五年级思维训练(五)
- 格式:doc
- 大小:19.50 KB
- 文档页数:2
因数与倍数1、由不小于30人,不大于50人的学生围成一个圆圈,由某人开始从1连续报数,如果报30和198是同一个人时,请问:这批学生一共多少人?.2、有这样一类2009位数,它们不含有数字0,任何相邻两位(按原来的顺序)组成的两位数都有一个因数和20相差1,这样的2009位数共有多少个?3、一个自然数,它的最大的因数和次大的因数和是111,这个自然数是(74)4、筐中有60个苹果,将它们全部都取出来,分成偶数堆,使得每堆的个数相同。
问:有多少种分法?5、称一个两头(首位和末位)都是1的数为“两头蛇数”。
一个四位数的“两头蛇数”去掉两头得到一个两位数,它恰好是这个“两头蛇数”的因数,这个“两头蛇数”是。
(写出所有可能)6、你能在3×3的方格表(如下图)中填入彼此不同的9个自然数(每个格子里只填一个数),使得每行、每列、两条对角线上三个数的乘积都等于2005吗?若能,请填出一例;若不能,请说明理由)7、已知三位数240有d个不同的因数,求d的值。
8、100以内有10个因数的最小自然数是(),它的所有因数的和是()。
9、一个正整数,它的2倍的因数恰好比它自己的因数多2个,它的3倍的数的因数恰好比自己的因数多3个。
那么这个正整数是()10、能被2145整除且恰有2145个因数的数有()个。
11、一个自然数恰好有18个因数,那么它最多有()个因数的个位是3.12、N 是1,2,3,...,1995,1996,1997的最小公倍数,请问N 等于多少个2与一个奇数的积?13、在下面一列数中,从第二个开始,每个数都比它前面相邻的数大7,数列如下:8,15,22,29,36.....它们前n-1个数相乘的积末尾0的个数比前n 个数相乘积的末尾0的个数少3个,求n 的最小值。
14、81,92,103,......20092002中,共有()个最简分数。
15、美术老师要在一张长12分米、宽84厘米的纸上裁出同样大小的正方形手工纸若干张,且没有纸剩下,那么每张正方形纸的边长最大是()厘米,一共能裁出()张这样的手工纸?16、如下图所示,某公园有两段路,AB=175m,BC=125m,在这两段路上安路灯,要求A,B,C三点各设一个路灯,相邻两个路灯间的距离都相等,则在这两段路上至少要安装多少盏灯?17、将一个数的各位数字相加得到新的一个数称为一次操作,经连续若干次这样的操作后可以变为6的数称为“好数”,那么不超过2012的“好数”的个数为(),这些“好数”的最大公因数是()。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学五年级奥数思维训练题(三篇)》,希望帮助到您。
【篇⼀】 1.甲、⼄、丙三⼈在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、⼄、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,⼄先在A地植树,然后转到B地植树。
两块地同时开始同时结束,⼄应在开始后第⼏天从A地转到B地? 2.有三块草地,⾯积分别是5,15,24亩。
草地上的草⼀样厚,⽽且长得⼀样快。
第⼀块草地可供10头⽜吃30天,第⼆块草地可供28头⽜吃45天,问第三块地可供多少头⽜吃80天? 3.某⼯程,由甲、⼄两队承包,2.4天可以完成,需⽀付1800元;由⼄、丙两队承包,3+3/4天可以完成,需⽀付1500元;由甲、丙两队承包,2+6/7天可以完成,需⽀付1600元。
在保证⼀星期内完成的前提下,选择哪个队单独承包费⽤最少? 4.⼀个圆柱形容器内放有⼀个长⽅形铁块。
现打开⽔龙头往容器中灌⽔。
3分钟时⽔⾯恰好没过长⽅体的顶⾯。
再过18分钟⽔已灌满容器。
已知容器的⾼为50厘⽶,长⽅体的⾼为20厘⽶,求长⽅体的底⾯⾯积和容器底⾯⾯积之⽐。
5.甲、⼄两位⽼板分别以同样的价格购进⼀种时装,⼄购进的套数⽐甲多1/5,然后甲、⼄分别按获得80%和50%的利润定价出售。
两⼈都全部售完后,甲仍⽐⼄多获得⼀部分利润,这部分利润⼜恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 6.有甲、⼄两根⽔管,分别同时给A,B两个⼤⼩相同的⽔池注⽔,在相同的时间⾥甲、⼄两管注⽔量之⽐是7:5.经过2+1/3⼩时,A,B两池中注⼊的⽔之和恰好是⼀池。
这时,甲管注⽔速度提⾼25%,⼄管的注⽔速度不变,那么,当甲管注满A池时,⼄管再经过多少⼩时注满B池? 7.⼩明早上从家步⾏去学校,⾛完⼀半路程时,爸爸发现⼩明的数学书丢在家⾥,随即骑车去给⼩明送书,追上时,⼩明还有3/10的路程未⾛完,⼩明随即上了爸爸的车,由爸爸送往学校,这样⼩明⽐独⾃步⾏提早5分钟到校。
