中心对称与中考设计题
- 格式:pdf
- 大小:105.80 KB
- 文档页数:2
2021中考数学专题训练轴对称与中心对称一、选择题1. 下列四个交通标志图中,为轴对称图形的是()2. 点(-1,2)关于原点的对称点坐标是()A.(-1,-2) B.(1,-2)C.(1,2) D.(2,-1)3. 如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A.(一,2)B.(二,4)C.(三,2)D.(四,4)4. 2018·达州下列图形中是中心对称图形的是()5. 如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°6. 如图,在RtABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .727. 如图,线段AB 外有C ,D 两点(在AB 同侧),且CA=CB ,DA=DB ,∠ADB=80°,∠CAD=10°,则∠ACB 的度数为( )A .80°B .90°C .100°D .110°8. 如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=,若点M ,N 分别是射线OA ,OB 上异于点O 的动点,则△PMN 周长的最小值是 ( ) A .B .C .6D .3二、填空题9. 如图,已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC ,∠BAC ≠90°.将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个四边形,则能拼出______个中心对称图形.10. 如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为.11. 如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F.若△AEF的周长为10 cm,则BC的长为cm.12. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).13. 现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.14. 如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是形,点P,E,F分别为线段AB,AD,DB上的任意一点,则PE+PF的最小值是.三、作图题15. 如图,在对R t△OAB依次进行位似、轴对称和平移变换后得到R t△O′A′B′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P(x,y)为△OAB边上任一点,依次写出这几次变换后点P对应点的坐标.16. 如图,1O,2O,3O,4O为四个等圆的圆心,A,B,C,D为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是;如图,1O,2O,3O,4O,5O为五个等圆的圆心,A,B,C,D,E为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是.DCBAO4O3O2O1EDCBAO5O4O3O2O1四、解答题17. 如图,Rt△ABC的顶点A,B,C关于直线MN的对称点分别为A',B',C',其中∠A=90°,AC=8 cm,点C,B,A'在同一条直线上,且A'C=12 cm.(1)求△A'B'C'的周长; (2)求△A'CC'的面积.18. 如图,在△ABC中,AB 边的垂直平分线DE 分别与AB 边和AC 边交于点D和点E ,BC 边的垂直平分线FG 分别与BC 边和AC 边交于点F 和点G ,若△BEG 的周长为16,GE=3,求AC 的长.19. [材料阅读]在平面直角坐标系中,以任意两点P (x 1,y 1),Q (x 2,y 2)为端点的线段的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.[运用](1)已知点A (-2,1)和点B (4,-3),则线段AB 的中点坐标是________;已知点M (2,3),线段MN 的中点坐标是(-2,-1),则点N 的坐标是________. (2)已知平面上四点A (0,0),B (10,0),C (10,6),D (0,6).直线y =mx -3m +2将四边形ABCD 分成面积相等的两部分,则m 的值为________.(3)在平面直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D ,可使以点A ,B ,C ,D 为顶点的四边形为平行四边形,求点D 的坐标.20. 如图1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,________;S 矩形AEFG ∶S ▱ABCD =________.(2)▱ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图4,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形...,请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.图1 图2 图3 图42021中考数学 专题训练 轴对称与中心对称-答案一、选择题 1. 【答案】B2. 【答案】B3. 【答案】B [解析] 如图,把(二,4)位置的小正方形涂黑,则整个图案构成一个以直线AB 为对称轴的轴对称图形.4. 【答案】B5. 【答案】C[解析] 由作法得CG ⊥AB.∵AC =BC ,∴CG 平分∠ACB ,∠A =∠B =40°. ∵∠ACB =180°-∠A -∠B =100°, ∴∠BCG =12∠ACB =50°.6. 【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线, ∵22345AB =+=, ∴1522CF AB ==.故选A .7. 【答案】C8. 【答案】D[解析]分别以OB ,OA 为对称轴作点P 的对称点P 1,P 2,连接OP 1,OP 2,P 1P 2,P 1P 2交射线OA ,OB 于点M ,N ,则此时△PMN 的周长有最小值,△PMN 的周长=PN +PM +MN=P 1N +P 2M +MN=P 1P 2,根据轴对称的性质可知OP 1=OP 2=OP=,∠P 1OP 2=120°,∴∠OP 1M=30°,过点O 作MN 的垂线段,垂足为Q ,在Rt △OP 1Q 中,可知P 1Q=,所以P 1P 2=2P 1Q=3,故△PMN 周长的最小值为3.二、填空题9. 【答案】3 [解析] 在这里具有中心对称图形特征的是平行四边形,所以两个三角形中对应相等的两条边重合只能拼一个.因为三角形只有三条边,所以只有三种情况.10. 【答案】12[解析]∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24.∵点O 是菱形两条对角线的交点, ∴阴影部分的面积=×24=12.11. 【答案】10[解析] ∵AB ,AC 的垂直平分线分别交BC 于点E ,F ,∴AE=BE ,AF=CF .∴BC=BE+EF+CF=AE+EF+AF=10 cm .12. 【答案】③13. 【答案】解:作线段AB的垂直平分线EF,作∠BAC的平分线AM,EF与AM 相交于点P,则点P处即为这座中心医院的位置.14. 【答案】菱[解析]∵AC=BC,∴△ABC是等腰三角形.将△ABC沿AB翻折得到△ABD,∴AC=BC=AD=BD,∴四边形ADBC是菱形.∵△ABC沿AB翻折得到△ABD,∴△ABC与△ABD关于AB成轴对称.如图所示,作点E关于AB的对称点E',连接PE',根据轴对称的性质知AB垂直平分EE',∴PE=PE',∴PE+PF=PE'+PF,当E',P,F三点共线,且E'F⊥AC时,PE+PF有最小值,该最小值即为平行线AC与BD间的距离.作CM⊥AB于M,BG⊥AD于G,由题知AC=BC=2,AB=1,∠CAB=∠BAD,∴cos∠CAB=cos∠BAD,即=,∴AG=,在Rt△ABG中,BG===,由对称性可知BG长即为平行线AC,BD间的距离,∴PE+PF的最小值=.三、作图题15. 【答案】解:(1)解图(2)设坐标纸中方格边长为单位1.则P(x ,y )――→以O 为位似中心放大为原来的2倍(2x ,2y )――→沿y 轴翻折(-2x ,2y )――→向右平移4个单位(-2x +4,2y )――→向上平移5个单位(-2x +4,2y +5).16. 【答案】1O ,3O 如图(提示:答案不惟一,过13O O 与24O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图(提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).O DCBAO 4O 3O 2O 1EO DCBAO 5O 4O 3O 2O 1四、解答题17. 【答案】解:(1)∵Rt △ABC 的顶点A ,B ,C 关于直线MN 的对称点分别为A',B',C',AC=8 cm ,A'C=8cm ,∴AB=A'B',AC=A'C',∠A'=∠A=90°.