40y=12(14)32x+62y=5134 精心整理. . 57x+y=2850答案:x=50y=57(15)83x-49y=8259x+y=2183答案:x=37y=61(16)91x+70y=584595x-y=4275答案:x=45y=25(17)29x+44y=528188x-y=3608答案:x=41y=93(18)25x-95y=-435540x-y=2000答案:x=50y=59(19)54x+68y=328478x+y=1404答案:x=18y=34. .word.zl.精心整理(20)70x+13y=352052x+y=2132答案:x=41y=50 (21)48x-54y=-318652x-y=4628答案:x=89y=30 (25)62x-98y=-256446x-y=2024精心整理. .答案:x=44y=54(26)79x-76y=-438826x-y=832答案:x=32y=91(27)63x-40y=-82142x-y=546答案:x=13y=41(28)69x-96y=-120942x+y=3822答案:x=91y=78(29)85x+67y=733811x+y=308答案:x=28y=74(30)78x+74y=1292814x+y=1218答案:x=87y=83(31)39x+42y=5331. .word.zl.精心整理59x-y=5841答案:x=99y=35 (32)29x+18y=1916 58x+y=2320答案:x=25y=86 (36)11x-43y=-1361 47x+y=799答案:x=17y=36 精心整理(37)33x+59y=3254 94x+y=1034答案:x=11y=49 (38)89x-74y=-2735 68x+y=1020答案:x=15y=55 (39)94x+71y=7517 78x+y=3822答案:x=49y=41 (40)28x-62y=-4934 46x+y=552答案:x=12y=85 (41)75x+43y=8472 17x-y=1394答案:x=82y=54 (42)41x-38y=-1180 29x+y=1450答案:x=50y=85 (43)22x-59y=824 63x+y=4725答案:x=75y=14(47)21x-63y=84 20x+y=1880答案:x=94y=30 (48)48x+93y=975638x-y=950答案:x=25y=92 (49)99x-67y=4011 75x-y=5475答案:x=73y=48 (50)83x+64y=9291 90x-y=3690答案:x=41y=92 (51)17x+62y=3216 75x-y=7350答案:x=98y=25 (52)77x+67y=2739 14x-y=364答案:x=26y=11 (53)20x-68y=-4596 14x-y=924答案:x=66y=87(54)23x+87y=4110 83x-y=5727答案:x=69y=29 (55)22x-38y=80471x+y=5609答案:x=79y=45 (59)51x-61y=-1907 89x-y=2314答案:x=26y=53 (60)69x-98y=-2404 21x+y=1386答案:x=66y=71 (61)15x-41y=754 74x-y=6956答案:x=94y=16 (62)78x-55y=656 89x+y=5518答案:x=62y=76 (63)29x+21y=1633 31x-y=713答案:x=23y=46 (64)58x-28y=2724 35x+y=3080答案:x=88y=85 (65)28x-63y=-225488x-y=2024答案:x=23y=46 (66)43x+50y=7064 85x+y=8330答案:x=33y=34 (70)15x+26y=1729 94x+y=8554答案:x=91y=14(71)64x+32y=3552 56x-y=2296答案:x=41y=29 (72)94x+66y=10524 84x-y=7812答案:x=93y=27 (73)65x-79y=-5815 89x+y=2314答案:x=26y=95 (74)96x+54y=6216 63x-y=1953答案:x=31y=60 (75)60x-44y=-352 33x-y=1452答案:x=44y=68 (76)79x-45y=510 14x-y=840答案:x=60y=94 (77)29x-35y=-218 59x-y=4897答案:x=83y=75(81)93x-19y=286x-y=1548答案:x=18y=88 (82)19x-96y=-591030x-y=2340答案:x=78y=77 (83)80x+74y=8088 96x-y=8640答案:x=90y=12 (84)53x-94y=1946 45x+y=2610答案:x=58y=12 (85)93x+12y=9117 28x-y=2492答案:x=89y=70 (86)66x-71y=-1673 99x-y=7821答案:x=79y=97 (87)43x-52y=-1742 76x+y=1976答案:x=26y=55(88)70x+35y=8295 40x+y=2920答案:x=73y=91 (89)43x+82y=475769x-y=6003答案:x=87y=16 (93)46x+34y=4820 71x-y=5183. .答案:x=73y=43(94)47x+98y=586155x-y=4565答案:x=83y=20(95)30x-17y=23928x+y=1064答案:x=38y=53(96)55x-12y=411279x-y=7268答案:x=92y=79(97)27x-24y=-45067x-y=3886答案:x=58y=84(98)97x+23y=811914x+y=966答案:x=69y=62(99)84x+53y=11275. .word.zl.精心整理70x+y=6790答案:x=97y=59 (100)51x-97y=297 19x-y=1520精心整理。
二元一次方程组(时间:45分钟 满分:100分) 姓名一、选择题(每小题5分,共20分)1. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩2.由132x y-=,可以得到用x 表示y 的式子是( )A .223x y -=B .2133x y =-C .223x y =-D .223xy =-3.方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩4.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩二、填空题(每小题6分,共24分)5.在349x y +=中,如果2y = 6,那么x = 。
6.已知18x y =⎧⎨=-⎩是方程31mx y -=-的解,则m = 。
7.若方程m x + n y = 6的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则m = ,n = 。
8.如果2150x y x y -+=+-=,那么x = ,y = 。
三、解下列方程组(每小题8分,共16分)9.1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩10.()()344126x y x y x y x y⎧+--=⎪⎨+-+=⎪⎩四、综合运用(每小题10分,共40分)11.用16元买了60分、80分两种邮票共22枚。
60分与80分的邮票各买了多少枚?12.已知梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,求梯形的上下底。
13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。
二元一次方程组练习题(含答案) 二元一次方程组练题一.解答题(共16小题)1.解下列方程组:1)x+2y-1=23x-2y=52)1-yx+2/3=1/22y+3=3x3)5x+2y=11a4x-4y=6a4)2x+3y=73x-2y=15)2x-3y=75x+4y=176)2x+3y=13x-2y=57)3x-4y=-12x+5y=138)x(y+1)+y(1-x)=2x(x+1)-y-x^2=09)3x+y=72x-3y=-810)x^2+xy=2y-x+2=02.求适合的x,y的值。
已知关于x,y的二元一次方程y=kx+b的解有和。
1)求k,b的值。
2)当x=2时,y的值。
3)当y=3时,x的值为多少?解答:1.1)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=3,y=-2.2)将第一个方程变形得到y=(1/2-1+xy)/x,代入第二个方程中,得到x=3,y=-1.3)将第二个方程变形得到y=x-3/2,代入第一个方程中,得到x=2,y=1.4)将第二个方程变形得到y=(3x-1)/2,代入第一个方程中,得到x=2,y=1.5)将第一个方程变形得到y=(2x-7)/3,代入第二个方程中,得到x=1,y=-1.6)将第二个方程变形得到y=(3x-5)/2,代入第一个方程中,得到x=1,y=-1.7)将第二个方程变形得到y=(3x+1)/4,代入第一个方程中,得到x=5,y=2.8)将第一个方程变形得到y=(2-x^2)/(1-x),代入第二个方程中,得到x=1,y=1.9)将第二个方程变形得到y=(2x+8)/3,代入第一个方程中,得到x=1,y=1.10)将第一个方程变形得到y=2/x-x,代入第二个方程中,得到x=1,y=0.2.1)由于y=kx+b,所以当x=1时,y=k+b;当x=2时,y=2k+b。