第十四讲行程问题五1.邮递员早晨7点出发送一份邮件到对面的村里,从邮局开始先走12千米的上坡路,再走6千米的下坡路.上坡的速度是3千米/时,下坡的速度是6千米/时,请问:(1)邮递员去村里的平均速度是多少?(2)邮递员返回时的平均速度是多少?(3)邮递员往返的平均速度是多少?2.费叔叔开车回家,原计划按照40千米/时的速度行驶.行驶到路程的一半时发现之前的速度只有30千米/时,那么在后一半路程中,速度必须达到多少才能准时到家?3.一辆汽车原计划6小时从A城到B城.汽车行驶了一半路程后,因故在途中停留了30分钟.如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米?4.甲、乙两人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次从后面追上乙时,甲的速度就减少l米/秒,而乙的速度增加0.5米/秒,直到乙比甲快.请问:领先者到达终点时,另一人距终点多少米?5.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒钟分别爬行5.5厘米和3.5厘米,在运动过程中它们不断地调头.如果把出发算作第零次调头,那么相邻两次调头的时间间隔依次是1秒,3秒,5秒,…,即是一个由连续奇数组成的数列.问:两只蚂蚁爬行了多长时间才能第一次相遇?6.龟兔赛跑,全程1.04千米.兔子每小时跑4千米,乌龟每小时爬0.6千米.乌龟不停地爬,但兔子却边跑边玩,兔子先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟…一请问:先到达终点的比后到达终点的快多少分钟?7.如图14-1所示,甲、乙两人绕着一个正方形的房子玩捉迷藏.正方形ABCD 的边长为24米,甲、乙都从A点出发逆时针行进.甲出发时,乙要靠在A点的墙壁上数10秒后再出发.已知甲每秒跑4米,乙每秒跑6米,且两人每到达一个顶点都需要休息3秒钟.请问:乙出发几秒后第一次追上甲?8.刘老师从家到单位时,前13的路程骑车,后面的路程乘车;从单位回家时,前58的路程乘车,后面的路程骑车,结果去单位的时间比回家的时间少2分钟,已知刘老师骑车每小时行8千米,乘车每小时行16千米.请问:刘老师家到单位的距离是多少千米?9.甲、乙两人分别从A、B两地同时出发,6小时后在中点相遇;若甲每小时多走4千米,乙提前1小时出发,则仍在中点相遇.那么两地相距多少千米?10.如图14-2所示,A与B、B与C之间的公路长度相等,且每段公路上都有限速标志(单位:千米/时).甲货车从A出发,乙货车从C出发,并且两车在A、C之间往返行驶.结果当甲车到达C后再返回到B时,乙车刚好第一次到达B.已知甲、乙两车在各段公路上均以所能达到的最快速度行驶(不会超过车子本身的最高时速,也不能超过公路上的最高限速),且甲车的最高时速是乙车的4倍,那么甲车的最高时速是多少?1.如图14-3所示,一只蚂蚁沿等边三角形的三条边爬行,在三条边上它每分钟分别爬行50厘米、20厘米、40厘米.蚂蚁由A点开始,如果顺时针爬行一周,平均速度是多少?如果顺时针爬行了一周半,平均速度又是多少?2.甲、乙两班进行越野行军比赛,甲班以4千米/时的速度走了路程的一半,又以6千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4千米/时的速度行进,另一半时间以6千米/时的速度行进.问:甲、乙两班哪个班将获胜?3.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶10分钟.请问:小张驾驶的摩托车是在他出发多少小时后减速的?4.男、女两名田径运动员在长120米的斜坡上练习跑步(如图144所示,坡顶为 A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.已知男运动员上坡速度是每秒3米,下坡速度是每秒5米,女运动员上坡速度是每秒2米,下坡速度是每秒3米.请问:两人第一次迎面相遇的地点离A点多少米?第二次迎面相遇的地点离 A点多少米?5.小明和小强从400米环形跑道的同一点出发,背向而行.当他们第1次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向.两人的速度在运动过程中始终保持不变,小明每秒跑3米,小强每秒跑5米,试问:当他们第99次相遇时,相遇点距离出发点多少米?6.在一条南北走向的公路上有A、B两镇,A镇在B镇北面4.8千米处.甲、乙两人分别同时从A镇、B镇出发向南行走,甲的速度是每小时9千米,乙的速度是每小时6千米.甲在运动过程中始终不改变方向,而乙向南走3分钟后,便转身往回走2分钟,接着按照先向南走3分钟,再向北走2分钟的方式循环运动.请问:两人相遇的地点距B镇多少千米?7.如图14-5所示,正方形边长是100米,甲、乙两人同时从A、B沿图中所示的方向出发,甲每分钟走75米,乙每分钟走65米,且两人每到达一个顶点都需要休息2分钟.求甲从出发到第一次看见乙所用的时间.8.甲、乙两人分别从A、B两地同时出发相向而行,20分钟后在某处相遇.如果甲每分钟多走15米,而乙比甲提前2分钟出发,则相遇时仍在此处.