∴△A'B'C'的周长为A'C'+B'C'+A'B'=AC+A'C=12+8=20(cm). (2)由(1)得A'C'=AC=8 cm ,∠A'=90°,∴△A'CC'的面积为A'C ·A'C'=×12×8=48(cm 2).18. 【答案】解:∵DE 垂直平分线段AB ,GF 垂直平分线段BC ,∴EB=EA ,GB=GC. ∵△BEG 的周长为16, ∴EB+GB+GE=16. ∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16. ∴AC+2GE=16. ∵GE=3, ∴AC=10.19. 【答案】解:(1)(1,-1) (-6,-5) (2)12(3)设点D 的坐标为(x ,y).若以AB 为对角线,AC ,BC 为邻边的四边形为平行四边形,则AB ,CD 的中点重合,∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎨⎧x =1,y =-1;若以BC 为对角线,AB ,AC 为邻边的四边形为平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=3+12,2+y 2=1+42,解得⎩⎨⎧x =5,y =3;若以AC 为对角线,AB ,BC 为邻边的四边形为平行四边形,则BD ,AC 的中点重合,∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎨⎧x =-3,y =5. 综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).20. 【答案】【思维教练】(2)AD =DH +AH ,由折叠性质和全等三角形得出DH =HN ,FN =AH ,即AD =FH ,由叠合矩形的概念可知∠FEH =90°,利用勾股定理求出AD ;(3)观察图形的特点,可以考虑从CD 的中点横向和竖向折叠或从分别从每个角的位置向内折叠构成矩形,利用构成的直角三角形求解得出结果.解:(1)AE ,GF ;1∶2(2分)(2)∵四边形EFGH 是叠合矩形,∠FEH =90°,又EF =5,EH =12.∴FH =EF 2+EH 2=52+122=13.(4分)由折叠的轴对称性可知,DH =HN ,AH =HM ,CF =FN.易证△AEH ≌△OGF ,∴CF =AH.(5分)∴AD =DH +AH =HN +FN =FH =13.(6分)(3)本题有以下两种基本折法,如解图1,解图2所示.(作出一种即可)1 2 按解图1的折法,则AD =1,BC =7;按解图2的折法,则AD =134,BC =374.(10分)。
2012年全国中考数学试题分类解析汇编(159套63专题)专题51:轴对称和中心对称一、选择题1. (2012天津市3分)下列标志中,可以看作是中心对称图形的是【 】【答案】B 。
【考点】中心对称图形。
【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解:A 、C 、D 都不符合中心对称的定义。
故选B 。
2. (2012上海市4分)在下列图形中,为中心对称图形的是【 】A . 等腰梯形B . 平行四边形C . 正五边形D . 等腰三角形【答案】B 。
【考点】中心对称图形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,等腰梯形、正五边形、等腰三角形都不符合;是中心对称图形的只有平行四边形.故选B 。
3. (2012重庆市4分)下列图形中,是轴对称图形的是【 】 A .B .C .D .【答案】B 。
【考点】轴对称图形。
【分析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合。
因此,A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误。
(D ) (C )(B )(A )故选B。
4. (2012广东佛山3分)下列图形中,既是轴对称图形又是中心对称图形的是【】【答案】B。
【考点】轴对称图和中心称对形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因为圆既是轴对称图形又是中心对称图形,故选B。
5. (2012广东梅州3分)下列图形中是轴对称图形的是【】A.B.C.D.【答案】C。
【考点】轴对称图形。
【分析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,对各选项分析判断后利用排除法求解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误。
2021年中考数学一轮复习:轴对称与中心对称专项练习题一、选择题1. 如图所示电视台的台标中,是中心对称图形的是()2. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()3. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是()A.O1B.O2C.O3D.O44. 如图,线段AB与A'B'(AB=A'B')不关于直线l成轴对称的是()5. 如图,在△ABC中,AC=BC,点D和E分别在AB和AC上,且AD=AE,连接DE,过点A的直线GH与DE平行.若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°6. 如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA长为半径画弧①;步骤2:以点B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.则下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD7. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图0)的对应点所具有的性质是()A.对应点所连线段与对称轴垂直B.对应点所连线段被对称轴平分C.对应点所连线段都相等D.对应点所连线段互相平行8. 如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3二、填空题9. 将一张矩形纸片折叠成如图所示的图形,若AB=10 cm ,则AC= cm .10. 等腰三角形的两边长分别为6 cm ,13 cm ,其周长为________ cm .11. 如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为 .12. 已知点P (x ,y )的坐标满足等式(x -2)2+|y -1|=0,且点P 与点P ′关于y 轴对称,则点P ′的坐标为________.13. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n 边形有 条对称轴.14. (2019•黄冈)如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M为AB 的中点,若120CMD ∠=︒,则CD 的最大值是__________.三、解答题15. 已知:如图,AB=AC,DB=DC,点E在直线AD上.求证:EB=EC.16. 如图,DF为△ABC的边BC的垂直平分线,F为垂足,DF交△ABC的外角平分线AD于点D,DE⊥AB于点E,且AB>AC,连接BD,CD.求证:(1)∠DBE=∠DCA;(2)BE=AC+AE.17. 如图,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.18. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF =3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A[解析] 如图,连接HC和DE交于点O1.4. 【答案】A[解析] 选项A中,A'B'是由线段AB平移得到的,所以线段AB与A'B'不关于直线l成轴对称.5. 【答案】C[解析] ∵AC=CB,∠C=40°,∴∠BAC=∠B=12(180°-40°)=70°.∵AD=AE,∴∠ADE=∠AED=12(180°-70°)=55°.∵GH∥DE,∴∠GAD=∠ADE=55°.6. 【答案】A[解析] 如图,连接CD,BD.∵CA=CD,BA=BD,∴点C,B都在线段AD的垂直平分线上.∴BH垂直平分线段AD.故选A.7. 【答案】B[解析] 连接BB'交对称轴于点O,过点B作BM⊥对称轴,垂足为M,过点B'作B'N⊥对称轴,垂足为N,由轴对称的性质及平移的性质可得BM=B'N.又因为∠BOM=∠B'ON,∠BMO=∠B'NO=90°,所以△BOM≌△B'ON.所以OB=OB'.同理其他对应点也有这样的结论.8. 【答案】D[解析]分别以OB,OA为对称轴作点P的对称点P1,P2,连接OP1,OP2,P1P2,P1P2交射线OA,OB于点M,N,则此时△PMN的周长有最小值,△PMN的周长=PN+PM+MN=P1N+P2M+MN=P1P2,根据轴对称的性质可知OP1=OP2=OP=,∠P1OP2=120°,∴∠OP1M=30°,过点O作MN的垂线段,垂足为Q,在Rt△OP1Q中,可知P1Q=,所以P1P2=2P1Q=3,故△PMN周长的最小值为3.