六年级下册分数、百分数应用题
- 格式:doc
- 大小:3.16 MB
- 文档页数:10
第十章 分数、百分数应用题知识要点分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。
如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。
在解题过程中要着重解决以下几个方面的问题: 1.准确地确定单位“1”的量。
2.确定类型。
单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3.确定好对应关系。
例1 (“希望杯”邀请赛试题)小红和小明帮刘老师修补一批破损图书,根据图中的信息,计算小红、小明一共修补图书 本。
点拨 从图中可知小红和小明一共修补破损图书为:40%-2+14+3=40%+25%+1=65%+1,则这批破损图书一共有(20+1)÷(1-65%)=60(本)。
再减去刘老师修补的图书20本,则为小红和小明一共修补的图书。
解 (20+1)÷[1-(4+40%)]-20 =21÷[1-65%]-20 =21÷35%-20 =60-20 =40(本)答:小红、小明一共修补图书40本。
例2 张、王、李三人共有54元钱,张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,那么张和李两人剩下的钱共有多少元? 点拨一 先假设钢笔的价格是“1”,则有 张的钱数是钢笔的:1÷35=53王的钱数是钢笔的:1÷34=43李的钱数是钢笔的:1÷23=32三人的总钱数是这支钢笔的(53+43+32)倍,这样就可以求出钢笔的价格。
解54÷(53+43+32)=12(元)张剩下的钱数:12×(53-1)=8(元)李剩下的钱数:12×(32-1)=6(元)张、李两人剩下的钱共有:8+6=14(元) 答:张和李两人剩下的钱共有14元。
点拨二据张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,即张钱数的35=王钱数的34=李钱数的23,据此可推知张钱数的610=王钱数的68=李钱数的69(根据分数的基本性质,把这几个分率转化成分子相同的分数,即“分子同化法”。
分数、百分数应用题1、要挖一条2000米的水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩多少米没挖?2、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了全长的27.5%,还剩1200米没挖,这条水渠长多少米?3、要挖一条水渠,第一天挖了全长的12.5%,第二天挖了550米,还剩1200米没挖,这条水渠长多少米?4、有一桶油400千克,第一次取出总数的23%,第二次取出总数的27%,第二次比第一次多取多少千克?5、有一桶油,第一次取出总数的23%,第二次取出总数的27%,第二次比第一次多取油16千克,这桶油有多少千克?6、长青水果店运来三种水果,运来的苹果重量是梨的90%,桔子的重量是苹果的85%,运来桔子的重量是576千克,运来梨多少千克?7、养鸡场养母鸡和公鸡一共是1920只,公鸡只数是母鸡只数的60%,公鸡和母鸡各有多少只?8、养鸡场养母鸡比公鸡多1200只,公鸡只数是母鸡只数的60%,公鸡和母鸡各有多少只?9、小军读一本故事书,第一天读42页,第二天读43页,两天读了全书的10%。
这本故事书共有多少页?10、饲养组养黑兔40只,白兔有50只,白兔的只数比黑兔多百分之几?黑兔的只数比白兔少百分之几?11、六年级有女生90人,男生人数比女生少10%,六年级共有学生多少人?12、一筐苹果重60千克,第一次卖出2/5,第二次卖出的比第一次多20%。
第二次卖出多少千克?13、小明看一本科幻书,第一天看了50页,第二天看了全书的1/5,第二天看的页数恰好比第一天多25%,这本书一共有多少页?14、一辆汽车从甲地开往乙地,已经行了全程的40%,再行20千米,就正好行了全程的一半。
甲乙两地相距多少千米?15、一条路,已经修了30%,距离中点还有800米。
这条路长多少米16、小明看一本故事书,已经看了全书的45%,结果比没看的页数少不50页,这本故事书有多少页?17、六年级同学植树,结果成活285棵,有15棵没有成活,求这批树苗的成活率。
15.分数、百分数问题知识要点梳理一、数量关系式在分数(百分数)应用题中存在着三个量,即标准量(单位“1”的量)、比较量(部分量)和分率(百分率)。
分数(百分数)应用题基本的数量关系式:标准量(单位“1”的量)×分率(百分率)=比较量(部分量)比较量(部分量)÷标准量(单位“1”的量)=分率(百分率)比较量(部分量)÷分率(百分率)=标准量(单位“1”的量)二、基本类型解题思路和方法:一般有三种基本类型:1.求一个数是另一个数的几分之几(百分之几);2.已知一个数,求它的几分之几(百分之几)是多少;3.已知一个数的几分之几(百分之几)是多少,求这个数。
解答分数、百分数应用题的关键是:首先要分清哪个量是标准量(单位“1”的量),哪个是比较量(部分量),然后找出与之相对的分率。
三、出勤率与发芽率出勤率=出勤人数÷总人数×100%发芽率=发芽粒数÷总的粒数×100%考点精讲分析典例精讲考点1 求分率(百分率)【例1】一本书100页,读了60页,剩下这本书的百分之几没看?【精析】根据已知条件,把这本书的总页数看作单位“1”,先计算出剩下的页数,再用剩下的页数除以总页数。
【答案】(100-60)÷100×100%=40%答:剩下这本书的40%没看。
【归纳总结】先确定单位“1”,再根据部分量除以单位“1”的量计算对应的百分率。
考点2 求部分量【例2】参加“六一”儿童节联欢活动的少先队员中,女队员占全体少先队员的,男队员比女队员的多40人,问女队员有多少人?【精析】以全体少先队员为单位“1”。
男队员占全体少先队员的1-=,男队员比全体少先队员的×=多40人。
那么全体少先队员的(-)是40人,全体少先队员是40÷(-)=840(人),女队员有840×=480(人)。
【答案】×=40÷(-)=840(人)840×=480(人)。
六年级下册必考50道应用题一、百分数应用题。
1. 一件衣服原价200元,现在打八折出售,现价多少元?- 解析:打八折就是按原价的80%出售,所以现价 = 原价×折扣率,即200×80% = 200×0.8 = 160(元)。
2. 某工厂去年生产产品1000件,今年比去年增产20%,今年生产多少件?- 解析:把去年的产量看作单位“1”,今年比去年增产20%,那么今年的产量是去年的(1 + 20%)。
所以今年的产量=1000×(1 + 20%)=1000×1.2 = 1200(件)。
二、圆柱与圆锥应用题。
3. 一个圆柱的底面半径是3厘米,高是5厘米,求它的侧面积。
- 解析:圆柱的侧面积公式为S = 2πrh,其中r是底面半径,h是高。
所以侧面积S = 2×3.14×3×5 = 94.2(平方厘米)。
4. 一个圆锥的底面直径是6分米,高是4分米,求它的体积。
- 解析:圆锥的体积公式为V=(1)/(3)π r^2h,底面直径是6分米,那么半径r = 3分米。
所以体积V=(1)/(3)×3.14×3^2×4=(1)/(3)×3.14×9×4 = 37.68(立方分米)。
三、比例应用题。
5. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?- 解析:因为速度一定,路程和时间成正比例。
设5小时行驶x千米,(180)/(3)=(x)/(5),解得x = 300千米。
6. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,则(x)/(6000)=(1)/(500),解得x = 12千克。
四、比例尺应用题。
7. 在比例尺是1:5000000的地图上,量得A、B两地的距离是6厘米,求A、B两地的实际距离。
六年级下册分数百分数专题练习附答案一、单选题1.某商品的售价为100元时,可盈利25%。
若打9折销售,则可盈利( )。
A. 22.5%B. 10%C. 12.5%D. 20%2.含盐30%的盐水100克,再加入5克盐和15克水,这时盐水的含盐率( )。
A. 小于30%B. 大于30%C. 等于30%D. 无法确定3.甲数的34等于乙数的35,(甲数不等于0)甲数()乙数.A. >B. <C. =4.A,B,C是三个不同的自然数,且A>B>C,则( )A. <1B. >C. >D. 无法判断5.一根电线杆,埋在地下的部分占全长的16,露出地面的部分是5米。
这根电线杆的全长是多少?A. 4B. 5C. 66.全场冬装打折优惠,老师花100元买了一件棉背心,比打折前便宜了25元,这种棉背心是按()成优惠的。
A. 八B. 二五C. 七五D. 二二、填空题7.李老师获得一笔劳务费,按规定:超出800元部分要按10%的税率缴纳个人所得税,李老师缴税120元,他的实际收入是________元。
8.一种型号的电视机,前年每台售价3400元,去年比前年每台降价15%,今年又比去年降价20%.今年每台的售价________9.24千克是30千克的________%,24千克的50%是________千克。
10.一件衣服打九折后是45元,这件衣服原价是________元。
11.王叔叔把50000元存入银行,定期两年,年利率是3.87%,到期后王叔叔可以得到利息________元。
三、应用题12.有两只船,大船一次可以运载5吨货物,小船一次运载的货物量是大船的25。
大船6次运完的货物,如果改用小船运,几次才能运完?13.纸箱里有红、绿、黄三色球,红色球的个数是绿色球的34,绿色球的个数与黄色球个数的比是4∶5,已知绿色球与黄色球共81个,问三色球各有多少个?14.一根绳子,第一次剪去全长的15,第二次剪去34米,还剩2.05米.这根绳子原来长多少米?15.某批发商店进了910吨白糖,第一周卖出这些白糖的13,第二周卖出25吨。
小升初典型应用题:分数与百分数问题试卷说明:本试卷试题精选自全国各地市近两年2022年和2023年六年级下学期小升初期末真题试卷,难易度均衡,适合全国各地市使用苏教版教材的六年级学生小升初期末考、择校考、分班考等复习备考使用!1.某书店运来一批连环画.第一天卖出1800本,第二天卖出的本数比第一天多19,余下总数的37正好第三天全部卖完,这批连环画共有多少本?2.张亮从甲城到乙城,第一天行了全程的40%,第二天行了全程的920,距乙城还有18千米,甲、乙两城相距多少千米?3.袋子里有红、黄、蓝三种颜色的球,黄球个数是红球的45,蓝球个数是红球的23,黄球个数的34比蓝球少2个.袋中共有多少个球?4.袋子里原有红球和黄球共104个.将红球增加38,黄球减少25后,红球和黄球的总数变为112个.原来袋子里有红球和黄球各多少个?5.水果店运来苹果和香梨一共210千克,香梨的质量是苹果的25.运来香梨有多少千克?6.甲、乙两个书架,甲书架上的书是乙书架的813.若从乙书架取出75本放入甲书架,两个书架上的书相等.原来两书架各有书多少本?7.在希望学校学生阅览室里,女生占全室人数的49,后来又进来两名女生,这时女生占全教室人数的919.问阅览室里原来有多少人?8.某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价85%出售,蓝笔按定价80%出售.结果他付的钱就少了18%.已知他买了蓝笔30支,问红笔买了几支?9.三种动物赛跑,已知狐狸的速度是兔子的70%,兔子的速度是松鼠的2倍,一分钟内松鼠比狐狸少跑16米,那么半分钟内兔子比狐狸多跑多少米?10.李大娘把养的鸡分别关在东、西两个院内。
已知东院养鸡40只;现在把西院养鸡总数的14卖给商店,13卖给加工厂,再把剩下的鸡与东院全部的鸡相加,其和恰好等于原来东、西两院养鸡总数的50%。
原来东、西两院一共养鸡多少只?11.某运输队运一批大米。
六年级下册数学必考应用题一、分数的应用题1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?二、比的应用题1、一个长方形的周长是24厘米,长与宽的比是2:1 ,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96 厘米,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少?3、一个长方体棱长总和为96 厘米,高为4厘米,长与宽的比是3 ∶2 ,这个长方体的体积是多少?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4 ∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?6、做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克?7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?三、百分数的应用题1、某化肥厂今年产值比去年增加了20%,比去年增加了500万元,今年产值是多少万元?2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?4、教育储蓄所得的利息不用纳税。
六年级分数和百分数应用题25道及答案1、一项工程甲乙合做6天完成,乙独做10天完成,甲独做要几天完成?2、一项工作,甲5小时先完成4分之1,乙6小时又完成剩下任务的一半,最后余下的工作有甲乙合作,还需要多长时间能完成?多少人?定时完成,还需求做30-12=18天需要增加24-18=6人4、甲乙两人加工一批零件,甲先加工 1.5小时,乙再加工,完成任务时,甲完成这批零件的八分之五.已知甲乙的共效比是3:2.问:甲单独加工完成着批零件需多少小时?甲乙工效比=3:2也就是工作量之比=3:25、一项工程,甲、乙、丙三人协作需求13天,如果丙苏息2天,乙要多做4天,大概由甲、乙合作多做1天.问:这项工程由甲单独做需求多少天?丙做2天,乙要做4天也就是说并做1天乙要做2天那末丙13天的工作量乙要2×13=26天完成乙做4天相当于甲乙协作1天也就是乙做3天即是甲做1天设甲单独完成需求a天那末乙单独做需求3a天丙单独做需求3a/2天根据题意a=26甲单独做需要26天算术法:丙做13天相当于乙做26天所以甲单独完成需求13+13=26天甲三天做165-75=90套7、甲、乙两人出产一批零件,甲、乙工作效力的比是2:1,两人共同出产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?将乙的工作效率看作单位1 那么甲的工作效率为2乙2天完成1×2=2乙一共生产1×(3+2)=5甲一共出产2×3=6所以乙的工作效率=14/(6-5)=14个/天甲的工作效率=14×2=28个/天一共有零件28×3+14×5=154个或者设甲乙的工作效率分别为2a个/天,a个/天2a×3-(3+2)a=146a-5a=14a=14一共有零件28×3+14×5=154个8、一个工程工程,乙单独完成工程的工夫是甲队的2倍;甲乙两队协作完成工程需求20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?