如果甲比乙晚4分钟出发,乙每分钟少走25米,也能在此处相遇.那么A、B两地之间相距多少千米?9.小明准时从家出发,以3.6千米/时的速度从家步行去学校,恰好提前5分钟到校.某天,当他走了1.2千米,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课,后来算了一下,如果小明从家开始就跑步,可以比一直步行早15分钟到学校.那么他家离学校多少千米?小明跑步的速度是每小时多少千米?10.甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点.如果甲车速度不变,乙车每小时多行5千米,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,则相遇地点距C点16千米.请问:A、B 两地间的距离是多少千米?11.李刚骑自行车从甲地到乙地,要先骑一段上坡路,再骑一段平坦路,他到乙地后,立即返回甲地,来回共用了3小时.李刚在平坦路上比上坡路每小时多骑6千米,下坡路比平坦路每小时多骑3千米,还知道他在第1小时比第2小时少骑5千米,第2小时比第3小时少骑3千米,其中,第2小时骑了一段上坡路,又骑了一段平坦路,请问:(1)李刚骑上坡路所用的时间是多少分钟?(2)李刚骑下坡路所用的时间是多少分钟?(3)甲、乙两地之间的距离是多少千米?12.如图14-6所示,有4个村镇A、B、C、D,在连接它们的3段等长的公路AB、 BC、CD上,汽车行驶的最高时速限制分别是60千米/时、20千米/时和30千米/时,一辆客车从A镇出发驶向D镇,到达D镇后立即返回;一辆货车同时从D镇出发,驶向B镇.两车相遇在C镇,而当货车到达B镇时,客车又回到了C镇,已知客车和货车在各段公路上均以其所能达到且被允许的最大速度行驶,货车在与客车相遇后自身所具有的最高时速比相遇前提高了18,求客车的最高时速.1.学校组织春游,同学们下午一点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下午七点回到学校,已知他们的步行速度平地为4千米/时,上山为3千米/时,下山为6千米/时.请问:同学们一共走了多少千米?2.男、女两名运动员在长350米的斜坡AB(A为坡顶、B为坡底)上跑步,二人同时从坡顶出发,在A、B间往返奔跑,已知速度如图14-7所示,那么男运动员第二次追上女运动员的位置距坡顶多少米?3.甲、乙两车从A、B两地同时出发相向而行,5小时相遇;如果乙车提前1小时出发,则在不到中点13千米处与甲车相遇;如果甲车提前1小时出发,则过中点37千米后与乙车相遇.求甲车与乙车的速度差.4.如图14-8,在一条马路边有A、B、C、D四个车站,甲、乙两辆相同的汽车分别从A、D两地出发相向而行,在BC的中点相遇,已知它们在AB、BC、CD 上的速度分别为30千米/时、40千米/时、50千米/时.如果甲晚出发1小时,则它们将在B点相遇;如果乙在每一段上的速度都减半,而甲的速度不变,它们的相遇地点离B点65千米.请求出A,D之间的距离.5.如图14-9,正方形ABCD是一条环形公路.已知汽车在AB上时速是90千米,在 BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米,从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC的中点M,同时反向各发出一辆汽车,它们将在AB上一点N相遇,问:AN占AB的几分之几?6.在400米环形跑道上进行10000米赛跑.乙始终保持一个画定的速度前进;甲刚开始的速度比乙慢,但一直没有被乙追上.计时到30分0秒时甲开始加速并保持这个速度;36分0秒时甲追上乙,46分0秒时甲再次追上乙,47分40秒时甲到达终点.问:计时到几分几秒时乙到达终点?7.圆形跑道的40%是平路,60%则设置了跨栏(如图14-10中粗线部分).甲、乙两人的平路速度分别为5米/秒和6米/秒,跨栏速度分别为4米/秒和3米/秒.第一次两人从A点出发逆时针跑,甲先跑了5秒钟,然后乙再出发.结果两人在跑第一圈的时候相遇了两次,且两次相遇的间隔为15秒,问:(1)跑道总长为多少米?(2)如果两人从A点出发顺时针方向跑,而且在跑第一圈的时候也相遇了两次,且两次相遇时间间隔为45秒,那么甲和乙应该谁先跑,先跑多少秒?(3)如果两人从A点出发按顺时针方向跑,而且在跑第一圈的时候相遇两次,那么后跑的人最少晚出发几秒钟?8.如图14-11所示,正方形跑道的周长为360米,甲、乙两人同时从正方形跑道的 A点出发,按顺时针方向行进,甲的速度始终为5米/秒;乙最初的速度为6米/秒,第一次拐弯后速度减少13:第二次拐弯后速度增加12,第三次拐弯后速度减少13,第四次拐弯后速度增加12……如此下去.请问:出发后多少秒甲、乙两人第1次相遇,相遇地点在何处?出发后多少秒他们第100次相遇,相遇地点在何处?(注意:两人在一起即为相遇.)。