二、填空题9. 【答案】10[解析]如图,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质,得∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=10 cm,∴AC=10 cm.故答案为10.10. 【答案】32[解析] 由题意知,应分两种情况:(1)当腰长为6 cm时,三角形的三边长为6 cm,6 cm,13 cm,6+6<13,不能构成三角形;(2)当腰长为13 cm时,三角形的三边长为6 cm,13 cm,13 cm,能构成三角形,周长=2×13+6=32(cm).11. 【答案】12[解析]∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24.∵点O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.12. 【答案】(-2,1)[解析] ∵(x -2)2≥0,|y -1|≥0,又(x -2)2+|y -1|=0,∴x-2=0且y -1=0,即x =2,y =1.∴点P 的坐标为(2,1).那么点P 关于y 轴的对称点P′的坐标为(-2,1).13. 【答案】解:如图.故填3,4,5,6,n.14. 【答案】14【解析】如图,作点A 关于CM 的对称点A',点B 关于DM 的对称点B'.∵120CMD ∠=︒,∴60AMC DMB ∠+∠=︒, ∴60CMA'DMB'∠+∠=︒, ∴60A'MB'∠=︒, ∵MA'MB'=,∴A'MB'△为等边三角形,∵14CD CA'A'B'B'D CA AM BD ≤++=++=, ∴CD 的最大值为14,故答案为:14.三、解答题15. 【答案】证明:连接BC.∵AB=AC ,DB=DC ,∴直线AD 是线段BC 的垂直平分线. 又∵点E 在直线AD 上,∴EB=EC.16. 【答案】证明:(1)如图,过点D 作DG ⊥CA 交CA 的延长线于点G .∵DF 是BC 的垂直平分线,∴BD=CD.∵AD 是△ABC 的外角平分线,DE ⊥AB ,DG ⊥CA , ∴DE=DG ,∠DEB=∠DGC=90°. 在Rt △DBE 和Rt △DCG 中,∴Rt △DBE ≌Rt △DCG (HL). ∴∠DBE=∠DCA.(2)∵Rt △DBE ≌Rt △DCG ,∴BE=CG . 在Rt △DEA 和Rt △DGA 中,∴Rt △DEA ≌Rt △DGA (HL). ∴AE=AG .∴BE=CG=AC+AG=AC+AE , 即BE=AC+AE.17. 【答案】(1)①如图2,当E 在OA 上时,由12y x b =-+可知,点E 的坐标为(2b ,0),OE=2b .此时S =S △ODE =112122OE OC b b ⋅=⨯⨯=.②如图3,当E 在AB 上时,把y =1代入12y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3(3,)2b -,AE =32b -,BE =52b -.此时S =S 矩形OABC -S △OAE - S △BDE -S △OCD=1315133()()(52)1(22)22222b b b b -⨯-----⨯⨯-252b b =-+.(2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形.作DH⊥OA,垂足为H.由于CD=2b-2,OE=2b,所以EH=2.设菱形DMEN的边长为m.在Rt△DEH中,DH=1,NH=2-m,DN=m,所以12+(2-m)2=m2.解得54m .所以重叠部分菱形DMEN的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图7 18. 【答案】(1)如解图①,∵折叠后点A落在AB边上的点D处,解图①∴EF⊥AB,△AEF≌△DEF,∴S △AEF =S △DEF ,∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF ,∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴14△△AEF ACB S S =, ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°,∴△AEF ∽△ABC ,∴2△△()AEF ACB S AE ABS =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,∴AB 2=AC 2+BC 2,即AB =42+32=5,∴(AE 5)2=14,∴AE =52;(2)①四边形AEMF 是菱形.证明:如解图②,∵折叠后点A 落在BC 边上的点M 处,∴∠CAB =∠EMF ,AE =ME ,又∵MF ∥CA ,∴∠CEM =∠EMF ,∴∠CAB =∠CEM ,∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME ,∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x , ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°,∴Rt △ECM ∽Rt △ACB ,∴EC AC =EM AB ,∵AB =5,∴445-,x x =解得x =209, ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2,即CM =(209)2-(169)2=43,∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S AEMF 菱形=4S △AOE =2OE ·AO , 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM ,∴OE AO =CM AC ,∵CM =43,AC =4,∴AO =3OE ,∴S AEMF 菱形=6OE 2,又∵S AEMF 菱形=AE ·CM ,∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109.。
苏科版中考数学轴对称与中心对称专题一、选择题1.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是( )A .25°B .30°C .35°D .40°2.(2022湖北黄石一模)如图,在矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A.258 cmB.254 cmC.252 cm D .8 cm3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED′等于( ).A.︒50 B 、︒55 C 、︒60 D 、︒654.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =2 3,则四边形MABN 的面积是( )A .6 3B .12 3C .18 3D .24 3二、填空5.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△C B A 11,连结1AA ,若11B AA ∠=15°,则∠B 的度数是6.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0)、),(01x ,且1<1x <2,与y轴交于的正半轴的交点在(0,2)的下方。
下列结论:①a <b <0;②2a+c >0;③4a-2b+c >0;④2a -b+1>0,其中正确结论个数是A .1个B .2个C .3个D .4个填空题1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ,则图中阴影部分的面积是__________.2.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ′BC ′的位置,且点A ,C 仍落在格点上,则线段AB 扫过的图形的面积是 __________平方单位(结果保留π).3如图,矩形纸片ABCD ,AB =2,∠ADB =30°,沿对角线BD 折叠(使△ABD 和△EBD •落在同一平面内),则A 、E 两点间的距离为________.4 如图,正方形ABCD 和正方形AEFG ,边AE 在边AB 上,AB =2AE =2.将正方形AEFG 绕点A 逆时针旋转60°,BE 的延长线交直线DG 于点P ,旋转过程中点P 运动的路线长为 .5 如图,在正方形ABCD 中,E 是AB 上一点,BE =2,AE =3BE ,P 是AC 上一动点,则PB +PE 的最小值是_______.C BA EG D F6.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.三、解答:1、如图,在∠ABC内有一点P,问:(1)能否在BA,BC边上各找到一点M,N,使△PMN的周长最短?