甲乙的工作工夫比=1:2那末甲乙的工作效力比=2:1甲单独完成需要1000×30=元乙单独完成需要550×60=元甲乙合作完成需要(1000+550)×20=元很明显甲单独完成需要的钱数最少选择甲,需要付元工程费.9、一批零件,甲乙两人合做5.5天可以逾额完成这批零件的0.1,目前先由甲做2天,后由后由甲乙合作两天,最后再由乙接着做4天完成任务,这批零件如果由乙单独做几天可以完成?将全部零件看作单位1 整个过程是甲工作2+2=4天乙工作2+4=6天10、有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要跨越5天赋干完成.现由甲、乙两队协作3天,余下的工程由乙队单独做正好按期完成,问划定日期是多少天?甲做3天相当于乙做5天甲乙的工作效力之比=5:3那么甲乙完成时间之比=3:5规定时间=12.5-5=7.5天11、一项工程,甲队单独做20天完成,乙队单独做30天完成,现在乙队先做5天后,剩下的由甲、乙两队协作,还需求多少天完成?12、一项工程甲独完成要10天,乙独做需15天,丙队要20天,3队一同干,甲队因事走了,结果共用了六天,甲队实际干了多少天?12、加工一个零件,甲需要4小时,乙需要2.5小时,丙需要5小时.现在有187个零件需要加工。
分数、百分数应用题(一)1.甲数是80,乙数是60。
甲数比乙数多百分之几?乙数比甲数少百分之几?2.生产一种机器零件,现在每件成本是15元,比原来节约成本费5元,现在的成本是原来成本的百分之几?3.一台消毒碗柜原来售价450元,现在售价比原来降低150元。
降价百分之几?4.立新机床厂三月份生产机床2600台,比计划多生产100台,超额完成了百分之几?5.学校九月份计划用水20吨,实际只用了18吨,九月份节约用水百分之几?6.一列火车从甲地开往乙地,由于火车提速到达的时间由原来的36小时,减少到30小时,这列火车提速百分之几?7.一项工程甲单独做需15小时,乙单独做需12小时。
(1)甲工作效率是乙工作效率的百分之几?(2)乙的工作效率比甲工作效率提高百分之几?8.师傅每天加工48个零件,徒弟每天加工36个零件,每天徒弟比师傅少加工百分之几?填空:9一件商品打“六五”折,就是按原价的()%出售。
10.一件羽绒服打“九五”折,这件羽绒服现价比原价便宜了多少元?11.小红家养了15只母鸡,公鸡的只数是母鸡的40%,小红家养公鸡多少只?12.小明家养公鸡20只,是母鸡的40%,小明家养母鸡多少只?13.拖拉机厂计划生产4800台拖拉机,实际比计划生产增产20%,实际生产了多少抬?14.山西煤矿,去年采煤2400万吨,今年采煤量比去年多60%,今年采煤多少万吨?15.一件产品的成本原来是40元,改造工艺后,成本费降低了37.5%,现在一件成本多少元?16.蔬菜商店运来黄瓜12筐,运来的西红柿比黄瓜多25%,西红柿有多少筐?17.修路队修一条路,第一天修了480米,第一天比第二天多修20%,第二天修多少米?两天共修多少米?18.蓝天小学六年级有女生120人,男生比女生多15%,六年级有学生多少人?19.田村有枣树7.41公顷,梨树比枣树多20%,田村有梨树多少公顷?20.一种彩色电视现在每台售价1980元,比原来价格降低了20%,原价售出多少元?分数、百分数应用题(二)1.一种雨伞打“八五”折,妈妈用了8.5元买了一把,这种雨伞多少元?2.一份稿件,打字员已打了48000字,完成了这份稿件的80% ,这份稿件共有多少字?3.在“手拉手”活动中,同学给贫困儿童捐书,六一班捐书200本,是六年级捐书总数的20%,六年级捐书多少本?4.一辆汽车,从甲城到乙城,已经行驶全程的80%,还剩240千米没有走,甲、乙两城相距多少千米?5.今年农场种了500公顷西瓜,比去年多种了5%,去年种西瓜多少公顷?6.桃树的棵数是梨树的3/5 ,梨树的棵数是杨树的50% ,已知桃树有30棵,杨树有多少棵?7.一段木料长8米,先用去全长的3/4 ,又用去3/4 米,一共用去多少米?8.一种圆柱形的钢材,4/5 米重200 吨,现有这样的钢材2米,重多少吨?9.草地上有180只羊在吃草,其中29 是山羊,其余的都是绵羊。
1、张叔叔家的果园里种有苹果树450棵,种植的梨树的棵数是苹果树的35,果园里种有梨树多少棵2、一项工作,甲3天完成了这项工作的17,甲完成这项工作还需要多少天。
3、一件商品的进价是150元,按进价提高12%后出售,此时的售价是多少?4、一件衣服打八折销售,售价是160元,这件衣服的原价是多少元。
5、李奶奶将3000元存入银行,存期为3年,年利率为2.75%。
到期取出时,李奶奶可以得到多少利息?6、某工厂生产一批服装,第一天完成计划的12,第二天完成计划的37,第三天完成450套,结果实际完成的超过计划的14,计划生产服装多少套?(提示:这道题需要好好思考,先弄清楚单位“1”的量、已知量、对应的分率之间的关系,然后选择合适的方法来解答)7、单独干某项工程,甲队需10天完成,乙队需15天完成,甲、乙两队合干2天后,乙队单独干剩下的工程,还需要多少天?8、现有浓度为30%的酒精溶液若干克,加入一定量水稀释后变成浓度为24%的酒精溶液,再加入同样多的水后,浓度是多少?参考答案:1、450*35=450(棵)2、(110+115)*2=13(1- -13)÷115=10(天) 3、150+150*12﹪=168(元) 4、160*80﹪=200(元)5、3000×2.75﹪×3=247.5(元)6、450÷(1+14 - 12 - 37 )=1400(套)7、(110+ 115)×2 = 13(1 - 13 ) ÷ 115 =10(天) 8、100×30﹪=30(克) 30 ÷ 24 %=125(克) 125-100=25(克)30÷(125+25)×100%=20%。
分数百分数应用题专项练习题1、金放在水里称,重量减轻191,银放水里称,重量减轻101,一块金银合金重770克,放在水里称,减轻了50克,这块合金含金、银各多少克?2、参加六一联欢活动的少先队员中,女队员占全体少先队员的74,男队员比女队员的32多40人,问女队员有多少人?3、某工厂两个车间,甲车间每月产值比乙车间多5万元,甲车间产值的152等于乙车间的32,问两个车间产值各是多少万元?4、商店以每双6.5元购进一批凉鞋,售价为每双8.7元,当卖剩下41时,不仅收回了购进这批凉鞋所付出的款,而且获利20元。
这批凉鞋共有多少双?5、由奶糖和巧克力混合成的一堆糖中,如果增加10个奶糖后,巧克力占总数的60%,再增加30个巧克力后,巧克力占总数的75%,那么原混合糖中有奶糖多少个?巧克力多少个?6、有一个分数,若分母加上6,分子不变,约分后是61;若分子加上4,原分母不变,约分后是41,原分数是多少?7、四年级音乐小组中,四(1)班学生占53,后来又有14名别班级的学生参加了音乐小组,这时四(1)班学生只占41,那么再从四(1)班选入多少人参加音乐小组,四(1)班学生就占52?8、园林工人在街心公园栽牡丹、芍药、串红、月季四种花。
牡丹株数占其它三种花总数的41;串红的株数占其它三种花总数的114。
已知栽种月季60株。
园林工人栽种牡丹、芍药共多少株?9、 小辉乘飞机参加世界少年奥林匹克数学金杯比赛,飞机舷窗外是一片如画的蔚蓝色大海,她看到云海占整个画面的21,并遮住一个海岛的41,露出的海岛占整个画面的41。
求被遮住的海面占应看见整个海面的几分之几?10、小军行走的路程比小红多41,而小红行走的时间却比小军多101,小军与小红的速度比是几比几?11、实验小学的学生,五年级比四年级多15%,四年级比三年级多25%,而五年级学生比三年级多91人,三年级有学生多少人?12、 仓库运来含水量为99%的一种水果1000千克,一星期后再测发现含水量降低了,变为98%,现在这批水果总重量是多少千克?13、四、五年级参加航模小组共56人。