五年级数学思维训练专题(一)小数点的妙用一、训练目标:训练学生正确理解并运用小数点向左移动或向右移动几位,表示缩小或扩大多少倍。
二、训练过程(一)创设情境,激发兴趣同学们,学习了小数加减法和小数乘除法,你觉得小数点有什么作用?(二)合作探究,解决问题甲、乙两数的和是16.5,甲数的小数点向右移动一位正好等于乙数。
你知道甲、乙两数各是多少?思路点拨:解答数学问题,首先要弄清题意。
对于这道题,较为难理解的就是“甲数的小数点向右移动一位正好等于乙数。
”这句话是什么意思呢?细细品味,甲数的小数点向右移动一位,就是甲数×10,甲数×10后才等于乙数,说明乙数是甲数10倍。
再重新理解一下题意就是这样的:甲、乙两数的和是16.5,乙数是甲数10倍。
求甲、乙两数各是多少?是一道典型的和倍问题可借助线段图:甲数:乙数:列式: 10+1=11甲数: 16.5÷11=1.5乙数: 1.5×10=15答:甲数是1.5 乙数是15.(三)归纳总结,策略点悟在小学数学中,这样的题还是比较多的,遇到这类题还是要放慢速度,仔细审题,弄清甲乙两数是什么关系?哪个数大?弄清变化前后的数量关系,再加以解决,问题便会迎刃而解。
(四)拓展应用,提升思维1.甲、乙两数的和是15.4,甲数的小数点向右移动一位正好等于乙数。
你知道甲、乙两数各是多少?2.甲、乙两数的差是13.7,甲数的小数点向左移动一位正好等于乙数。
你知道甲、乙两数各是多少?3.甲、乙两数相差是16.2,甲数的小数点向右移动一位就等于乙数。
求甲、乙两数各是多少?五年级数学思维训练专题(二)神奇的小数点训练目标:1.认识小数点的重要性,使学生学会通过移动小数点使复杂的计算简单化。
2.灵活运用一个因数扩大、另一个因数就缩小相同的倍数,积不变的性质使复杂计算简单化。
二、训练过程:(一)创设情境,提出问题。
1.引入小数点的作用。
小数点是个小不点,但它的作用却很大,不信,大家来看看。
小学五年级数学思维专题训练—等积变形例1.长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点,三角形EFG的面积是平方厘米例 2.梯形ABCD中,AE与DC平行,S ABE∆=15,S BCF∆= .例3。
如下图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD= 15.四边EFGO 的面积为。
例4.如下图所示,在平行四边形ABCD中,已知三角形ABP.BPC的面积分别是73、100,求三角形BPD的面积.例5.如下图所示,BD是平行四边形ABCD的对角线,EF平行于BD,如果三角形ABE的面积是12平方厘米,那么三角形AFD的面积是平方厘米。
例6.如下图所示,已知AE=EC,CD=DB,S ABC =60,求四边形FDCE的面积.例7.如右图所示,正方形ABC D和正方形ECGF并排放置,BF与CD相交于点H,已知AB=6厘米,则阴影部分的面积是平方厘米.例8.如下图所示,E、F、G、H分别是四边形ABCD各边的中点,EG与FH交于点O,S1、S2、S3及S4分别表示4个小四边形的面积.试比较S1+S3与S2+S4的大小.例9.将长15厘米、宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如右图所示,则阴影部分的面积是 平方厘米.例10.右图所示ABCD 是个直角梯形(∠DAB=∠ABC= 900),以 , AD 为一边向外作长方形ADEF ,其面积为6.36平方厘米,连接BE 交AD 于P ,再连接PC .则图中阴影部分的面积是 平方厘米。
A.6.36B.3.18C.2.12D.1.59例11.如下图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 。
A .21B .32C .52D .125例12.如下图所示,矩形ABCD 的面积是24平方厘米,三角形ADM 与三角形BCN 的面积之和是7.8平方厘米,则四边形PMON 的面积是 平方厘米.例13.一个矩形分成4个不同的三角形(如下图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?例14.如下图所示,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的。
五年级数学思维训练教案五年级数学思维训练教案 1教学目标:1用生活中有关“左右”的真实情境激发学生的学习兴趣,使学生在学习生活中获得积极的情感体验。
2认识“左右”的位置关系,理解其相对性。
3通过探索活动,培养学生的实际观察能力、空间想像能力、语言表达能力、动手操作能力和初步运用数学知识解决实际问题的能力。
教学准备:书籍、铅笔盒、练习本、多媒体课件。
教学过程:一、谈话激趣,导入新课师:同学们,今天有那么多的老师来听课,就让我们用热烈的掌声来欢迎他们。
老师:刚才我们用什么样的掌声欢迎老师?生:我鼓掌用的是左手和右手。