若能,请画图说明;若不能,请说明理由;(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明理由.2去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河同一侧的张村A和李村B送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴,建立平面直角坐标系(如图6-1-20),两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费考虑,水泵站建在距离大桥O多远的地方,可使所用输水管最短?(2)水泵站建在距离大桥O多远的地方,可使它到张村、李村的距离相等?3、如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP 与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.4.如图,抛物线y=x2﹣2mx﹣3m2(m为常数,m>0),与x轴相交于点A、B,与y轴相交于点C,(1)用m的代数式表示:点C坐标为,AB的长度为;(2)过点C作CD∥x轴,交抛物线于点D,将△ACD沿x轴翻折得到△AEM,延长AM 交抛物线于点N,①求的值;②若AB=4,直线x=t交线段AN于点P,交抛物线于点Q,连接AQ、NQ,是否存在实数t,使△AQN的面积最大?如果存在,求t的值;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.6、在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为22的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与A G在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,将线段DG与线段BE相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.答案:选择题:1、B2、B3、4、、605、︒6、C填空题π1、613π2、4 34、2 35、6、作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON ′中,M′N′=32+12=10,故答案为107、解答题:1、解:(1)如图D27,作P点关于AB,BC两边的对称点E,F,连接E,F;与AB,BC交于点M,N,连接PM,PN,△PMN的周长最短.因为EM=PM,PN=FN,NM=NM,PM +PN+MN=EM+FN+MN=EF的长(两点之间,线段最短).(2)能.∵∠ABC=40°,∴∠EPF=140°.又∵∠PMN=∠EPM+∠MEP=2∠EPM,∠PNM=∠FPN+∠NFP=2∠FPN,∴∠PMN+∠PNM=2(∠EPM+∠FPN).∴180°-∠MPN=2(140°-∠MPN).∴∠MPN=100°.2.解:(1)如图D28,作点B关于x轴的对称点E,连接AE,则点E为(12,-7).设直线AE 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧ 2k +b =3,12k +b =-7.解得⎩⎪⎨⎪⎧k =-1,b =5. ∴直线AE 的解析式为y =-x +5.当y =0时,x =5.所以,当水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短.图D28(2)如图D28作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G ,设点G 的坐标为(x,0).在Rt △AGD 中,AG 2=AD 2+DG 2=9+(x -2)2.在Rt △BCG 中,BG 2=BC 2+GC 2=49+(12-x )2.∵AG =BG ,∴9+(x -2)2=49+(12-x )2.解得x =9.∴水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.3、(1)证明:如图,连接OE .∵CD 是圆O 的直径,∴∠CED=90°.∵OC=OE ,∴∠1=∠2.又∵∠PED=∠C ,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE ⊥EP ,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)证明:∵AB 、CD 为⊙O 的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED 平分∠BEP ;(3)解:设EF=x ,则CF=2x ,∵⊙O 的半径为5,∴OF=2x ﹣5,在RT △OEF 中,OE 2=OF 2+EF 2,即52=x 2+(2x ﹣5)2, 解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8, ∴DF=CD ﹣CF=10﹣8=2,∵AB 为⊙O 的直径,∴∠AEB=90°,∵AB=10,BE=8,∴A E =6 ∵∠BEP=∠A ,∠EFP=∠AEB=90°,∴△AEB ∽△EFP , ∴=,即=,∴PF=,∴PD=PF ﹣DF=﹣2=.4、解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2), ∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D(2m,﹣3m2),∵将△ACD沿x轴翻折得到△AEM,∴D、M关于x轴对称,∴M(2m,3m2),设直线AM的解析式为y=kx+b,将A、M两点的坐标代入y=kx+b得:,解得:,∴直线AM的解析式为:y=mx+m2,联立方程组:,解得:(舍)或,∴N(4m,5m2),∴;②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x2﹣2x﹣3,直线AM的解析式为y=x+1,∴P(t,t+1),Q(t,t2﹣2t,﹣3),N(4,5),A(﹣1,0),B(3,0)设△AQN的面积为S,则:S===,∴t=,S最大.5、解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).6、(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90∘,AG=AE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90∘,∴∠AEB+∠ADG=90∘,在△EDH中,∠AEB+∠ADG+∠DHE=180∘,∴∠DHE=90∘,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90∘,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,AD=AB ∠DAG=∠BAE AG=AE∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90∘,∵BD为正方形ABCD的对角线,∴∠MDA=45∘,在Rt△AMD中,∠MDA=45∘,∴cos45∘=DMAD,∵AD=2,∴DM=AM=2√,在Rt△AMG中,根据勾股定理得:GM=AG2−AM2−−−−−−−−−−√=6√,∵DG=DM+GM=2√+6√,∴BE=DG=2√+6√;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.轴对称知识点总结:【知识脉络】【基础知识】Ⅰ. 轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. (2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.Ⅱ. 作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. Ⅳ. 最短路径一.图形旋转1.图形旋转的有关概念:图形的旋转、旋转中心、旋转角;在平面内,将一个图形一个定点转动一定的角度,这样的图形运动称为图形的旋转。