分数和百分数及比的应用题例题精讲【例题1】西山小学六年级原有女生人数是男生人数的80%,后来转来女生3 人,现在女生人数是男生人数的5/6,原来全级有多少人?【答案】此题应把男生的人数看作单位“1”,要求原来全级有多少人?必须先求出男生的人数,然后再求出女生的人数,进而求出原来全级有多少人。
3÷(5/6−80%)=90(人)90×80%=72(人)90+72=162(人)答:原来全级有162 人.【例题2】一辆汽车从甲地向乙地行驶,行了一段距离后,距离乙地还有210 千米,接着又行了全程距离的20%,此时已行驶的距离与未行驶的距离比为3:2,求甲乙两地的距离。
【答案】全程的总份数:3+2=5(份)行驶的路程占全程的3/5,未行驶的路程占全程的2/5,甲乙两地的距离:210÷(2/5+20%)=350(米)答:甲乙两地的距离是350 米。
【例题3】为了学生的卫生安全,学校给每个学生配一个水杯,每只水杯3 元,美好家园打九折,汇集超市“买八送一”。
学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由。
【答案】美好家园:3×0.9×180=486(元)汇集超市:180÷(8+1)=20 3×8×20=480(元)486 元>480 元答:汇集超市购买比较合算。
举一反三【变式1】一桶油,用去40 千克,用去的比剩下的少五分之一,这桶油共有多少千克?【答案】解:设剩下的油为X 千克(X - 40)/ X = 1/5解得:X=50共有油X+40 = 90 (千克)答:这桶油共有 90 千克。
【变式2】工程队用3 天修完一段路,第一天修的是第二天的9/10,第三天修的是第二天的6/5 倍,已知第三天比第一天多修270 米,这段路长多少米?【答案】设第二天修的为单位“1”,则第一天修9/10,第三天修6/5,270÷(6/5-9/10)=900(米)所以,这段路长=900×(1+6/5+9/10)=2790(米)【变式3】12 减去它的1/2、再减去剩下的1/3、再减去剩下的1/4、……最后减去剩下的1/12,剩下的数是()。
分数、百分数应用题(1)售价进价1、某商品如果进价降低10%,售价不变,那么毛利率(售价进价100% )可增加12%,那么进价原来这种商品售出的毛利率是多少?2、某个体服装商将一件服装连续两次降价15%,售价为289 元,已知这件服装的进价是原标价的70%,问这件服装卖出后可赚多少元?3、甲、乙两种商品成本共200 元,商品甲按30%的利润定价,商品乙按20%的利润定价,后来应顾客的请求,两种商品都按定价的90%出售,结果仍获利润27.7 元,问商品甲的成本是多少元?4、某商品每件的成本是72 元,原来按定价出售,每天可出售100 件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的 2.5 倍,照这样计算,每天的利润比原来增加多少元?5、商店卖红、蓝两种笔,红笔定价 5 元,蓝笔定价9 元,小明由于买的数量较多,商店就打折扣,红笔按定价的85%出售,蓝笔按定价的80%出售,结果小明付的钱就少了18%。
已知小明买了蓝笔30 支,问红笔买了几支?6、公园出售两种门票:个人票每张 5 元,10 人一张的团体票每张30 元,购买10 张以上团体票者可优惠10%。
(1)甲单位45 人逛公园,按以上规定买票,最少应付多少元?2)乙单位208 人逛公园,按以上规定买票,最少应付多少钱?7、某出版社出版的某种书,今年每册书的成本比去年增加了10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这本书的成本在定价中所占的百分数是多少?8、某出版社出版的某种书,今年每册书的成本比去年增加了10%,但是仍保持原售价,因此每本利润下降了40%,但今年的发行数量比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是多少?9、甲、乙、丙三种糖果每千克分别是14 元、10元、8元,现把甲种糖果4千克,乙种糖果 3 千克,丙种糖果5千克混合在一起,问买 2 千克这种糖果需要多少钱?10、商品按原定价出售,每件利润为成本的25%,后来按原定价的90%出售,结果每天售出的件数比降价前增加了 1.5 倍,每天经营这种商品的总利润比降价前增加了百分之几?11、董事长在懂事会上说:“先生们,根据分路营运的实际收益,我们要支付的股息十全部股份的6%,但是有400 万元的优先股我们必须支付7. 5%的股息,所以我们对普通股只能支付5%的股息了。
分数和百分数应用题典题探究例1.两只蜗牛从一根竹竿的两端相对爬行,乙蜗牛先爬了米,甲蜗牛才开始爬出,甲蜗牛的速度比乙蜗牛的速度快,相遇时乙比甲多行了20%,这根竹竿的全长是多少米?例2.一个书架上、下两层放书的册数相等.上层书借走25%,下层借走,然后从上层拿15册放在下层,这时两层的书同样多.原来书架的上、下层各放有多少册书?例3.一堆煤,第一天运走,第二天运走剩下的一半,第三天又运了剩下的,最后剩下的煤比第三天运走的少10吨.三天一共运了几吨?例4.有两个容器,A容器中有1升水,B容器是空的.第一次将A容器中的水的倒入B 容器中,然后第二次将B容器里的水的倒回A容器中;第三次再将A容器里的水的倒入B容器中,然后第四次将B容器里的水的倒回A容器中;…如此进行下去,倒了第9次后,A容器里有多少水?演练方阵A档(巩固专练)一.选择题(共1小题)1.文化用品店新到一批日记本,上一周售出本数比总数的一半少12本;这一周售出的本数比所剩的一半多12本;结果还有19本.问这批日记本有()本.A.50 B.40 C.80 D.100二.填空题(共10小题)2.现有一堆建筑需要清运,它第一次运走总量的.第二次运走余下的,第三次运走余下的,第四次运走余下的,第五次运走余下的,依次规律继续运下去,当运走49次后,余下废料是总量的_________.3.一把小刀售价3元.如果小明买了这把小刀,那么小明与小强的钱数比是2:5;如果小强买了这把小刀,那么两人钱数比是8:13,小明原有_________元钱.4.某班学生参加一次考试,成绩分优、良、及格、不及格四等.已知该班有的学生得优,有的学生得良,有的学生得及格.如果该班学生人数不超过60人,则该班不及格的学生有_________人.5.少年数学爱好者俱乐部让全体会员投票,推选一名“解题大王”,候选人是丁瓜瓜和金灵灵,每个会员只能选1人,不得弃权,结果丁瓜瓜的得票数只有金灵灵的,丁瓜瓜落选,事后,丁瓜瓜一算:“只要再有9个人投我的票,我就会以1票优势当选了!”这次选举丁瓜瓜得了_________票.6.去年某地区参加小学数学奥林匹克的学生中,少数民族的同学占五分之一.今年全区参赛的学生增加了40%,这样少数民族的同学就占总人数的四分之一.与去年相比较,今年少数民族学生参赛人数增加了_________%.7.有三箱螺帽,其中第一个箱子里有303只螺帽,第二个箱子里的螺帽是全部螺帽的,第三个箱子里的螺帽是全部螺帽的(n是自然数).则第三个箱子里有螺帽_________只.8.有一块冰,每小时都失去它原来重量的一半,8个小时后,它的重量是千克,原来这块冰的重量是_________千克.9.一天饥饿的大食怪去快餐店买汉堡和可乐,汉堡一个15元,可乐一杯5元.由于大食怪买的多,餐厅经理给他打折,汉堡打9折,可乐打8折,他一算,一共可以少付14%的钱.已知大食怪喝了10杯可乐,那么大食怪吃了_________个汉堡.10.