又因为已知y=3时,x的值为多少,所以将y=kx+b代入得到kx+b=3,解得x=(3-b)/k。
第七章二元一次方程组单元检测题(附参考答案)(时间90分钟,满分120分)班级____________________ 姓名___________ 学号______一、选择题(每小题3分,共30分)1.在(1)2,3,1,1,(2)(3)(4)1;1;7;7 x x x xy y y y====-=-===-⎧⎧⎧⎧⎨⎨⎨⎨⎩⎩⎩⎩各组数中,是方程2x-y=5的解是() A.(2)(3) B.(1)(3) C.(3)(4) D.(1)(2)(4)2.若x+4y=-15和3x-5y=6有相同的解,则相同的解是().A.33,33...3333 x x x xB C Dy y y y=-===-⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩3.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣14.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×26.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.7.笼中有鸡和兔,它们的头共有20个,脚共有56只,笼中鸡的数目x•和兔的数目y分别是().A.8101112...121098 x x x xB C Dy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩8.有一根7米长的钢条,要把它锯成两段,使得每一段的长度都是整数,有()种锯法.A.3 B.4 C.5 D.69.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了( )(A)2场 (B)5场 (C)7场 (D)9场10.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B. 3 C.2 D. 111.下列方程:①;②;③;④;⑤;⑥.其中是二元一次方程的是()。
初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。
4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。
二元一次方程组计算题60题(含答案)一、解答题1. \(x+y=15, x-y=5\),求\(x,y\)的值。
解:将方程组相加得\(2x=20\),解得\(x=10\),代入其中一个方程得\(10+y=15\),解得\(y=5\),所以\(x=10, y=5\)。
2. \(2x+y=9, x-3y=-3\),求\(x,y\)的值。
解:将方程组相加得\(3x-2y=6\),解得\(y=-3\),代入其中一个方程得\(2x+(-3)=9\),解得\(x=6\),所以\(x=6, y=-3\)。
3. \(3x-2y=1, 2x+y=5\),求\(x,y\)的值。
解:将方程组相加得\(5x-y=6\),解得\(y=3\),代入其中一个方程得\(2x+3=5\),解得\(x=1\),所以\(x=1, y=3\)。
4. \(x+2y=6, 2x-y=1\),求\(x,y\)的值。
解:将方程组相加得\(3x+y=7\),解得\(y=1\),代入其中一个方程得\(x+2=6\),解得\(x=4\),所以\(x=4, y=1\)。
5. \(3x+2y=11, 4x+3y=15\),求\(x,y\)的值。
解:将方程组相加得\(7x+5y=26\),解得\(y=1\),代入其中一个方程得\(3x+2=11\),解得\(x=3\),所以\(x=3, y=1\)。
6. \(x-y=7, x+y=3\),求\(x,y\)的值。
解:将方程组相加得\(2x=10\),解得\(x=5\),代入其中一个方程得\(5-y=7\),解得\(y=-2\),所以\(x=5, y=-2\)。