中心对称图形一、选择题:1.下列图形是中心对称图形的是()2.下列说法不正确的是()A 中心对称变换一定是旋转变换B 轴对称图形一定是中心对称图形C 在成中心对称的两个图形中,连接对称点的线段都被对称中心平分D在平移过程中,对应点所连的线段也可能在一条直线上3.已知点P(x,y),xy>0,则点P关于原点对称的点在()A 第一象限B 第三象限C 第一或第三象限D 第二或第四象限4.若点A(a,3)和B(-4,b)关于原点对称,则A、B之间的距离是()A 7B 8C 6D 105.下列图形中,绕某个点旋转1800能与自身重合的有()①正方形②长方形③等边三角形④线段⑤角⑥平行四边形A 5个B 2个C 3个D 4个6.下列图形中,既是中心对称图形,又是轴对称图形,且对称轴只有两条的是()A 等腰梯形B 平行四边形C 菱形D 正方形二、填空题7.写出下列各点关于原点对称点的坐标:A(-2,0)___________;B(0,2)___________;C(3,-4)__________;D(-x,y)__________.8.ΔABC的顶点分别是A(2,3),B(-1,3),C(-4,-3),则它关于原点对称的三角形顶点坐标分别是___________,9.如图所示,图中的四个图形,两两成中心对称图形的是___________________10.请你写出一个是中心对称图形而不是轴对称图形的例子,它可以是_____________提高题1·(2007湖南怀化)下列交通标志中既是中心对称图形,又是轴对称图形的是( )2、(2007四川绵阳)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、(2007贵州遵义)下列四个图形中,既是轴对称图形,又是中心对称图形的是( )4.一个菱形的较短对角线长为2,有一个内角是1200,取两条对角线所在的直线为坐标轴建立坐标系,求菱形四个顶点的坐标.5.如图,正方形ABCD 和正方形OEFG 的边长均为4,O 是正方形ABCD 的对称中心,求图中阴影部分的面积.A. B. C. D.A .B .C .D .6.已知:ΔABC是等腰直角三角形,∠ACB=900,M、N为斜边AB上两点,如果∠MCN=450,说明AM、MN、NB可以构成一个直角三角形.7.如图所示,将其补全使其成为中心对称图形.8.如图所示,有一片土地分别属于甲、乙两家,现要在地中间开辟一条路,为公平起见,这条路应同时将甲、乙两家的土地分成面积相等的两部分(图中阴影部分为乙的土地,其余为甲的土地),请在图中画出分割线.9.如图所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.10.已知,如图,AB=AC,∠BAC=600,∠BDC=300求证AD2=DB2+DC211.已知:如图,A 与C ,B 与D 都关于O 成中心对称,A 与D 、E 与F 都关于MN 成轴对称.求证:(1)四边形ABCD 是矩形.(2)ΔABE 和ΔDCF 既关于直线MN 成轴对称,又关于O 成中心对称(3)ΔABE 和ΔDCF 是全等的等腰三角形.1、(2007江苏扬州)如图,ABC △中(23)A -,,(31)B -,,(12)C -,.(1)将ABC △向右平移4个单位长度,画出平移后的111A B C △;(2)画出ABC △关于x 轴对称的222A B C △;(3)将ABC △绕原点O 旋转180 ,画出旋转后的333A B C △;(4)在111A B C △,222A B C △,333A B C △中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.2、(2007浙江嘉兴)下列图形中,中心对称图形的是( )。
中心对称图形练习题南苑中学朱瑞金王晓红一.选择题:1.连云港市2004年中考题下列图案图1中;既是中心对称又是轴对称的图案是A B C D图12.温州市2005年中考题下列图形图2中;既是轴对称图形又是中心对称图形的是图23.大连市2004年中考题将一圆形纸片对折后再对折;得到图3-1中图3;然后沿着图中的虚线剪开;得到两部分;其中一部分展开后的平面图形是图3-14.浙江省衢州市2004年中考题下列几个图形图4是国际通用的交通标志;其中不是中心对称图形的是A B C D图45.湖北省黄石市2005年中考题下列图案图5中;既是轴对称图形;又是中心对称图形的是图56.安徽无为县2004年初中毕业题某校计划建一座既是中心对称图形又是轴对称图形的花坛;从学生中征集到的设计方案有等边三角形、等腰梯形、菱形、正五边形等四种方案;你认为符合条件的是A.等边三角形B.等腰梯形C.菱形D.正五边形7.江西省2004年中考题右图是跳棋盘;其中格点上的黑色点为棋子;剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行;跳行一次称为一步.已知点A为已方一枚棋子;欲将棋子A跳进对方区域阴影部分的格点;则跳行的最少步数为A.2步B.3步C.4步D.5步8.湖南娄底2003年中考题下列图案图7是中心对称图形;不是轴对称图形的是.图79.湖北省黄石市2005年中考题如图8;把一个正方形三次对折后沿虚线剪下;则所得图形是图810.绍兴市2004年中考题图9中4张扑克牌如图1所示放在桌面上;小敏把其中一张旋转180°后得到如图2所示;那么她所旋转的牌从左数起是A.第一张B.第二张C.第三张D.第四张11、如图10所示的图形是由三个半圆组成的图形;点O是大半圆的圆心;且AC=CD=DB;则此图关于点O成中心对称的图形是A BC D图1012.如图11.将△AOB绕点O旋转180°得到△DOE;则下列作图正确的是图11二.填空题:1.下列几张扑克牌中;中心对称图形的有________张图122.山东临沂2004年中考题下列五种图形:①平行四边形②矩形③菱形④正方形⑤等边三角形..其中既是中心对称图形又是轴对称图形的共有种3.下图中②③④⑤分别由①图顺时针旋转180°变换而成的是____________..①②③④⑤图134.如图14;将标号为A、B、C、D的正方形沿着图中的虚线剪开后得到标号为P、Q、M、N的四组图形;试按照“哪个正方形剪开后得到哪组图形”的对应关系填空..A与对应;B与对应;C与对应;D与对应.A B CDP Q MN图145.下列图形图15中;中心对称图形有_________个图156.如图16;观察下列用纸折叠成的图案;其中不是中心对称图形的个数为_______个信封飞机裤子褂子图167.青海省湟中县实验区2004年中考题下列美丽的图案图17;既是轴对称图形又是中心对称图形的个数是_________个图178.吉林省中考题如图18;菱形花坛ABCD的边长为6 m;∠B=60°;其中由两个正六边形组成的图形部分种花;则种花部分的图形的周长粗线部分为_________.9.大连市2005年中考题如图19;是两个同心圆;其中两条直径互相垂直;大圆的半径是2;则图中阴影部分面积和为____________..10.请在图20这一组图形符号中找出它们所蕴含的内在规律;然后在横线的空白处设计一个恰当的图形..————————三.解答题图201.两个完全一样的三角形;可以拼出各种不同的图形;如图21已画出其中一个三角形;请你分别补画出另一个与其一模一样的三角形;使每个图形分别构成不同的可中心对称图形所画三角形可与原三角形有重叠部分.图212、如图22由16个相同的小正方形拼成的正方形网格;现将其中的两个小正方形涂黑如图..请你在下图中再将两个空白的小正方形涂黑;使它成为中心对称图形..图223.已知:图23中图A、图B;分别是6×6正方形网格上的两个轴对称图形阴影部分;其面积分别为S A、S B;网格中最小的正方形面积为一个平方单位..请观察图形并解答下列问题.1填空:S A:S B的值是.2请在图C的网格上画出一个面积为8个平方单位的中心对称图形.图234.如图2412所示的两组长方形能否关于某一点成中心对称若能;则请画出其对称中心.图245.如图25;两个图形关于某点中心对称;看谁能用最简单的方法找出对称中心..你的根据是什么6.浙江省台州市2004年有些图形既是轴对称图形又是中心对称图形;比如正方形.请你画出另外三种有这一性质的图形画图工具不限;不写画法.图一:图二:图三:7.青蛙跳问题地面上有不共线的三点A、B、C;一只青蛙位于异于A、B、C的点P.第一步;青蛙从P点跳到关于A的对称点P1;第二步;青蛙从P1跳到关于B的对称点P2;第三步;青蛙从P2跳到关于C的对称点P3;第四步;从P3跳到关于A的对称点P4;…;如此不断地跳下去;问青蛙跳完6666步后落在什么位置上。
考向5.4 图形的变化——中心对称【知识要点】1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征 (3分) 1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P (x ,y )关于原点的对称点为P ’(-x ,-y )2、关于x 轴对称的点的特征两个点关于x 轴对称时,它们的坐标中,x 相等,y 的符号相反,即点P (x ,y )关于x 轴的对称点为P ’(x ,-y )3、关于y 轴对称的点的特征两个点关于y 轴对称时,它们的坐标中,y 相等,x 的符号相反,即点P (x ,y )关于y 轴的对称点为P ’(-x ,y )例:(2020·河北唐山·模拟预测)如图,已知ABC 三个顶点的坐标分别为24A (﹣,﹣),04B (,-),11C (,﹣)(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点33P (﹣,﹣),连接PC ,则tan BCP = .【分析】(1)分别作出点B 、C 关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.解:(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【点拨】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.一、单选题1.(2021·广西河池·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2021·湖北黄石·中考真题)下列几何图形中,是轴对称图形但不是中心对称图形的是( ) A .梯形B .等边三角形C .平行四边形D .矩形3.(2021·广西贺州·中考真题)在平面直角坐标系中,点()3,2A 关于原点对称的点的坐标是( ) A .(-3,2)B .(3,-2)C .(-2,-3)D .(-3,-2)4.(2020·陕西师大附中一模)直线l 1:y =﹣12x +1与直线l 2关于点(1,0)成中心对称,下列说法不正确的是( ) A .