一瓶纯牛奶,亮亮第一次喝了30%,然后在瓶里兑满水,又接着喝去30%.亮亮第一次喝的纯奶多._________.(判断对错)11.甲、乙、丙三人共同加工一批零件,完工时甲加工的零件数是乙的2倍,丙加工的零件数是乙的一半,丙完成了这批零件的_________.三.解答题(共8小题)12.某商场购进一批服装,期望售完后能盈利50%.起先按比进货价贵50%的定价销售掉60%的服装,商场为了加快资金流动,决定打折出售余下的服装,这样全部的盈利比期望的减少了18%.问余下的服装出售时,打了几折?13.一个桶里装了一些油,油和桶共重108千克,第一次倒出少5千克,第二次倒出剩下的还多3千克,这时剩下的油和桶共重21千克.原来这桶油油多少千克?14.体育场入场券30元一张,若降价后观众增加一半而收入却只增加25%,每张入场券降价_________元.15.这是一个道路图,A处有一大群孩子,这群孩子向东或向北走,在从A开始的每个路口,都有一半人向北走,另一半向东走,如果先后有60个孩子到路口B,问:先后共有多少个孩子到路口C?16.甲、乙两个仓库有货物若干吨,先从甲仓库运走货物80吨后,甲仓库余下货物的吨数与乙仓库货物吨数的比是3:2;再从乙仓库运走货物56吨,则乙仓库余下货物的吨数比甲仓库余下货物的吨数的还要少21吨,问甲、乙两个仓库原有货物共多少吨?17.(•安岳县模拟)由奶糖、水果糖、软糖、酥糖四种糖组成的混合糖共60千克,其中奶糖和水果糖重量之和占总重量的;奶糖和软糖重量之和占总重量的;奶糖和酥糖重量之和占总重量的60%.求这四种糖各重多少千克?18.(•济南)某装订车间的三个工人要将一批书打包后送往邮局(要求每个包内所装书的册数同样多).第一次,他们领来这批书的,结果打了14个包还多35本.第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包.这批书共有多少本?19.小明第一天看了一本书页数的20%,第二天看了15页,这时已看的页数与未看的页数之比为2:3,这本书一共有多少页?B档(提升精练)一.选择题(共10小题)1.甲乙两班学生人数相等,各有一些同学参加课外天文小组,加班参加天文小组的人数是乙班没有参加人数的,乙班参加天文小组的人数是甲班没有参加人数的,甲班没有参加的人数是乙班没有参加人数的()A.B.C.D.无法计算2.市A公路收费站,去年的收费额比今年的收费额少,估计明年收费额比今年的收费额多,那么明年的收费额估计要比去年的收费额多几分之几()A.B.C.D.3.甲、乙两人共有人民币若干元,已知甲有总数的55%,如果甲取出75元给乙,则乙有总数的60%,甲原来有()元.A.275元B.300元C.250元D.280元4.某日,甲学校买了56千克水果糖,每千克8.06元.过了几日,乙学校也需要买同样的56千克水果糖,不过正好赶上促销活动,每千克水果糖降价0.56元,而且只要买水果糖都会额外赠送5% 同样的水果糖.那么乙学校将比甲学校少花()元.A.20 B.51.36 C.31.36 D.10.365.(•泰州)甲、乙两人进行骑车比赛,同时出发,当甲骑到全程的,乙骑到全程的时,这时两人相距70米,如果继续按各人的速度骑下去,当甲到达终点时,两人最大距离是()A.1600米B.70米C.80米D.无法确定6.有三个盒子分别在里面装着黑白两种颜色的棋子,并且三个盒子的棋子总数相等.已知第一个盒里的白子与第二个盒里的黑子同样多,第三个盒里的白子是所有白子总数的,则这三个盒子里的所有黑子占全部棋子总数的()A.B.C.D.7.用汽车运一批货,已经运了5次,运走的货物比多一些,比少一些,运完这批货物最多要运()次.A.8B.9C.10 D.118.有三堆棋子,每堆棋子42枚,并且只有黑白两色棋子.第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占,把这三堆棋子集中在一起,白棋子占全部棋子的()A.B.C.D.9.乒乓球从高空落下,到达地面后弹起的高度约为落下高度的0.4倍,若乒乓球从25米高处落下,那么弹起后再落下,弹5次时它的弹起高度是()米.A.0B.大于0.5 C.小于0.5 D.等于0.5 10.(•宣武区)一个长方形相邻两边分别增加各自的和,面积就比原来增加()A.B.C.D.二.填空题(共10小题)11.(•长沙模拟)足球赛门票20元一张,降价后观众增加一倍,收入增加五分之一,问一张门票降价_________元.12.(•武汉模拟)甲、乙、丙三件商品,甲的价格比乙的价格少20%,甲的价格比丙的价格多20%;那么,乙的价格比丙的价格多_________%.13.(•中山模拟)某厂家将产品销售额的12%作为推销奖金,某推销员推销80元一件的产品时,按九五折销给客户,结果他实得奖金5600元,则他共销出_________件产品.14.(•龙海市模拟)大小两筐苹果一共是88千克,从大筐中取出,放入到小筐中,两筐的苹果相等.小筐原来有_________千克苹果.15.(•济南)瓶内装满一瓶水,倒出全部水的,然后再灌入同样多的酒精,又倒出全部溶液的,又用酒精灌满,然后再倒出全部溶液的,再用酒精灌满,那么这时的酒精占全部溶液的_________%.16.(•北京模拟)1000千克青菜,早晨测得它的含水率是97%,下午测得它的含水率是95%,那么这些菜重量减少了_________千克.17.(•青羊区模拟)有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的_________%.18.(•北京模拟)甲、乙两校参加“希望杯”全国数学邀请赛的学生人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有_________人.19.(•长沙模拟)果农有西瓜1000个,在运输过程中破裂了一部分,因此在出售时候,好的部分可以获利40%,坏的部分降价出售亏损了30%,但最终果农总共获利28.8%,那么运输过程中损坏了_________个.20.(•湖南模拟)某公园每张个人票5元,供1人入园.每张团体票30元,供不超过10人的团体入园.买10张或更多团体票优惠10%,某单位秋游,原来准备的钱刚好够145人的门票用,临时又增加了两个人,这两人每人带来了m元钱,结果147人刚好都能入园,则m的值是_________.三.解答题(共8小题)21.(•成都)体育商店买100个足球和50个排球,共有5600元,如果将每个足球加价和每个排球减价,全部售出后共收入6040元,问买进时一个足球和排球是多少元?22.(•慈利县模拟)金放在水里称,重量减轻,银放在水里称,重量减轻.一块重770克的金银合金,放在水里称,共减轻了50克.这块合金中含金、银各多少克?23.(•湘潭模拟)某商场促销,晚上八点以后全场在原折扣基础上再打9折,付款时满400元再减100元.已知某鞋柜全场8折,某人晚上九点多来到商场去该鞋柜买了一双鞋,花了332元,这双鞋的原价是多少元?24.(•广州模拟)师徒二人合作400个零件,师傅做的比徒弟做的多8个,问徒弟做了多少个零件?25.(•东莞)一个容器内注满水,有大、中、小三个球,一次将小球沉入水中,二次取出小球,把中球沉入水中,三次把中球取出,再把大、小球一起沉不中,现在知道每次从容器中溢出的水量,一次是二次的,三次是一次的2.5倍,求三个小球体积的比?26.(•海安县模拟)爸爸要将一份1.5GBde文件下载到自己的电脑,他查了一下C盘和E 盘的属性,发现以下信息:C盘总容量为9.75GB,已用空间占60%,E盘已用空间11.52GB,已用空间占90%.(1)爸爸将这个文件保存到哪个盘里更合适?(2)前5分钟下载了25%,照这样的速度,还要10钟能下载完毕吗?27.