7. \(2x+y=8, x-2y=-6\),求\(x,y\)的值。
解:将方程组相加得\(3x-y=2\),解得\(y=1\),代入其中一个方程得\(2x+1=8\),解得\(x=3\),所以\(x=3, y=1\)。
8. \(3x-2y=2, 4x+y=5\),求\(x,y\)的值。
第八章二元一次方程组单元测试题题号一二三总分得分一、选择题(本大题共9 小题,共27 分)1.方程 2x- =0, 3x+y=0,2x+xy=1, 3x+y-2x=0, x2-x+1=0 中,二元一次方程的个数是()A. 5个B. 4个C. 3个D. 2个2. 假如 3x m+n+5y m-n-2=0是一个对于x、y 的二元一次方程,那么()A. B. C. D.3.以下各方程的变形,正确的选项是()A.由 3+x=5,得 x=5+3 C. 由y=0,得y=2B.D.由7x= ,得 x=49由3=x-2,得 x=2+34. 假如 x=y,那么以下等式不必定成立的是()A. x+a=y+aB. x-a=y-aC. ax=ayD.=5.已知甲、乙两种商品的进价和为100 元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚 50 元,若甲商品打六折,乙商品打八折,则可赚 30 元,甲、乙两种商品的订价分别为()A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元6.把方程 x=1 变形为 x=2,其依照是()A. 分数的基天性质B. 等式的性质1C. 等式的性质2D. 解方程中的移项7.用“加减法”将方程组中的 x 消去后获得的方程是()A. 3y=2B. 7y=8C. -7y=2D. -7y=88.已知 2x-3y=1,用含 x 的代数式表示 y正确的选项是()A. y= x-1B. x=C. y=D. y=-- x9.在一次野炊活动中,小明所在的班级有x 人,分红 y 组,若每组 7 人,则余下 3 人;若每组 8 人,则缺 5 人,求全班人数的正确的方程组是()A. B. C. D.二、填空题(本大题共 6 小题,共 24 分)10.对于 x、y 方程( k2-1)x2+( k+1)x+2 ky=k+3,当 k= ______ 时,它为一元一次方程,当 k= ______ 时,它为二元一次方程.11.若( 2x-y)2与|x+2 y-5|互为相反数,则(x-y)2005= ______ .12.二元一次方程组的解是 ______ .13.一个两位数的十位数字与个位数字之和等于5,十位数字与个位数字之差为1,设十位数字为 x,个位数字为y,则用方程组表示上述语言为 ______ .14.方程 x( x+3 ) =0 的解是 ______ .15.由方程组,能够获得 x+y+z的值是 ______ .三、计算题(本大题共8 小题,共 49 分)16.解方程组:17. 解方程组:18.解方程组.19. 五一时期,春华旅行社组织一个由成人和学生共20 人构成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票148 元 /张,学生门票20 元 /张,该旅行团购置门票共花销 1936 元,问该团购置成人门票和学生门票各多少张?20.为迎接 6 月 5 日“世界环境日”,某校团委展开“光盘行动”,提议学生截止餐桌上的浪费.该校七年级(1)、( 2)、( 3)三个班共128 人参加了活动,此中七(3)班有 38 人参加,七( 1)班参加的人数比七(2)班多 10 人,请问七( 1)班和七( 2)班各有多少人参加“光盘行动”?21. 广安某水果店计划购进甲、乙两种新出产的水果共140 千克,这两种水果的进价、售价如表所示:进价(元 /千克)售价(元/千克)甲种58乙种913( 1)若该水果店估计进货款为1000 元,则这两种水果各购进多少千克?( 2)若该水果店决定乙种水果的进货量不超出甲种水果的进货量的 3 倍,应如何安排进货才能使水果店在销售完这批水果时赢利最多?此时收益为多少元?22. 某旅行社组织一批旅客出门旅行,原计划租用45座客车若干辆,但有15 人没有座位;若租用相同数目的60 座客车,则多出一辆车,且其他客车恰巧坐满.已知45 座客车租金为每辆 220 元, 60 座客车租金为每辆300 元,问:( 1)这批旅客的人数是多少?原计划租用多少辆45座客车?( 2)若租用同一种车,要使每位旅客都有座位,应当如何租用才合算?23. 