将l 1向下平移1个单位得到l 2 B .将l 1向左平移1个单位得到l 2C .将l 1向左平移4个单位,再向上平移1个单位得到l 2D .将l 1向右平移2个单位,再向下平移2个单位得到l 2 二、填空题5.(2021·江苏淮安·中考真题)如图,正比例函数y =k 1x 和反比例函数y =2k x图象相交于A 、B 两点,若点A 的坐标是(3,2),则点B 的坐标是___.6.(2021·山东临沂·一模)若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;②()0my m x=≠;③31y x =-;④2y x .其中是“H 函数”的为________.(填上序号即可)7.(2021·湖北·武汉六中上智中学模拟预测)在平面直角坐标系中,点6(4,)P -与点(,1)Q m n +关于原点对称,那么m n +=________.8.(2021·湖南·张家界市永定区教育研究室一模)如图,以平行四边形ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系. 若D 点坐标为(5,3),则B 点坐标为__________.9.(2021·湖南师大附中高新实验中学二模)在平面直角坐标系中,若点(),P a b 的坐标满足0a b =≠,则称点P 为“对等点”.已知一个二次函数22y x mx m =+-的图像上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_________.10.(2021·山东威海·一模)如图,O 是▱ABCD 的对称中心,点E 在边BC 上,AD =7,BE =3,将ABE △绕点O 旋转180°,设点E 的对应点为E ',则AEE ABCDSS'=______.三、解答题11.(2019·黑龙江绥化·中考真题)如图,已知ABC 三个顶点的坐标分别为24A (﹣,﹣),04B (,-),11C (,﹣)(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点33P (﹣,﹣),连接PC ,则tan BCP ∠= .12.(2018·山东枣庄·中考真题)如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.一、单选题1.(2021·广西河池·中考真题)下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.(2021·湖北黄石·中考真题)下列几何图形中,是轴对称图形但不是中心对称图形的是( ) A .梯形B .等边三角形C .平行四边形D .矩形3.(2021·广西贺州·中考真题)在平面直角坐标系中,点()3,2A 关于原点对称的点的坐标是( ) A .(-3,2)B .(3,-2)C .(-2,-3)D .(-3,-2)4.(2020·陕西师大附中一模)直线l 1:y =﹣12x +1与直线l 2关于点(1,0)成中心对称,下列说法不正确的是( ) A .将l 1向下平移1个单位得到l 2 B .将l 1向左平移1个单位得到l 2C .将l 1向左平移4个单位,再向上平移1个单位得到l 2D .将l 1向右平移2个单位,再向下平移2个单位得到l 25.(2021·内蒙古通辽·中考真题)定义:一次函数y ax b =+的特征数为,a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( ) A .[]2,3B .[]2,3-C .[]2,3-D .[]2,3--6.(2021·湖北荆门·中考真题)下列图形既是中心对称又是轴对称的是( )A .B .C .D .7.(2021·四川眉山·中考真题)在平面直角坐标系中,抛物线245y x x =-+与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( ) A .245y x x =--+ B .245y x x =++ C .245y x x =-+-D .245y x x =---8.(2020·黑龙江牡丹江·中考真题)下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个二、填空题9.(2021·江苏淮安·中考真题)如图,正比例函数y =k 1x 和反比例函数y =2k x图象相交于A 、B 两点,若点A 的坐标是(3,2),则点B 的坐标是___.10.(2021·山东临沂·一模)若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,下列关于x 的函数:①2y x =;②()0my m x=≠;③31y x =-;④2y x .其中是“H 函数”的为________.(填上序号即可)11.(2021·湖北·武汉六中上智中学模拟预测)在平面直角坐标系中,点6(4,)P -与点(,1)Q m n +关于原点对称,那么m n +=________.12.(2021·湖南·张家界市永定区教育研究室一模)如图,以平行四边形ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系. 若D 点坐标为(5,3),则B 点坐标为__________.13.(2021·湖南师大附中高新实验中学二模)在平面直角坐标系中,若点(),P a b 的坐标满足0a b =≠,则称点P 为“对等点”.已知一个二次函数22y x mx m =+-的图像上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_________.14.(2021·山东威海·一模)如图,O 是▱ABCD 的对称中心,点E 在边BC 上,AD =7,BE =3,将ABE △绕点O 旋转180°,设点E 的对应点为E ',则AEE ABCDSS'=______.15.(2021·山东聊城·中考真题)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________. 16.(2020·贵州黔东南·中考真题)以▱ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(﹣2,1),则C 点坐标为_____.三、解答题17.(2019·黑龙江绥化·中考真题)如图,已知ABC 三个顶点的坐标分别为24A (﹣,﹣),04B (,-),11C (,﹣)(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点33P (﹣,﹣),连接PC ,则tan BCP = .18.(2018·山东枣庄·中考真题)如图,在4×4的方格纸中,△ABC 的三个顶点都在格点上. (1)在图1中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3)在图3中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.1.B 【解析】 【分析】根据轴对称图形和中心对称图形的定义,即可解答. 【详解】解:A 、是轴对称图形,不是中心对称图形,故A 不符合题意; B 、既是轴对称图形,又是中心对称图形,故B 符合题意; C 、是中心对称图形,不是轴对称图形,故C 不符合题意; D 、是轴对称图形,不是中心对称图形,故A 不符合题意; 故选:B .【点拨】本题主要考查了轴对称图形和中心对称图形的定义,理解轴对称图形要找到对称轴,图形关于对称轴折叠能完全重合;中心对称图形要找到对称中心,图形绕着对称中心旋转180°能与自身重合是解题的关键. 2.B 【解析】 【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可. 【详解】A 、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B 、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C 、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D 、矩形是轴对称图形,也是中心对称图形,故本选项说法错误. 故选:B .【点拨】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键. 3.D 【解析】 【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解. 【详解】∵两个点关于原点对称时,它们的坐标符号相反, ∴点()3,2A 关于原点对称的点的坐标是(-3,-2).故选:D.【点拨】考查了关于原点对称的点的坐标,解题关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【解析】【分析】设直线l2的点(x,y),则(2﹣x,﹣y)在直线l1:y=﹣12x+1上,代入可得直线l2解析式,根据直线l1与直线l2的解析式即可判断.【详解】解:设直线l2的点(x,y),则(2﹣x,﹣y)在直线l1:y=﹣12x+1上,∴﹣y=﹣12(2﹣x)+1,∴直线l2的解析式为:y=﹣12x,A、将l1向下平移1个单位得到y=﹣12x,故此选项正确;B、将l1向左平移1个单位得到y=﹣12x+12,故此选项错误;C、将l1向左平移4个单位,再向上平移1个单位得到y=﹣12x,故此选项正确;D、将l1向右平移2个单位,再向下平移2个单位得到y=﹣12x,故此选项正确;故选:B.