(•广州模拟)某商场为开业10周年开展了为期一个月的庆祝活动,并在商场外的广场上悬挂了1000个彩色气球.经测试,所挂的气球中,在一周内损坏的占10%,在两周内损坏的占30%,剩下的都会在三周内损坏.为了保证广场上悬挂的气球数量,商场每周末都要将损坏的气球换成新气球.(1)第一周末需要换上多少个新气球?(2)第二周末需要换上多少个新气球?(3)第三周末广场上还剩下多少个没有损坏的气球?28.(•中山市模拟)家电商城有一批彩电在“五一”劳动节期间促销,每台售价2100元,比原价降低了30%.原计划第一天和第二天的销售量的比是5:3,实际第一天就销售了54台,比原计划的销售量多20%.两天共盈利21600元.家电商城原计划第一天销售多少台彩电?分数和百分数应用题答案典题探究例1.两只蜗牛从一根竹竿的两端相对爬行,乙蜗牛先爬了米,甲蜗牛才开始爬出,甲蜗牛的速度比乙蜗牛的速度快,相遇时乙比甲多行了20%,这根竹竿的全长是多少米?考点:分数和百分数应用题(多重条件).专题:分数百分数应用题.分析:本题可列方程解答,设相遇时,甲行了x米,甲蜗牛的速度比乙蜗牛的速度快,甲、乙的速度比是5:4,则乙从甲出发开始又行了x米,又相遇时乙比甲多行20%,即此时乙共行了(1+20%)x米,由此可得x+=(1+20%)x,求出相遇时,乙行的米数后,即能求出竹竿长多少米.解答:解:设相遇时,甲行了x米,可得:x+=(1+20%)xx+=xx=x=,+×(1+20%)=+×=+=(米),答:这根竹竿的全长是米.点评:本题考查了分数和百分数应用题.通过设未知数,根据已知条件找出等量关系列出方程是完成本题的关键.例2.一个书架上、下两层放书的册数相等.上层书借走25%,下层借走,然后从上层拿15册放在下层,这时两层的书同样多.原来书架的上、下层各放有多少册书?考点:分数和百分数应用题(多重条件).专题:分数百分数应用题.分析:设上、下层各放有x册书.上层书借走25%,下层借走,上层剩下的本数是(1﹣25%)x,下层有(1﹣)x,以上层的剩下的本数﹣15=下层剩下的本数+15,为等量关系列式解答即可.解答:解:设上、下层各放有x册书.(1﹣25%)x﹣15=(1﹣)x+150.75x﹣15=0.6x+150.15x=30x=200答:原来书架的上、下层各放有200册书.点评:本题关键找准等量关系即“上层的剩下的本数﹣15=下层剩下的本数+15”,由此进行解答即可.例3.一堆煤,第一天运走,第二天运走剩下的一半,第三天又运了剩下的,最后剩下的煤比第三天运走的少10吨.三天一共运了几吨?考点:分数和百分数应用题(多重条件).分析:把煤的总吨数看做单位“1”,则第一天运走总数的,剩下1﹣=;第二天运走总数的×=,剩下﹣=;第三天运走总数的×=,剩下﹣=;根据“最后剩下的煤比第三天运走的少10吨”,也就是比×=少10吨,因此总吨数为10÷(﹣)=160(吨),三天一共运了160×(1﹣),解决问题.解答:解:第二天剩下:(1﹣)×,=×,=;第三天运走:×=;最后剩下了:1﹣﹣﹣=;三天一共运:10÷(×﹣)×(1﹣),=10÷(﹣)×,=10×16×,=140(吨);答:三天一共运了140吨.点评:此题解答的关键是把煤的总吨数看做单位“1”,求出10吨所占总数的几分之几,求出总数,进一步求出三天一共运的吨数.例4.有两个容器,A容器中有1升水,B容器是空的.第一次将A容器中的水的倒入B 容器中,然后第二次将B容器里的水的倒回A容器中;第三次再将A容器里的水的倒入B容器中,然后第四次将B容器里的水的倒回A容器中;…如此进行下去,倒了第9次后,A容器里有多少水?考点:分数和百分数应用题(多重条件).专题:分数百分数应用专题.分析:根据“A容器中有1升水,B容器是空的.现将A容器中的水倒入第二个容器中,”得出第一次后,A容器有:1×升,再根据“然后将B容器里的水倒回A容器中,”得出第二次后,A容器中有:=升;然后再根据第三次再将A 容器里的水的倒入B容器中,得出第三次后,A容器中有:升,由此发现在进行奇数次后,A容器中剩下升;由此得出答案.解答:解:第一次后,A容器中有:1×升,第二次后,A容器中有:器中有:=升;第三次后,A容器中有:升,…发现在进行奇数次后,A容器中剩下升;所以倒了第9次后,A容器里有水.答:倒了第9次后,A容器里有水.点评:解答此题的关键是根据题意,算出每次倒水后A容器的水的量,找出规律,再解决问题.演练方阵A档(巩固专练)一.选择题(共1小题)1.文化用品店新到一批日记本,上一周售出本数比总数的一半少12本;这一周售出的本数比所剩的一半多12本;结果还有19本.问这批日记本有()本.A.50 B.40 C.80 D.100考点:分数和百分数应用题(多重条件).专题:分数百分数应用题.分析:根据“上一周售出本数比总数的一半少12本”,是把一批日记本总数看作单位“1”,再根据“这一周售出的本数比所剩的一半多12本”是把剩的本数看作单位“1”,据分数除法的意义,数量(12+19)除以对应分率,求出剩下的本数,再根据剩下的本数﹣12,它所对应的分率是总数的,求出总本数.解答:解:(12+19)÷,=31÷,=62(本),总数的一半:62﹣12=50(本),总数:50÷=100(本).答:这批日记本有100本.故选:D.点评:解决此题的关键是注意两个单位“1”,先根据分数除法的意义求出第二个单位“1”,再求出第一个单位“1”.二.填空题(共10小题)2.现有一堆建筑需要清运,它第一次运走总量的.第二次运走余下的,第三次运走余下的,第四次运走余下的,第五次运走余下的,依次规律继续运下去,当运走49次后,余下废料是总量的.考点:分数和百分数应用题(多重条件).专题:分数百分数应用专题.分析:由题意,可得规律:分子代表运走的次数n,分母是2008﹣(n﹣1),因此,第49次时,分子为49,分母为2008﹣(n﹣1)=2008﹣(49﹣1)=2008﹣48.据此解答.解答:解:当运走49次后,余下废料是总量的.故答案为:.点评:先找准规律,然后据规律解答.3.一把小刀售价3元.如果小明买了这把小刀,那么小明与小强的钱数比是2:5;如果小强买了这把小刀,那么两人钱数比是8:13,小明原有12元钱.考点:分数和百分数应用题(多重条件);比的应用.分析:小明买后与小强的钱数比是2:5,因为两人买完后钱数总和不变,总和为7份,所以,小明买后的钱数:小强的钱数:总钱数=2:5:7,即:6:15:21.用同样方法,小明的钱数:小强买后的钱数:总钱数是:8:13:21.由此可知,小刀3元占总钱数的(8﹣6)2份,每份是(3÷2)1.5元.小明不买时占了8份,因此小明的钱数即可求出.解答:解:小明买后的钱数:小强的钱数:总钱数=2:5:7=6:15:21,小明的钱数:小强买后的钱数:总钱数=8:13:21,[3÷(8﹣6)]×8,[3÷2]×8,=1.5×8,=12(元).答:小明原有12元钱.故答案为12.点评:解答此题的关键是:根据两人买后钱数和总钱数的两个连比,求出每份是多少钱.4.某班学生参加一次考试,成绩分优、良、及格、不及格四等.已知该班有的学生得优,有的学生得良,有的学生得及格.如果该班学生人数不超过60人,则该班不及格的学生有1人.考点:分数和百分数应用题(多重条件).分析:把该班学生人数看做单位“1”,根据题意可求出不及格人数占单位“1”的几分之几,再根据该班学生人数不超过60人,进一步确定总人数,进而求得不及格的学生人数.解答:解:不及格人数占:,因该班学生人数不超过60人,肯定是2、3、7的最小公倍数:2×3×7=42(人),不及格人数是:(人).答:该班不及格的学生有1人.故答案为:1.点评:解决此题关键是先求出不及格人数占的分率,再根据人数不超过60人这一条件确定总人数,进而求得不及格的人数.5.