为了更好治理岳阳河水质,安岳县污水办理企业计划购置10台污水办理设施,现有A、 B 两种型号的设施,此中每台的价钱、月办理污水量如表:A 型B 型价钱(万元 /台)m n办理污水量(吨/250200月)经检查:买一台 A 型比购 B 型多 3 万元,买 2 台 A 型比购置 3 台 B 型少 5 万元.( 1)求 m, n 的值;( 2)经估算,购置设施自己不超出117 万元,你以为有哪几种购置方案?( 3)在( 2)的条件下,若每个月要求办理无水不低于2050 吨,为节俭资本,请你为企业设计一种最省钱的方案.答案和分析【答案】1.D2.B3. D4. D5. D6. C7. D8.C9.A10.-1; 111.-112.13.14.0 或 -315.316. 解:,① ×3+②得: 16x=48,解得: x=3,把x=3 代入①得: y=2.因此原方程组的解为.17. 解:,① ×2+②得: 9x=18,解得: x=2,把x=2 代入②得: y=1,则方程组的解为.18. 解:方程组整理得:,①-② ×2 得: x=-1,把x=-1 代入②得: y=5 ,则方程组的解为.19.解:设购置成人门票 x 张,学生门票 y 张,由题意得解得答:购置成人门票12 张,学生门票8 张.20. 解:设七(1)班有x人参加“光盘行动”,七(2)班有 y 人参加“光盘行动”,,解得,,即七( 1)班有 50 人参加“光盘行动”,七(2)班有 40 人参加“光盘行动”.21.解:( 1)设购进甲种水果 x 千克,则购进乙种水果( 140-x)千克,依据题意可得:5x+9 ( 140-x) =1000 ,解得: x=65,∴140-x=75(千克),答:购进甲种水果 65 千克,乙种水果 75千克;( 2)由图表可得:甲种水果每千克收益为: 3 元,乙种水果每千克收益为: 4 元,设总收益为W,由题意可得出:W=3 x+4( 140-x) =-x+560,故W 随 x 的增大而减小,则 x 越小 W 越大,由于该水果店决定乙种水果的进货量不超出甲种水果的进货量的3 倍,∴140-x≤3x,解得: x≥35,∴当 x=35 时, W 最大 =-35+560=525 (元),故140-35=105 ( kg).答:当甲购进35 千克,乙种水果105 千克时,此时收益最大为525 元.22. 解:(1)设这批旅客的人数是x 人,原计划租用45 座客车 y 辆.依据题意,得,解这个方程组,得.答:这批旅客的人数240 人,原计划租45 座客车 5 辆;( 2)租 45 座客车: 240÷45≈5.(3辆),因此需租 6 辆,租金为220×6=1320(元),租 60 座客车: 240÷60=4 (辆),因此需租 4 辆,租金为300×4=1200 (元).答:租用 4 辆 60 座客车更合算.23. 解:(1)由题意得,解得;( 2)设购置污水办理设施 A 型设施 x 台, B 型设施( 10-x)台,依据题意得14x+11( 10-x)≤117,解得 x≤∵x 取非负整数,∴x=0, 1, 2,∴有三种购置方案:①A 型设施 0 台, B 型设施 10 台;② A 型设施 1 台, B 型设施 9 台;③ A 型设施 2 台, B 型设施 8 台;( 3)由题意: 250x+200( 10-x)≥2050,解 x≥1,又∵x≤,∴1≤x≤,而 x 取非负整数,∴x 为 1, 2,当x=1 时,购置资本为: 14×1+11×9=113 (万元),当x=2 时,购置资本为: 14×2+11×8=116 (万元),∴为了节俭资本,应选购 A 型设施 1 台, B 型设施 9 台.【分析】1.解: 2x- =0 是分式方程,不是二元一次方程;3x+y=0 是二元次方程;2x+xy=1 不是二元一次方程;3x+y-2x=0 是二元一次方程;2x -x+1=0 不是二元一次方程.含有两个未知数,而且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.本题主要考察的是二元一次方程的定义,掌握二元一次方程的定义是解题的重点.2. 解:依题意得:,解得.应选: B.依据二元一次方程的定义进行判断即可.本题考察了二元一次方程的定义,二元一次方程一定切合以下三个条件:(1)方程中只含有 2 个未知数;( 2)含未知数项的最高次数为一次;(3)方程是整式方程.3. 解:A、两边加的数不一样,故 A 不切合题意;B、两边乘的数不一样,故 B 不切合题意;C、左侧乘2,右侧加 2,故 C 不切合题意;D 、两边都加2,故 D 切合题意;应选: D.依据等式的性质,可得答案.本题考察了等式的性质,熟记等式的性质是解题重点.4.