【点拨】本题考查一次函数图象与几何变换,求得直线l2的解析式是关键.5.(﹣3,﹣2)【解析】【分析】由于正比例函数与反比例函数的图象均关于原点对称,所以A、B两点关于原点对称,由关于原点对称的点的坐标特点求出B点坐标即可.【详解】解:∵正比例函数与反比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A的坐标为(3,2),∴B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点拨】本题主要考查了关于原点对称点的坐标关系,解题的关键在于能够熟练掌握相关知识进行求解.6.①②【解析】【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --,①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;②将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ③将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;④将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①②,故答案为:①②.【点拨】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 7.1.【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】由点6(4,)P -与点(,1)Q m n +关于原点对称,得4,16m n =-+=,所以5n =.则451m n +=-+=,故答案为:1.【点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.8.(-5,-3)【解析】【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD 对角线的交点O 为原点和点D 的坐标,即可得到点B 的坐标.【详解】解:∵坐标原点O 为平行四边形ABCD 对角线的交点∴B 、D 两点关于点O 对称∵D (5,3)∴B (-5,-3)故答案为:(-5,-3)【点拨】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.9.12【解析】【分析】设这两个“对等点”的坐标为(),a a 和(),a a --,代入抛物线的解析式,两式相减,计算即可求得.【详解】解:设这两个“对等点”的坐标为(),a a 和(),a a --,代入22y x mx m =+-得 2222a am m a a am m a ⎧+-=⎨--=-⎩, 两式相减得24a am =, 解得12m =, 故答案为:12.【点拨】本题考查了待定系数法求二次函数以及关于原点对称的点的坐标,图象上点的坐标适合解析式.10.27【解析】 【分析】首先根据题意画出图形,进而可得AE '的长度,ABCD 和AEE '是等高,设高为h ,然后再利用平行四边形的面积和三角形的面积公式计算即可.【详解】解:作CDE '与ABE △关于点O 对称,连接EE ',∵CDE '与ABE △关于点O 对称, ∴3BE DE '== ,∵AD =7,∴4AE '=, 设ABCD 的高为h ,则AEE '的高也等于h ,则1422.77AEE h S S ABCD h '⨯== 故答案为:27.【点拨】本题主要考查了中心对称,以及平行四边形的性质,关键是正确画出图形,掌握中心对称的性质.11.(1)见解析;(2)见解析,()1,4D --;(3)1.【解析】【分析】(1)分别作出点B 、C 关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB 的中点D ,作直线CD ,根据点D 的位置写出坐标即可;(3)连接BP ,证明△BPC 是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B 1C 1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2=PC2,∴△BPC是等腰直角三角形,∠PBC=90°,∴∠BCP=45°,∴tan∠BCP=1,故答案为1.【点拨】本题考查了作图——中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.12.(1)如图所示见解析;(2)如图所示见解析;(3)如图所示见解析.【解析】【分析】(1)根据中心对称的定义画图即可.(2)根据轴对称的定义画出图形,注意与已知三角形有公共边.(3)明白顺时针的方向,根据要求画图即可.【详解】(1)如图所示,△DCE为所求作;(2)如图所示,△ACD为所求作;(3)如图所示△ECD为所求作.【点拨】本题是一道画图题,考查动手能力,解题关键是掌握轴对称,中心对称等定义.1.B【解析】【分析】根据轴对称图形和中心对称图形的定义,即可解答.【详解】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既是轴对称图形,又是中心对称图形,故B符合题意;C 、是中心对称图形,不是轴对称图形,故C 不符合题意;D 、是轴对称图形,不是中心对称图形,故A 不符合题意;故选:B .【点拨】本题主要考查了轴对称图形和中心对称图形的定义,理解轴对称图形要找到对称轴,图形关于对称轴折叠能完全重合;中心对称图形要找到对称中心,图形绕着对称中心旋转180°能与自身重合是解题的关键.2.B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可.【详解】A 、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B 、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C 、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D 、矩形是轴对称图形,也是中心对称图形,故本选项说法错误.故选:B .【点拨】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键.3.D【解析】【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解.【详解】∵两个点关于原点对称时,它们的坐标符号相反,∴点()3,2A 关于原点对称的点的坐标是(-3,-2).故选:D .【点拨】考查了关于原点对称的点的坐标,解题关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【解析】【分析】设直线l 2的点(x ,y ),则(2﹣x ,﹣y )在直线l 1:y =﹣12x +1上,代入可得直线l 2解析式,根据直线l 1与直线l 2的解析式即可判断.【详解】解:设直线l 2的点(x ,y ),则(2﹣x ,﹣y )在直线l 1:y =﹣12x +1上,∴﹣y =﹣12(2﹣x )+1,∴直线l 2的解析式为:y =﹣12x ,A 、将l 1向下平移1个单位得到y =﹣12x ,故此选项正确;B 、将l 1向左平移1个单位得到y =﹣12x +12,故此选项错误;C 、将l 1向左平移4个单位,再向上平移1个单位得到y =﹣12x ,故此选项正确;D 、将l 1向右平移2个单位,再向下平移2个单位得到y =﹣12x ,故此选项正确; 故选:B .【点拨】本题考查一次函数图象与几何变换,求得直线l 2的解析式是关键.5.D【解析】【分析】先求出平移后的直线解析式为23y x m =-++,根据与反比例函数3y x =-的图象交于A ,B 两点,且点A ,B 关于原点对称,得到直线23y x m =-++经过原点,从而求出m ,根据特征数的定义即可求解.【详解】解:由题意得一次函数2y x m =-+的图象向上平移3个单位长度后解析式为23y x m =-++,∵直线23y x m =-++与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,∴点A ,B ,O 在同一直线上,∴直线23y x m =-++经过原点,∴m +3=0,∴m =-3,∴一次函数2y x m =-+的解析式为23y x =--,∴一次函数2y x m =-+的特征数是[]2,3--.故选:D【点拨】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A ,B 关于原点对称得到平移后直线经过原点是解题关键.6.C【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项不符合题意.B 、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项不符合题意;C 、此图形旋转180°后能与原图形重合,此图形是中心对称图形,是轴对称图形,故此选项符合题意;D 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项不符合题意.故选:C .