(评论用拍手的方式介绍左右手,自然不可追踪。
)老师:对了,我们都有两只手,左手和右手。
二、探索新知,感知左右1、说一说老师:请伸出你的手,看着你自己的手,想一想,哪个是左手?哪只手是右手?教师:听老师的口令。
教师:左手在哪里?右手在哪里?(学生根据口令做出动作)教师:请举起你的右手(教师和学生站在同一方向举起右手)。
提问:说一说,你会用右手做些什么事?生1:我会用右手拿筷子吃饭。
生2:我会用右手写字。
教师:再举起你的左手,提问:你会用左手做什么事?生1:吃饭时我用左手端碗。
生2:写字时用左手压本子。
……(评析把“左右”的认识与生活经验紧密结合在一起,有助于学生的理解,也有利于今后的记忆。
)2、找一找(嘴巴)师:左右手是一对好朋友。
请找一找自己身上还有这样的好朋友吗?生:左眼、右眼,左耳朵、右耳朵,左腿、右腿。
师:刚才大家举了那么多有关左右的例子,这节课我们就来学习:“左右”(板书课题:左右)。
3、做一做摸鼻子游戏鼻子鼻子,上面;鼻子鼻子,下面;鼻子鼻子,左面,鼻子鼻子,右面。
鼻子鼻子,左耳;鼻子鼻子,右耳;鼻子鼻子,左肩,鼻子鼻子,右肩。
4、摆一摆(课件出示正确摆放图片)老师:游戏结束后,我们再动动手。
请把数学书放在桌子上,数学书放在右边,铅笔盒放在左边。
教师:看谁摆的又对又快。
(教师巡视,引导学生摆放正确)提问:(1)数学书的左边是_________ 。
五年级数学找规律思维训练题+综合思维训练五年级数学找规律思维训练题一. 仔细读题,认真填空。
(30分)1. 在括号里填上适当的素数。
16=()+()=()+()36=()+()=()+()=()+()=()+()2. 按规律填数。
2、3、5、7、11、13、17、()、23……1、4、9、16、25、()、49……1、2、6、24、()、720……3. 按照规律在括号里画出每组的第63个图形。
(1)△○□△○□……………………()……(2)○○○□○○○□………………()……(3)△△△○○△△△○○…………()……(4)○○△□○○△□………………()……(5)△△□○○△△□○○…………()……4. 按照规律填空。
(1)○□□○□□……………………前30个图形中,有()个○,有()个□。
(2)△△○○○△△○○○…………前28个图形中,有()个○,有()个△。
(3)□□○○△△□□○○△△……前73个图形中,有()个○,有()个△,有()个□。
(4)△□○□□△□○□□…………前54个图形中,有()个○,有()个△,有()个□。
二. 细心读题,精确计算。
(30分)1. 直接写出得数。
(20分)450÷9= 6.5-5.6=7.51+1.49= 4.6+3=1.8+0.9= 12×60=2-0.01= 1.08-0.08=0.28+0.2= 9.65-5=240÷60=8.5-2.9=3+0.5=7.4+1.6=4.1+4.14=125×8=0.9+1= 4.2-3.2=8.6+0.14= 4.7+0.03=2. 简便计算。
(10分)5.17-1.8-3.213.7+0.18+0.82+4.3三. 自主探索,解决问题。
(40分)1. 字母ABCDEFABCDEF……按照这样排下去,第47个字母是什么?(5分)3. 有1元、2元、5元的人民币各一张,从中选择一张或两张人民币,一共可以组成多少种不同的钱数?(6分)3. 有一些汉字和字母组成如下排列:请问第35列的汉字和字母各是什么?第74列呢?(7分)4. 我国民间通常用12种动物(十二生肖)来表示不同的年份。
五年级数学思维训练100题及解答(全)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99) =50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49. 有7个数,它们的平均数是18。
小学数学思维训练5-5.组合图形的面积(直线图形)一、知识要点(一)常用的面积公式及其联系图(二)几种常见的解题方法对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法有:1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出不规则图形面积。
例1:求下图阴影部分的面积(单位:厘米)。
解答:通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为:×2×4=4(平方厘米)2.相加、相减求面积:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出所求图形的面积。
例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少?解答:两个正方形的面积:+=41(平方厘米)三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4)÷2=33(平方厘米)阴影部分的面积:41-33=8(平方厘米)3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。