少年数学爱好者俱乐部让全体会员投票,推选一名“解题大王”,候选人是丁瓜瓜和金灵灵,每个会员只能选1人,不得弃权,结果丁瓜瓜的得票数只有金灵灵的,丁瓜瓜落选,事后,丁瓜瓜一算:“只要再有9个人投我的票,我就会以1票优势当选了!”这次选举丁瓜瓜得了46票.考点:分数和百分数应用题(多重条件).专题:分数百分数应用专题.分析:本题可列方程解答,设金灵灵有x票,则丁瓜瓜得了x票,又丁丁瓜再得9票即可比金灵灵多得1票当选,此时丁瓜瓜得了x+9票,由此可得方程,x+9=x+1.求出金灵灵票数后,即能求出丁瓜瓜的票数.解答:解:设金灵灵有x票,可得:x+9=x+1x=8x=5454×=46(票)答:这次选举丁瓜瓜得了46票.故答案为:46.点评:通过设未知数,根据已知条件找出等量关系列出方程是完成本题的关键.6.去年某地区参加小学数学奥林匹克的学生中,少数民族的同学占五分之一.今年全区参赛的学生增加了40%,这样少数民族的同学就占总人数的四分之一.与去年相比较,今年少数民族学生参赛人数增加了15%.考点:分数和百分数应用题(多重条件).专题:分数百分数应用题.分析:将去年总人数当做单位“1”,则今年学生总人数是去年的1+40%,今年少数民族占总数的四分之一,则今年少数民族人数占去年总人数的(1+40%)×,去年少数民族人数占总数的五分之一,所以与去年相比,今年少数民族参加的人数增加了:(1+40%)×﹣.解答:解:(1+40%)×﹣=×﹣=15%.答:与去年相比,今年女少数民族学生参加的人数增加了15%.故答案为:15.点评:完成本题要注意单位“1”的确定,将去年人数当做单位“1”.7.有三箱螺帽,其中第一个箱子里有303只螺帽,第二个箱子里的螺帽是全部螺帽的,第三个箱子里的螺帽是全部螺帽的(n是自然数).则第三个箱子里有螺帽2525只.考点:分数和百分数应用题(多重条件).专题:分数百分数应用专题.分析:根据题意,将三口木箱的全部螺帽看作单位1“,n的值只能在0、1、2、3、4、5这两个数中选取,(n不能等于6,因为+=>1,)经过尝试只有当n=5时,得到的是整数,用单位“1”分别减去第二箱和第三箱占总数的分数,那么得到的分数即是第一口箱子所占总数的几分之几,又知第一口箱子里有303个螺帽,所以用303除以所对应的分数即可得到答案,然后再求出第三箱的螺丝的个数,列式解答即可.解答:解:当n=5时,303÷[1﹣(+)],=303÷,=3535(只);3535×=2525(只);答:这三口木箱的螺帽共有2525只.故答案为:2525.点评:解答此题的关键是确定第三口木箱占总数的几分之几,然后再计算出第一口木箱占总数的几分之几,再用第一口木箱的个数除以它所占的分数即可得到答案.然后进一步求出第三箱螺丝的个数.8.有一块冰,每小时都失去它原来重量的一半,8个小时后,它的重量是千克,原来这块冰的重量是64千克.考点:分数和百分数应用题(多重条件).专题:分数百分数应用题.分析:抓住最后的重量千克,是第八小时之前的重量的一半,则第八个小时之前的重量就是×2=千克,这又是第七小时之前的重量的一半,所以第七小时之前的重量是×2=1千克,依此类推,即可得出冰块最初的重量.解答:解:×2×2×2×2×2×2×2×2=64(千克),答:一开始这块冰的重量是64千克.故答案为:64.点评:解决此类问题的关键是抓住最后得到的数量,从后向前进行推理,根据除法的逆运算思维进行解答.9.一天饥饿的大食怪去快餐店买汉堡和可乐,汉堡一个15元,可乐一杯5元.由于大食怪买的多,餐厅经理给他打折,汉堡打9折,可乐打8折,他一算,一共可以少付14%的钱.已知大食怪喝了10杯可乐,那么大食怪吃了5个汉堡.考点:分数和百分数应用题(多重条件).专题:分数百分数应用题.分析:本题可列方程解答,设大食怪吃了x个汉堡,则未打折时所花钱数为15x+5×10元,又,汉堡打9折,可乐打8折后,所花钱数是15a×90%+5×10×80%元,此时一共可以少付14%的钱,即此时所付钱数是未打折所付钱数的1﹣14%,由此可得方程:(15x+5×10)(1﹣14%)=15x×90%+5×10×80%.解答:解:设大食怪吃了x个汉堡,可得方程:(15x+5×10)(1﹣14%)=15x×90%+5×10×80%.(15x+50)×86%=13.5x+4012.9x+43=13.5x+400.6x=3x=5答:大食怪吃了5个汉堡.点评:完成此类题目要认真分析所给条件,找出其中的等量关系,通过设未知数列出方程是完成的关键.10.一瓶纯牛奶,亮亮第一次喝了30%,然后在瓶里兑满水,又接着喝去30%.亮亮第一次喝的纯奶多.√.(判断对错)考点:分数和百分数应用题(多重条件).专题:分数百分数应用专题.分析:亮亮第一次喝了30%,然后在瓶里兑满水,则此时瓶中水占30%,牛奶占1﹣30%,又接着喝去30%,根据分数乘法的意义,此时喝下的奶占总量的(1﹣30%)×30%=21%,30%>21%,所以第一次喝下的纯奶多.解答:解:(1﹣30%)×30%=70%×30%=21%30%>21%答:第一次喝下的纯奶多.故答案为:√.点评:完成本题要注意前后两个30%的单位“1”是不同的.11.甲、乙、丙三人共同加工一批零件,完工时甲加工的零件数是乙的2倍,丙加工的零件数是乙的一半,丙完成了这批零件的.考点:分数和百分数应用题(多重条件);工程问题.专题:分数百分数应用题;工程问题专题.分析:把乙加工的零件数看作单位“1”,那么甲加工的零件数的对应的分率是2,丙加工的零件数对应的分率是,则这批零件对应的分率是:(1+2+),然后用丙加工的零件数对应的分率,除以这批零件对应的分率是:(1+2+)就是丙完成了这批零件的几分之几;据此解答即可.解答:解:(1+2+)==答:丙完成了这批零件的.故答案为:.点评:本题的数量关系比较复杂,关键先以中间量乙加工的零件数为单位“1”,统一单位“1”后,再进一步解答.三.解答题(共8小题)12.某商场购进一批服装,期望售完后能盈利50%.起先按比进货价贵50%的定价销售掉60%的服装,商场为了加快资金流动,决定打折出售余下的服装,这样全部的盈利比期望的减少了18%.问余下的服装出售时,打了几折?考点:分数和百分数应用题(多重条件).专题:综合行程问题.分析:设成本价为x元,折扣为n,则期望售完后能盈利50%x,按比进货价贵50%的定价销售掉60%的服装盈利60%×50%×x=0.3x,那么打折出售余下的服装盈利40%×[(1+50%)n﹣1]x=0.4x﹣0.6nx,因此这样全部的盈利比期望的减少了(0.6x﹣0.6nx)÷0.5x,已知减少了18%,由此列式为(0.6x﹣0.6nx)÷0.5x=18%,解决问题.解答:解:设成本价为x,折扣为n,得:{50%x﹣60%×50%×x﹣40%×[(1+50%)n﹣1]x}÷50%x=18%{0.5x﹣0.3x﹣0.4×(1.5n﹣1)x]÷0.5x=18%{0.2x﹣0.6nx+0.4x}÷0.5x=18%{0.6x﹣0.6nx}÷0.5x=18%0.6﹣0.6n=0.090.6n=0.51n=0.85。
六年级应用题专项练习1、建筑工地计划运进一批水泥,第一次运来总数的11/35,第二次运来180吨,这时运来的与没有运来的吨数的比是4 :3。
工地计划运进水泥多少吨?2、修路队修一条路,第一天修了54米,比第二天少修了120米,两天修的占全长的3/5,这条路长多少米?3、一本书,第一天读了全书的1/10,如果再读30页,那么已读的与剩下的比是2:3。
这本书共有多少页?4、一盒糖果连盒重500克,吃掉1/2,剩下连盒重340克,这盒糖果有多少克?5、两辆汽车同时从甲地开往乙地,当一辆车行至全程的1/2时,另一辆车才行至全程的1/3,这时两车相距20千米。
