【2019-2020】江西省2019年中考数学总复习 第一单元 数与式 第3课时 整式及因式分解(考点整合)课件
- 格式:ppt
- 大小:9.46 MB
- 文档页数:41
2020年中考数学第一轮复习第一章数与式第三节整式【基础知识回顾】一、整式的有关概念:单项式:。
1、整式:多项式:。
单项式中的叫做单项式的系数,所有字母的叫做单项式的次数。
组成多项式的每一个单项式叫做多项式的,多项式的每一项都要带着前面的符号。
2、同类项:①定义:所含相同,并且相同字母的也相同的项叫做同类项,常数项都是同类项。
②合并同类项法则:把同类项的相加,所得的和作为合并后的,不变。
【注意:1、单独的一个数字或字母都是式。
2、判断同类项要抓住两个相同:一是相同,二是相同,与系数的大小和字母的顺序无关。
】二、整式的运算:1、整式的加减:①去括号法则:a+(b+c)=a+ ,a-(b+c)=a- .②添括号法则:a+b+c= a+( ),a-b-c= a-( )③整式加减的步骤是先,再。
【注意:在整式的加减过程中有括号时一般要先去括号,特别强调:括号前是负号去括号时括号内每一项都要。
】2、整式的乘法:①单项式乘以单项式:把它们的系数、相同字母分别,对于只在一个单项式里含有的字母,则连同它的作为积的一个因式。
②单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积,即m(a+b+c)= 。
③多项式乘以多项式:先用第一个多项式的每一项去乘另一个多项式的每一项,再把所得的积,即(m+n)(a+b)= 。
④乘法公式:Ⅰ、平方差公式:(a+b)(a—b)=,Ⅱ、完全平方公式:(a±b)2 = 。
【注意:1、在多项式的乘法中有三点注意:一是避免漏乘项,二是要避免符号的错误,三是展开式中有同类项的一定要。
2、两个乘法公式在代数中有着非常广泛的应用,要注意各自的形式特点,灵活进行运用。
】3、整式的除法:①单项式除以单项式,把、分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
②多项式除以单项式,先用这个多项式的每一项 这个单项式,再把所得的商 。
即(am+bm )÷m= 。
2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。
2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。
3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。
4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。
(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。
知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。
2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。
3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。
知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。
第3课时代数式与整式数式规律:列代数式整式运算1.(2018·毕节中考)下列运算正确的是(C)A.(-a+b)(a-b)×a2-b2=a2-b2B.a3+a4=a7C.a3·a2=a5D.23=62.(2014·毕节中考)下列运算正确的是(D)A.π-3.14=0B.2+3= 5C.a·a=2aD.a3÷a=a23.(2014·毕节中考)若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(D)A.2B.0C.-1D.1规律探索与列代数式4.(2014·毕节中考)观察下列一组数:14,39,516,725,936,…,它们是按一定规律排列的,那么这一组数的第n个数是2n-1(n+1)2W.毕节中考考点梳理代数式和整式的有关概念1.代数式用运算符号(加、减、乘、除、乘方、开方)把数和字母连接而成的式子叫做代数式.2.代数式的值用 具体数值 代替代数式中的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值. 温馨提示(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言和、差、积、商、乘以、除以等在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a ;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a ;(4)求代数式的值的方法主要有两种:一种是直接代入法;另一种是整体代入法.对于整体代入求值的,要注意从整体上分析已知代数式与欲求代数式之间结构的异同,从整体上把握解题思路,寻求解题的方法.整式的相关概念整式的运算1.(2015·毕节中考)下列计算正确的是( C )A .a 6÷a 2=a 3B .a 6·a 2=a 12C .(a 6)2=a 12D .(a -3)2=a 2-92.(2017·黔东南模拟)下列运算正确的有( C )A .5ab -ab =4B .32-2=3C .a 6÷a 3=a 3D .1a +1b =2a +b3.(2018·安顺模拟改编)如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…;∠A 2 019BC 和∠A 2 019CD 的平分线交于点A 2 020,则∠A 2 020= m 22 020°.4.(2018·自贡中考改编)观察下列图中的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有 6 058 个○.5.(2018·宁波中考)先化简,再求值: (x -1)2+x (3-x ),其中x =-12.解:原式=x 2-2x +1+3x -x 2=x +1.当x =-12时,原式=-12+1=12.中考典题精讲精练整式运算例1 (2017·毕节中考)下列计算正确的是( D )A .a 3·a 3=a 9B .(a +b )2=a 2+b 2C .a 2÷a 2=0D .(a 2)3=a 6【解析】A .根据同底数幂的乘法,底数不变,指数相加,a 3·a 3=a 6,计算不正确;B .根据完全平方公式,(a +b )2=a 2+2ab +b 2,计算不正确;C .根据同底数幂的除法,底数不变,指数相减,a 2÷a 2=a 0=1,计算不正确;D .根据幂的乘方,底数不变,指数相乘,(a 2)3=a2×3=a 6,计算正确.求代数式的值例2 (2018·贵阳中考)当x =-1时,代数式3x +1的值是( B )A .-1B .-2C .4D .-4【解析】把x =-1代入3x +1,得3×(-1)+1,计算得出结果.规律探索例3 (2018·毕节模拟)将正整数按如图所示的规律排列下去,若用有序数对(m ,n )表示从上到下第m 排,从左到右第n 个数,如(4,2)表示整数8,则(62,55)表示的数是 1 946 W.【解析】若用有序数对(m ,n )表示从上到下第m 排,从左到右第n 个数,由图中给出的有序数对和(4,2)表示整数8可得,(4,2)=(4-1)×42+2=8,(3,1)=(3-1)×32+1=4,(4,4)=(4-1)×42+4=10,….由此可以发现,对所有有序数对(m ,n )(其中n≤m)表示的整数为(1+2+3+…+m -1)+n =(m -1)·m2+n. 所以,(62,55)=(62-1)×622+55.1.(2016·毕节中考)下列运算正确的是( D )A .-2(a +b )=-2a +2bB .(a 2)3=a 5C .a 3÷4a =14a 3 D .3a 2·2a 3=6a 52.(2018·成都中考)下列计算正确的是( D )A .x 2+x 2=x 4B .(x -y )2=x 2-y 2C .(x 2y )3=x 6yD .(-x )2·x 3=x 53.(2018·海口模拟)已知m -2n =-1,则代数式1-2m +4n 的值是( D )A .-3B .-1C .2D .34.(2018·安顺中考)若x 2+2(m -3)x +16是关于x 的完全平方式,则m = 7或-1 W.5.(2017·毕节中考改编)观察下列运算过程: 计算:1+2+22+…+210. 解:设S =1+2+22+…+210,① ①×2,得2S =2+22+23+…+211,② ②-①,得S =211-1.所以,1+2+22+…+210=211-1. 运用上面的计算方法计算:1+3+32+…+32 019=32 020-12W.6.(2018·毕节模拟)已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n ,C n 在圆上.如图1,当n =1时,正三角形的边长a 12,当n =2时,正三角形的边长a 2=13 ;如图3,正三角形的边长a n = 3n +1(用含n 的代数式表示).。