例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。
已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少?解答:阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。
平行四边形ABCD的面积:8×6÷2+8=32(平方厘米4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。
例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少?解答:结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE比三角形CDE 的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD比三角形CDA的面积大2平方厘米。
五年级趣味数学思维训练题50道及答案(1)【行程问题】猎狗前面26步远有一只野兔,猎狗追之.兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步(2)【统筹规划】如图,在街道上有A,B,C,D,E五栋居民楼,每栋楼里每天都有20个人要坐车,现在设立一个公交站,要想使居民到达车站的距离之和最短,应该设在何处.(3)【余数问题】小朋友们要做一次“动物保护”宣传活动,若1人拿3个动物小玩具,则最后余下2个动物小玩具;若1人拿4个动物小玩具,则最后余下3个动物小玩具;若1人拿5个动物小玩具,则最后余下4动物小玩具。
那么这次活动中小朋友至少拿了______个动物小玩具。
(4)【图形分割】如下图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状,大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?(5)【游戏与策略】小牛对小猴说:“对一个自然数n进行系列变换:当n是奇数时,则加上2007;当n是偶数时,则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可能出现2008.”请问:小牛和小猴谁说得对呢?为什么?(6)【行程问题】龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟,…….那么先到达终点的比后到达终点的快多少分钟(7)【还原问题】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是____________.(8)【图形面积】如图,房间里有一只老鼠,门外有一只小猫,如果每块正方形地砖的连长为50厘米,那么老鼠在地面上能避开小猫视线的活动范围为_________平方厘米.(将小猫和老鼠分别看作两个点,墙的厚度忽略不计)(9) 【行程问题】一只野兔逃出100步后猎狗才开始追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步,猎狗至少要跑步才能追上野兔。
小五班思维训练五(答案)例题精讲老师指导题例1:一个数的5倍加上10等于它的7倍减去6,求这个数?解:设:这个数为X。
列方程:5X+10=7X-616=2X X=8例2:已知篮球、足球、排球平均每个36元,篮球比排球每个多10元,足球比排球每个多8元,问每个足球多少元?计算错※解:设:每个足球为X元。
列方程:3×36=X+(X-8)+(X-8+10)108=3X-8+2 108=3X-6 3X=114 X=38(元)例3:有大、中、小三种衬衣的包装盒共50个,分别装有70、30、20件衬衣,一共装了1800件衬衣。
其中中盒的数量是小盒的三倍。
问三种盒子各有多少个?解:设小盒为X个,中盒为3X个,大盒为(50-X-3X)个。
列方程:70×(50-4X)+30×3X+20×X=1800 整理:3500-280X+90X+20X=1800化简:170X=1700 X=10(个)中盒:3×10=30(个)大盒:50-40=10(盒)例4:幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人,老师分巧克力,甲班每个小孩比乙班每个小孩少3个巧克力,乙班每个小孩比丙班每个小孩少5个巧克力,结果甲班比乙班总共多分3个巧克力,乙班比丙班总共多分5个巧克力,问三个班共分了多少巧克力?※不会做※题目难解:设:丙班有X人,乙班有(X+4)人,甲班有(X+8)人。
甲班每人分Y个巧克力,乙班每人分(Y+3)个,丙班每人分(Y+8)个。