最快的车离乙地还有多少千米?6、一个水池,有一个进水管和一个出水管,单开进水管12分钟才将空池满水,单开出水管15分钟可将满池放完,现在两管同时开,几分钟可将空池注满水?7、一只猴子摘了84个桃子,第一天吃了总数的1/12,第二天吃了余下的1/9,第三天吃了余下的1/8,这只猴子三天中每天吃多少个桃子?8、甲仓库比乙仓库存粮少50吨,从甲仓库往乙仓库运10吨粮食后,甲仓库存粮比乙仓库少7/9。
乙仓库现存粮多少吨?9、有两根同样长的钢管,第一根用去1/2,第二根用去1/2 米。
(1)在什么情况下,第一根用去的多一些?(2)在什么情况下,第二根用去的多一些?(3)在什么情况下,两根用去的一样多?10、洗衣服时,一般都是把脏衣服在擦好肥皂揉搓充分后,拧紧衣服,排掉污水,再进行漂洗。
假设拧紧后衣服中还留有含污物的水1千克,现有10千克的水,按下面的两种方法漂洗:(一)直接把衣服放入10千克的水中漂洗;(二)把10千克水分成两份,每份5千克分两次漂洗。
你认为哪种洗法把衣服洗得干净?为什么?11、杂货商店同时卖出两件商品,每件得240元,其中一件赚20%,一件亏20%。
这个商店卖出这两件商品是赚钱还是亏本?请计算后回答。
12、某班女生人数占总人数的,后来又转进3名女生,这时女生占总人数的8/15。
分数、百分数和比例应用题及列方程解应用题【知识精讲】一、分数、百分数与比例应用题和“整数倍”样,“分数倍”也是一种倍数关系,唯一的区别是用分数来表示。
我们把分数倍,称为分率。
注意,每一个分率都有一一个对应的总量.当知道单位“1”的数量时,计算分率的对应数量很容易.请熟记公式:单位“1”= 分率对应量÷分率比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数。
一般比例中的不变量有三个:1、某一项不变;2、和不变;3、差不变.例1.体操队有男队员45人,若女队员减少10%,就恰好与男队员人数的53相等.求体操队里有女队员多少人? 例2.建筑工地需要一批水泥,从仓库第一次运走全部的52,第二次运走余下的31,第三次运走的比第一次少41,这时还剩下15吨水泥没运走,这批水泥共有多少吨? 例 3.(1)某校体育队的女生人数与男生人数之比为4:5,后来又有2名女生参加,这时女生人数是 男生人数的65,那么现在体育队一共有多少人? (2)甲、乙两校原有图书本数的比是5:3,如果甲校给乙校720本,那么甲、乙两校图书本数的比是2:3,那么甲校原来有图书多少本?(3) 甲、乙两堆煤,甲比乙多5吨,现在从甲、乙两堆运走相同吨数的煤之后,甲、乙两堆剩下的吨数之比变为20:17,那么这时甲剩下的煤有多少吨?二、列方程解应用题方程是分析和解决问题的一种很有用的数学工具,利用方程我们可以解决生活、学习和生产中的很多实际问题. 列方程解应用题的一般步骤: 1. 设元:直接设元和间接设元;2. 列方程:根据等量关系列出方程;3. 解方程;4. 检验;5. 作答:写出答案,作出结论. 例4.小明语文、外语的平均分是81分,他的数学比语、数、外三门的平均分多5分,那么他的数学得了多少分? 例5.两袋粮食共重81千克,第一袋吃掉52,第二袋吃掉43,一共余下29千克,那么原来第一袋重多少千克?例6.箱子里有红、白两种玻璃球,红球数是白球数的3倍多2个.每次从箱子里取出7个白球、15个红球,经过若干次后,箱子里剩下3个白球、53 个红球,那么箱子里原来红球、白球各有多少个?挑战极限1. 四位同学合资买一些文具捐给希望小学的学生,第一-位同学出的钱是另外三人所出总钱数的一半,第二位同学出的钱是另外三人所出总钱数的31,第三位同学出的钱是另外三人所出总钱数的41,第四位同学用了26元,则这些文具一共多少元?2. 小红的妈妈买了许多果冻,这些果冻一共有48个,小红的妈妈对小红说:“如果你能把这些果冻分成4份,并且让第一份加3, 第二份减3,第三份乘3,第四份除以3,所得的结果一致,那你就可以吃这些果冻了。
六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)是多少?(单位“1”已知,用乘法,包括连乘),下午卖出多少1、某食油批发店,上午卖出花生油96箱,下午卖出的是上午的512箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来多少只小鸡?4、一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是多少?5、海象的寿命大约是40年,海狮的寿命是海象的34,海豹的寿命是海狮的23。
海豹的寿命大约是多少年?第二类:求甲数是/占/相当于已数的几分之几(百分之几)?(用除法:甲数÷已数) 1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实际种树200棵,计划种树的棵树是实际的百分之几?第三类:已知甲数的几分之几(或百分之几)是多少,求甲数(单位“1”未知,用除法或者用方程解,对应的量除以对应的分数)1、工地运来的水泥有24吨,运来的水泥是黄沙的56 ,运来的黄沙有多少吨?2、水果店运来苹果28箱,正好是运来梨的箱数的45% ,运来的梨有多少箱?3、一辆客车从甲地开往乙地,已行240千米,还剩40%,甲乙两地相距多少千米?4、某电视机厂去年上半年生产电视机48万台,是下半年产量的80%,这个电视机厂去年全年的产量是多少万台?5、一辆汽车从甲地到乙地,行了全程的3,行了240千米,还剩多少千米没有行?46、王老师有1800元,是张老师的12% ,李老师的钱是张老师的8% ,李老师有多7、汪刚看一本书,第一天看了18 页,第二天看了全书的97% ,还余45页没有看,这本书共有多少页?,未修的比已修的少28千米,这条公路全长多8、修一条公路,已经修了全长的45少千米?9、草地上的灰兔的只数是白兔的60%,白兔比灰兔多10只,白兔有多少只?10、小明看一本书,第一天看了全书的30%,第二天看了全书的25%,两天工看了110页,这本书有多少页?第四类:求甲数比已数多(少)几分之几(百分之几)?(用除法:相差数÷单位1=多出的分率)1、我校男生500人,女生450人。
六年级下册分数、百分数应用题
1、把一张纸的 平均分成2份,每份是这张纸的几分之几?
2、小明 小时走了2km ,小红 小时走了
km 。
谁走的快
些?小明平均每小时走多少km ?
3、王叔叔家阁楼上的窗玻璃是梯形,上底、下底和高分别是
米、 米 。
这块玻璃的面积是多少?
5、小明和爷爷一起去操场散步。
小明走一圈需要8分钟,爷爷走一圈需要10分钟。
(1)如果俩人同时同地出发,相背而行,多少分钟后相遇?
(2)如果俩人同时同地出发,同方向而行,多少分钟后小明超出爷爷?
6、
米
7、
8、某地遭遇暴雨,水库水位已经超过警戒线,急需泄洪,这个水库有两个泄洪口。
只打开A 口,8小时可以完成任务,只打开B 口,6小时可以完成任务。
如果连个泄洪口同时打开,几小时可以完成任务?
10、
一共有300棵树,如果我们一队单独钟需要8天。
现在两队合种,5天能种完吗? 9、
12、
13、
14、
15、
16、
18、
19、
20、
22、
23、
24、
25、
这本课外读物我读了35
页,还剩
没有读 车才运走 平均每车运走这批大米的几分之几?剩下的大米还要几车才能运完?
26、
27、
28、
29、
30、小萍家的地板离地有多高?
50m
31、
32、
33、
34、
35、
36、 37、 38、
39、 40、 41、
42、
43、 44、 45、 46、 47、
48、
49、
50、
51、 52
53、
54、 55、。