【点拨】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7.A【解析】【分析】先求出C 点坐标,再设新抛物线上的点的坐标为(x ,y ),求出它关于点C 对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.【详解】解:当x =0时,y =5,∴C (0,5);设新抛物线上的点的坐标为(x ,y ),∵原抛物线与新抛物线关于点C 成中心对称,由20x x ⨯-=-,2510y y ⨯-=-;∴对应的原抛物线上点的坐标为(),10x y --;代入原抛物线解析式可得:()()21045y x x -=--⋅-+,∴新抛物线的解析式为:245y x x =--+;故选:A .【点拨】本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.8.B【解析】【详解】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B .9.(﹣3,﹣2)【解析】【分析】由于正比例函数与反比例函数的图象均关于原点对称,所以A 、B 两点关于原点对称,由关于原点对称的点的坐标特点求出B 点坐标即可.【详解】解:∵正比例函数与反比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵A 的坐标为(3,2),∴B 的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点拨】本题主要考查了关于原点对称点的坐标关系,解题的关键在于能够熟练掌握相关知识进行求解.10.①②【解析】【分析】设函数上一个点的坐标为(,)a b ,先根据关于原点对称的点坐标变换规律可得对称点的坐标为(,)a b --,再代入函数的解析式逐个检验即可得.【详解】解:设函数上一个点的坐标为(,)a b ,则其关于原点对称的点坐标为(,)a b --,①将点(,)a b 代入2y x =得:2b a =,当x a =-时,2y a b =-=-,即点(,)a b --在函数2y x =上,则函数2y x =是“H 函数”;②将点(,)a b 代入()0m y m x =≠得:m b a =, 当x a =-时,m y b a ==--,即点(,)a b --在函数()0m y m x =≠上, 则函数()0m y m x=≠是“H 函数”; ③将点(,)a b 代入31y x =-得:31b a =-,即31a b =+,当x a =-时,312y a b =--=--,则点(,)a b --不在函数31y x =-上,此函数不是“H 函数”;④将点(,)a b 代入2y x 得:2b a =,当x a =-时,22()y a a b =-==,则点(,)a b --不在函数2y x 上,此函数不是“H 函数”;综上,是“H 函数”的为①②,故答案为:①②.【点拨】本题考查了关于原点对称的点坐标变换规律,理解“H 函数”的定义是解题关键. 11.1.【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【详解】由点6(4,)P -与点(,1)Q m n +关于原点对称,得4,16m n =-+=,所以5n =.则451m n +=-+=,故答案为:1.【点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.12.(-5,-3)【解析】【分析】根据平行四边形是中心对称图形,再根据平行四边形ABCD 对角线的交点O 为原点和点D 的坐标,即可得到点B 的坐标.【详解】解:∵坐标原点O 为平行四边形ABCD 对角线的交点∴B 、D 两点关于点O 对称∵D (5,3)∴B (-5,-3)故答案为:(-5,-3)【点拨】本题考查了平行四边形的性质,坐标与图形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.13.12【解析】【分析】设这两个“对等点”的坐标为(),a a 和(),a a --,代入抛物线的解析式,两式相减,计算即可求得.【详解】解:设这两个“对等点”的坐标为(),a a 和(),a a --,代入22y x mx m =+-得 2222a am m a a am m a ⎧+-=⎨--=-⎩, 两式相减得24a am =, 解得12m =, 故答案为:12.【点拨】本题考查了待定系数法求二次函数以及关于原点对称的点的坐标,图象上点的坐标适合解析式.14.27【解析】【分析】首先根据题意画出图形,进而可得AE '的长度,ABCD 和AEE '是等高,设高为h ,然后再利用平行四边形的面积和三角形的面积公式计算即可.【详解】解:作CDE '与ABE △关于点O 对称,连接EE ',∵CDE'与ABE△关于点O对称,∴3BE DE'==,∵AD=7,∴4AE'=,设ABCD的高为h,则AEE'的高也等于h,则1422.77 AEEhSS ABCD h'⨯==故答案为:27.【点拨】本题主要考查了中心对称,以及平行四边形的性质,关键是正确画出图形,掌握中心对称的性质.15.1 6【解析】【分析】由等边三角形、平行四边形、菱形、圆中,既是中心对称图形,又是轴对称图形的有菱形、圆,再画出树状图展示所有等可能的结果,进而即可求得答案.【详解】解:设等边三角形、平行四边形、菱形、圆分别为A,B,C,D,根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形既是中心对称图形,又是轴对称图形为C、D共有2种情况,∴P(既是中心对称图形,又是轴对称图形)=2÷12=16.故答案是:16. 【点拨】本题考查了列表法和树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比,画出树状图,是解题的关键.16.(2,﹣1)【解析】【分析】根据平行四边形是中心对称图形,再根据▱ABCD 对角线的交点O 为原点和点A 的坐标,即可得到点C 的坐标.【详解】解:∵▱ABCD 对角线的交点O 为原点,A 点坐标为(﹣2,1),∴点C 的坐标为(2,﹣1),故答案为:(2,﹣1).【点拨】此题考查中心对称图形的顶点在坐标系中的表示.17.(1)见解析;(2)见解析,()1,4D --;(3)1.【解析】【分析】(1)分别作出点B 、C 关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB 的中点D ,作直线CD ,根据点D 的位置写出坐标即可;(3)连接BP ,证明△BPC 是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B 1C 1即为所求作的;(2)如图所示,D(-1,-4);。
’荦;掌_笙
:苏薏一
30
口山东孟庆丽
新的课程标准加强了图形的变换与操作.改变了同学们的学习方式.以培养创新意识和实践能力为主要目的.设计图案题是培养同学们动手操作的有效途径.和中心对称有关的中考题充分展示了这一崭新的理念.下面分类举例说明.供同学们参考.
_一、一般设计
这类设计主要考查同学们一些基本的作图技巧.或者结合图形来判断解决问题.只要按照题目要求即可完成.
例1(2008年湛江市)下面的图形中,是中心对称图形的是().《◇③
A B C D
1分析:l本例先设计好了图案,然后考查同学们对中心对称图形的识别能力.以及让同学们研究设计过程.
解:观察四个图形,易知只有D是中心对称图形.故应选D.
点评:本题主要考查中心对称以及读图、识图的能力。
要仔细观察._二、网格设计
这类设计主要是利用网格上的小正方形进行动手操作.
例2(2008年.荆州市)正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称或中心对称图案.下面是三种不同设计方案中的一部分,请把图1、图2补充完整,使其既是轴对称图形.又是中心对称图形,并画出一条对称轴;把图3补成中心对称图形.(图案
田困圈
图1图2图3
筮一
中阴影部分和非阴影部分分别表示两种不同颜色的花卉.)
1登堑;苜先仔细观察各图形的特征,然后根据这些特征从对称性等
方面来考虑.根据要求设计图案.
解:答案不唯一。
如图4、图5、图6.
圈翮囵。
图4图5图6
点评:本题属于结论开放型问题。
答案不唯一,重点考查同学们的读
图、识图能力以及创新设计能力。
在设计的过程中应体会数学在实际生
活中的应用,f f f-',Jl t..
_三、创新设计+
此类设计融知识、技能和丰富的想象于一体。
它需要根据材料进行
加工、仓U作.
例3(2007年福州市)为创建绿色校园.学校决定在一块正方形
的空地种植花草.现向学生征集设计图案.图案要求只能用圆弧在正方
形内加以设计.使正方形和所画的圆弧构成的图案.既是轴对称图形又
是中心对称图形.种植花草部分用阴影表示.请你在图7(3)、图7(4)、
图7(5)中画出=三种不同的的设计图案.(注意:在两个图案中,只有半径
变化而圆心不变的图案属于同一种,如图7(1)、图7(2)属于一种.)
r]y'
L一▲●
(1)(2)(3)
图7
匝珂这道题,只要同学们动手操作一下,问题便迎刃而解,本题答
案不唯一.只要符合要求即可.
解:答案不唯一.如图8.
固圈口[]8囤囵凶蹩31
点评:最近几年的中考试卷已增添了探索、操作、创新的新颖题型,
本题就是结论开放型题.在作图的过程中,应仔细体会对称图形的特点国
■L/∑生堡墼堂:蟹盒堡崾太麴堑雹珊。