根据题意比较甲和丙:Y(X+8)-X(Y+8)=3+5 化简:8Y-8X=8 Y=X+1 再根据题意比较甲和乙:Y(X+8)-(X+4)(Y+3)=3 ∵ Y=X+1∴(X+1)(X+8)-(X+4)(X+1+3)=3 整理:X2+8X+X+8-X2-4X-4X-16=3 化简:X+8-16=3 丙班: X=11(人)乙班:11+4=15人,甲班:11+8=19(人)甲班每人分:11+1=12(个)乙班每人分12+3=15(个)丙班每人分:15+5=20(个)三个班合计:19×12+15×15+20×11=228+225+220=673(个)例5:甲、乙、丙、丁四位小朋友共有81本书,如果把每人的书的本数,甲加2、乙减2、丙乘以2、丁处以2厚,4人所书的本数相等,问四位小朋友原来各有多少本书?解:设丙原来有X本;甲有:(2X-2)本;乙有:(2X+2)本;丁有:4X本列方程:(2X-2)+(2X+2)+X+4X=81 整理:2X-2+2X+2+X+4X=819X=81 X=9(本)甲有:2X-2=18-2=16(本)乙有:2X+2=18+2=20(本)丁有4X=36(本)A卷一、填空题1、一个机床厂,今年第一季度生产车床198台,比去年同期的产量的2倍多36台,去年一季度产量是 81 台。
小学五年级数学经典思维训练题11、如右图,平行四边形的面积是18平方分米,阴影部分两个三角形的面积之和是()平方分米。
2、一个直角三角形的三条边分别是6厘米,8厘米和10厘米,这个三角形的面积是()平方厘米,它斜边上的高是()厘米。
3、一个三角形与一个平行四边行等底等高,它们的面积之和是40.8平方厘米,那么这个平行四边形的面积是()平方厘米。
4、已知1÷A=0.0909……;2÷A=0.1818……;3÷A=0.2727;4÷A=0.3636……;那么9÷A的商是()。
5、妈妈带小乐到新建的游乐场玩,游乐场实行了新的收费标准,她们出来后按收费标准交了停车费8.5,你知道她们在游乐场最多玩了多长时间吗?6、盒子里有5个黄球,1个红球和3个白球,如果从中任意模出1个球,要使摸出黄球的可能性为1/3,那么还要放入()个红球。
7、把一个小数的小数点向右移动一位后,比原数多3.24,原数是多少?8、浩浩计划到书店买一些相同的作文书分给小伙伴们一起阅读,妈妈说你只买6本作文书的话就得剩下13.4元,爸爸说如果要买9本就还差2.5元,浩浩手里原来有多少钱?9、苗苗在做除法计算时,把一个有两位小数的除数的小数点漏掉了,8除以它后,商是0.32,问正确的除法算式中除数是多少?正确的商是多少?10、小午去水果店买水果,原计划买4千克梨和5千克苹果,需付45.8元,结果他买了4千克梨和6千克苹果,实际付了51.8元。
求每千克梨多少元?11、浩浩同学参加学校跳远比赛,前6次平均成绩跳了1.8m,又跳2次,前后8次平均成绩1.9m。
问最后两次平均跳了多少米?12、一个布袋里装有形状、大小相同的红、黄、黑、白四种颜色的乒乓球各一个。
①任取一个乒乓球,摸到红色的可能性是()。
②任取两个乒乓球,摸到红白两种颜色的可能性是()。
③任取三个乒乓球,摸到红、黄、蓝三种颜色的可能性是()。
小学五年级数学思维训练50题(附解析及答案)1. 一副扑克牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K 才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
解:11,13,17,23,37,47。
4. 在放暑假的8月份,小明有五天是在姥姥家过的。
这五天的日期除一天是合数外,其它四天的日期都是质数。
这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。
问:小明是哪几天在姥姥家住的?7. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。
问:商品的购入价是多少元?解:8000元。
按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。
8. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。
乙、丙两桶哪桶水多?解:乙桶多。
9. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A 题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
五年级数学思维训练逻辑推理Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#逻辑推理知识导航1.在近年来的许多竞赛试题中,常常会见到这样的一类题目,没有或很少给出什么数量关系;他们的解决方法主要不是依靠数学概念、法则、公式进行运算,较少用到专门的数学知识,而是根据条件和结论之间的逻辑关系,进行合理的推理,做出正确的判断,最终找到问题的答案,这就是逻辑推理问题。