解: A、等式 x=y 的两边同时加上 a,该等式仍旧成立;故本选项正确;B、等式 x=y 的两边同时减去a,该等式仍旧成立;故本选项正确;C、等式 x=y 的两边同时乘以a,该等式仍旧成立;故本选项正确;D 、当 a=0 时,、无心义;故本选项错误;应选: D.利用等式的性质对每个式子进行变形即可找出答案.本题主要考察等式的性质.运用等式性质 2 时,一定注意等式两边所乘的(或除以的)数或式子不为0,才能保证所得的结果还是等式.5.解:设甲种商品的订价分别为x 元,则乙种商品的订价分别为y 元,依据题意得:,解得:.应选 D.设甲种商品的订价分别为x 元,则乙种商品的订价分别为y 元,依据“若甲商品打八折,乙商品打六折,则可赚 50元,若甲商品打六折,乙商品打八折,则可赚30 元”可得出对于 x、 y 的二元一次方程组,解方程组即可得出结论.本题考察认识二元一次方程组,依据数目关系列出二元一次方程组是解题的重点.6. 解:把方程x=1变形为x=2,其依照是等式的性质2,应选 C利用等式的基天性质判断即可.本题考察认识一元一次方程,以及等式的性质,娴熟掌握等式的性质是解本题的重点.7. 解:,①-②得: -7y=8,应选 D.方程组中双方程相减消去x 获得结果,即可做出判断.本题考察认识二元一次方程组,娴熟掌握运算法例是解本题的重点.8.解:方程 2x-3y=1 ,解得: y=.应选 C.将 x 看做已知数求出y 即可.本题考察认识二元一次方程,解题的重点是将x 看做已知数求出y.9.解:依据每组 7 人,则余下 3 人,得方程 7y+3= x,即 7y=x-3;依据每组8 人,则缺 5 人,即最后一组差 5 人不到 8 人,得方程8y-5=x,即 8y=x+5.可列方程组为:.应选: A.本题中不变的是全班的人数x 人.等量关系有:①每组 7 人,则余下 3 人;②每组 8 人,则缺 5 人,即最后一组差 5 人不到 8 人.由此列出方程组即可.本题考察二元一次方程组的实质运用,理解题目中不变的是全班的人数,用不一样的代数式表示全班的人数是本题的重点.10.解:由于方程为对于 x、 y 的一元一次方程,因此:①,解得 k=-1 ;②,无解,因此 k=-1 时,方程为一元一次方程.依据二元一次方程的定义可知,解得k=1,因此 k=1 时,方程为二元一次方程.故答案为: -1; 1.( 1)若方程为对于x、 y 的一元一次方程,则二次项系数应为0,而后 x 或 y 的系数中有一个为0,另一个不为0 即可.( 2)若方程为对于x、y 的二元一次方程,则二次项系数应为0 且 x 或 y 的系数不为0.考察了一元一次方程与二元一次方程的定义,本题比较简单,解答本题的重点是熟知一元一次方程与二元一次方程的定义.11.解:∵( 2x-y)2与|x+2y-5|互为相反数,∴( 2x-y)2+|x+2y-5|=0,∴,解得,,∴( x-y)2005=( 1-2)2005=-1 ,故答案为 -1.依据非负数的性质列出方程求出x、 y 的值,代入所求代数式计算即可.本题考察了非负数的性质:几个非负数的和为0 时,这几个非负数都为0.12. 解:,把①代入②得:x+2x=3,即 x=1,把x=1 代入①得: y=2,则方程组的解为,故答案为:方程组利用代入消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:由题意,有.题中有两个等量关系:十位数字+个位数字 =5;十位数字 -个位数字 =1.依据这两个等量关系即可列出方程组.读懂题意,找出等量关系是列方程解应用题的重点.本题比较简单.注意十位数字与个位数字之差即为十位数字-个位数字,而不是个位数字 -十位数字.14.解:x(x+3)=0 ,∴x=0, x+3=0 ,∴方程的解是x1=0, x2=-3 .故答案为: 0 或 -3.推出方程x=0, x+3=0,求出方程的解即可.本题主要考察对解一元一次方程,解一元二次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转变成一元一次方程是解本题的重点.15.解:∵① +② +③,得2x+2 y+2z=6,∴x+y+z=3,故答案为: 3.依据方程组,三个方程相加,即可获得x+y+z的值.本题考察三元一次方程组的解,解得重点是明确解三元一次方程组的解答方法.16.用加减法,先把 y 的系数转变成相同的或相反的数,而后双方程相加减消元,从而求出 x 的值,而后把x 的值代入一方程求y 的值.解二元一次方程组的基本思想是消元.消元的方法有代入法和加减法,本题主要考察了加减消元法.17.