2.逻辑推理问题的条件一般说来都具有一定的隐蔽性和迷惑性命且没有一定的解题模式。
因此,要正确解决这类问题,不仅需要始终抱地灵活的头脑,更需要遵循逻辑思维的基本规律------同一律、矛盾律和排中律。
(1)“矛盾律”指的是在逻辑推理过程中,对同一结论的推理不能自相矛盾。
(2)“排中律”值的是在逻辑推理过程中,一个思想或为真或为假,不能既不真或为假,不能既不真也不假。
(3)“同一律”指的是在逻辑推理过程中,同一对象的内涵必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用,不许偷换。
3.逻辑推理问题解题的方法一般有:(1)列表画图法(2)假设推理法(3)枚举筛选法精典例题例1:一次网球邀请赛,来自湖北,广西,江苏,北京,上海的五名运动员相遇在一起,据了解:(1)王平仅与另外两名运动员比赛过;(2)上海运动员和另外三名运动员比赛过;(3)李兵没有和广西运动员比赛过;(4)江苏运动员和凌华比赛过;(5)广西,江苏,北京的三名运动员相互之间都比赛过;(6)赵林仅与一名运动员比赛过。
问:张俊是哪个省市的运动员思路点拨此题可用列表画图法来解答。
“赵林仅与一名运动员比赛过”,说明赵林只比赛过1场,由(2)、(5)可得知上海、广西、江苏、北京运动员至少都比赛过2场或以上,赵林只能是湖北运动员;由(3)、(5)知李兵不是广西运动员,也不是江苏、北京运动员,李兵只能是上海运动员;又由(2)、(3)、(6)知,赵林(湖北)与李兵(上海)比赛过,李兵(上海)与赵林(湖北)、江苏、北京运动员比赛过,可以知道王平肯定是广西运动员;由(4)知凌华不是江苏运动员,只能是北京运动员(如下表);据此采用列表法如下(用“×”表示模仿练习红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
思维训练(五)
一.知识之窗。
1. 0.1+0.3+…+0.9+0.11+0.13+…+0.19 9.9×8.73+0.873
0.1÷(0.2÷0.3)÷(0.3÷0.4)÷(0.4÷0.5)÷(0.5÷0.6)
0.72+3.65+1.28+6.35 98.47-(65.47-4.6)-4.6 3.8÷0.125÷0.8
0.77×99+0.77 999.9+99.9+9.9+0.9 2.4×0.19+0.24×8.1
2. 2÷13的商的小数点后面第2008位上的数是几,这2008位上所有的数之和是多少?从商的小数部分的某一位起,至少连续截取多少位,使这些数位上的和正好等于2008?
3.甲乙两车早上9时分别从A,B两地同时相向出发,到11时两车相距87.5千米,继续行驶到下午1时,两车还是相距87.5千米,A,B两地的距离是多少千米?
4.某县举行长跑比赛,运动员跑到离起点3千米处要返回到起跑点,领先的运动员每分跑0.31千米,最后的运动员每分跑0.29千米,起跑多少分钟后两个运动员相遇?相遇时离起点多少千米?
二智力冲浪。
(倍数问题)
解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1倍数,再根据其他几个数与这个数的关系,确定“和”或者“差”相当于这样的几倍。
最后用用除法求出1倍数。
和数÷(倍数+1)=较小数
差数÷(倍数-1)=较小数
例1 两根同样长的铁丝,第一根剪去18米,第二根剪去26米,余下的铁丝第一根是第二根的3倍。
原来两根铁丝各长多少米?
随堂练习:
1、两根绳子一样长,第一根用去6.5米,第二根用去0.9米,剩下部分第二根是第一根的3倍。
两根绳子原来各长多少米?
2、一筐苹果和一筐梨的个数相同,卖掉40个苹果和5个梨后,剩下的梨是苹果的6倍。
原来两筐水果一共有多少个?
例2 甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。
原来甲组有图书多少本?
随堂练习:
1、原来小明的画片是小红的3倍,后来二人个买了5张,这样小明的画片就是小红的2倍。
原来二人各有多少张画片?
2、一个书架分上下两层,上层的书的本数是下层的4倍,从下层拿出5
本放入上层后,上层的本数正好是下层的5倍。
原来下层有几本书?
例3幼儿园买来苹果的个数是梨的2倍,如果每组领3个梨和4个苹果,结果梨正好分完,苹果还剩16个。
两种水果原来各有多少个?
随堂练习:同学们带着水果去看敬老院的老人,带的苹果是橘子的3倍,如果每位老人拿2个橘子和4个苹果,那么,橘子正好分完,苹果还多14个。
问同学们把苹果分给了几位老人?
例4有两筐橘子,如果从甲筐拿出8个放进乙筐,两筐的橘子就同样多;如果从乙筐拿出13个放到甲筐,甲筐里的橘子是乙筐的2倍。
甲乙两筐原来各有多少个橘子?
随堂练习:甲乙仓库存有货物,若从甲仓库取31吨放入乙仓库,则两仓库存货物同样多;若乙仓库取14吨放入甲仓库,则甲仓库的货物是乙仓库的4倍。
原来两仓库各存货物多少吨?。