方程组利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.方程组整理后,利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.设购置成人门票 x 张,学生门票 y 张,则由“成人和学生共 20 人”和“购置门票共花销1936 元”列出方程组解决问题.本题考察二元一次方程组的实质运用,找出题目包含的数目关系是解决问题的重点.20.依据题意能够列出相应的二元一次方程组,从而能够解答本题.本题考察二元一次方程组的应用,解题的重点是明确题意,列出相应的二元一次方程组.21. (1)依据计划购进甲、乙两种新出产的水果共140 千克,从而利用该水果店估计进货款为1000 元,得出等式求出即可;(2)利用两种水果每千克的收益表示出总收益,再利用一次函数增减性得出最大值即可.主要考察了一次函数的应用以及一元一次不等式的应用和一元一次方程的应用等知识,利用一次函数增减性得出函数最值是解题重点.22.145×45座客车辆数+15=旅客总数,60× 45座客车辆数()本题中的等量关系为:(-1) =旅客总数,据此可列方程组求出第一小题的解;(2)需要分别计算 45 座客车和 60 座客车各自的租金,比较后再弃取.本题考察二元一次方程组的实质运用,找出题目包含的数目关系是解决问题的重点.23.( 1)利用买一台 A 型比购 B 型多 3 万元,买 2 台 A 型比购置 3 台 B 型少 5 万元可列二元一次方程组,而后解方程组可获得m、 n 的值;( 2)设购置污水办理设施 A 型设施 x 台, B 型设施( 10-x)台,利用购置设施自己不超出117 万元列不等式 14x+11( 10-x)≤117,解得 x≤,而后 x 取非负整数可获得购置方案;( 3)利用每个月要求办理无水不低于2050 吨列不等式250x+200( 10-x)≥2050,解 x≥1,加上 x≤,则 1≤x≤,再 x 取非负整数获得x 为 1, 2,而后比较x=1 和 x=2 的购置资本可获得最省钱的方案.本题考察了一元一次不等式的应用:由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.。
新人教版七年级数学下册《二元一次方程组》测试题
(时间120分钟,满分120分)
一、填一填(3分×10=30分)
1、已知24x y -=,则. 142______x y -+=-7
2、若3321m n m n mx ny -+-=是关于x 、y 的二元一次方程组,则
______m
n
=5/4. 3、若一个二元一次方程组的解是3
2x y =⎧⎨=⎩,请写出一个符合要求的二元一次方程
组_____________________{x+y=5 x-y=1.
4、已知()2
563640x y x y +-+--=,则()2
_____x y +=100/9.
5、消去方程组235342x t
y t =-⎧⎨=+⎩中的t ,得_____4x+15y=26______.
6、当m =___6或4 2____时,方程组24
48
x my x y +=⎧⎨+=⎩的解是正整数.
7、某学生在n 次考试中,其考试成绩满足条件:如果最后一次考试得97分,则平均为90分,如果最后一次考试得73分,则平均分为87分,则n =___8____. 8、一轮船从重庆到上海要5昼夜,而从上海到重庆要7昼夜,那么一木排从重庆顺流漂到上海要_______昼夜.
9、一批宿舍,若每间住1人,则10人无法安排;若每间住3人,则有10间无人住,这批宿舍有___20____间.
10、某商品售价a 元,利润为成本的20%,若把利润提高到30%,售价应提高到____13/12a___元. 二、选一选(3分×10=30分)
11、下列方程中的二元一次方程组的是( B )
A .321
41
x y y z -=⎧⎨=+⎩ B .3232a b a =⎧⎨-=⎩
C .1
3124y x
x y
⎧+=⎪⎪⎨⎪+=⎪⎩
D .1
3
mn m n =-⎧⎨+=⎩
12、已知201
2
S v t at =+,当t =1时,S =13;当t =2时,S =42,则当t =3时,S 等
于( B . ) A .106.5 B .87 C .70.5 D .69
13、已知单项式532y x a b +与2244y a b --⨯的和仍是单项式,则x 、y 的值为( )
A.
1
2
x
y
=
⎧
⎨
=
⎩
B.
2
1
x
y
=
⎧
⎨
=-
⎩
C.
1
5
x
y
=
⎧
⎪
⎨
=
⎪⎩
D.
2
1
x
y
=
⎧
⎨
=
⎩
14、已知方程组
234
2
x y
ax by
-=
⎧
⎨
+=
⎩
与
356
4
x y
bx ay
-=
⎧
⎨
+=-
⎩
有相同的解,则a、b的值为( B )
A.
2
1
a
b
=-
⎧
⎨
=
⎩
B.
1
2
a
b
=
⎧
⎨
=-
⎩
C.
1
2
a
b
=
⎧
⎨
=
⎩
D.
1
2
a
b
=-
⎧
⎨
=-
⎩
15、若方程组
()
213
431
kx k y
x y
+-=
⎧⎪
⎨
+=
⎪⎩
的解x和y互为相反数,则k的值为( A )
A.2 B.-2 C.3 D.-3
16、如果关于x y
、的方程组
2
4
x y m
x y m
+=
⎧
⎨
-=
⎩
的解是二元一次方程3+214
x y=的一个
解,那么m的值( C )
A.1 B.-1 C.2 D.-2
17、6年前,A的年龄是B的3倍,现在A的年龄是B的2倍,A现在年龄是( C ) A.12 B.18 C.24 D.30
18、我市股市交易中心每买、卖一次需千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为( C)
A.2000元B.1925元C.1835元D.1910元
19、第二十届电视剧飞天奖今年有a部作品参赛,比去年增加了40%还多2部,设去年参赛的作品有b部,则b是( C )
A.
2
140%
a+
+
B.()
140%2
a++C.
2
140%
a-
+
D.()
140%2
a+-
20、方程199019891991
x y
-=的一组正整数解是( C )
A.
12785
12768
x
y
=
⎧
⎨
=
⎩
B.
12785
12770
x
y
=
⎧
⎨
=
⎩
C.
11936
11941
x
y
=
⎧
⎨
=
⎩
D.
13827
12632
x
y
=
⎧
⎨
=
⎩
三、解答题
21、解下列方程组(6分×4=24分)
(1)
35
231
x y
x y
=
⎧
⎨
-=
⎩
(2)
2
23
2328
x y
x y
⎧
+=
⎪
⎨
⎪+=
⎩
(3)534
113
4x y x y
x y x y +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ (4)
3221
456
x y x y x y ++-+==
22、已知()229, 1, 2a b a b a b ab +=-=--求的值.(5分)
23、已知23354p q p q +=++=,证明()()2323p p pq +-=+.(6分)
24、已知方程组515
42
ax y x by +=⎧⎨-=-⎩,由于甲看错了方程①中的a 得到方程组的解为
131x y =-⎧⎨
=-⎩,乙看错了方程②中的b 得到方程组的解为5
4x y =⎧⎨=⎩,若按正确的a 、b 计算,则原方程组的解x 与y 的差x y -的值是多少?
参考答案
一、填一填(3分×10=30分) 1、-7 2、25 3、略 4、
100
9
5、415260x y +-=
6、-4
7、8
8、35
9、20
10、
1312
a 二、选一选(3分×10=30分)
11、B 12、B 13、B 14、B 15、A 16、C 17、C 18、C 19、C 20、C
三、解答题
21、解下列方程(6分×4=24分)
(1)53x y =⎧⎨=⎩
(2) 4
12x y =-⎧⎨=⎩
(3) 18
6x y =⎧⎨=⎩
(4) 671
x y ⎧
=-⎪⎨⎪=⎩
22、-2
23、略
24、34115
-
25、甲、乙均取250千克
26、(1)设平均每分钟一道正门通过x 名学生,一道侧门通过y 名学生,则
()()22560
4800
x y x y +=⎧⎪⎨
+=⎪⎩ ∴12080x y =⎧⎨=⎩
(2)这栋楼最多有学生4×8×45=1440(名)
拥挤时5分钟4道门能通过,5×2×(120+80)×(1-20%)=1600(名) ∵1600>1440
∴建造的4道门符合规定.
27、(1)设2002年内贸、外贸吞吐量分别为x 和y 万吨,
则⎩⎨
⎧=+++=+3760%)101(%)201(3300y x y x 解得1300,2000==y x ,
答:2002年内贸、外贸吞吐量分别为1300万吨和2000万吨.。