2015-2016学年江苏省苏州市相城区七下期末数学
- 格式:docx
- 大小:216.19 KB
- 文档页数:6
2015-2016学年度七年级下学期期末考试试卷数 学一、精心选一选,旗开得胜 (每小题3分, 满分30分,请将正确答案的序号填写在下表内)1. 如果向北走2米记作+2米,那么-3米表示A. 向东走3米B.向南走3米C.向西走3米D.向北走3米 2.下列说法中正确的是A. -a 一定是负数B. |a |一定是正数C. |a |一定不是负数D. |a |一定是负数。
3.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是A.6105.2⨯千克 B.5105.2⨯千克 C.61046.2⨯千克 D.51046.2⨯千克4.电影院第一排有m 个座位,后面每一排比前一排多2个座位,则第n 排的座位数有 A. m+2n, B. mn+2 C. m+(n+2) D. m+2(n-1) 5. 已知多项式ax bx +合并的结果为0,则下列说法正确的是A. a=b=0B.a=b=x=0C.a -b=0D.a+b=0 6.下列计算正确的是A.224a b ab +=B.2232x x -= C.550mn nm -= D.2a a a += 7.如图1,将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是图18. 若式子x -1的值是-2,则x 的值是A 、-1B 、-2C 、-3D 、-4 9. 若a <0时,a 和-a 的大小关系是 A .a >-aB .a <-aC .a =-aD .都有可能10. 某班的5位同学在向“希望工程”捐款活动中,捐款如下(单位:元):4,3,8,2,8,那么这组数据的众数、中位数、平均数分别为A .8,8,5B .5,8,5C .4,4,5D .8,4,5二、耐心填一填,一锤定音 (每小题3分, 满分18分)11. -3.5的相反数是 .12.下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是 .13. 一个正多面体有六个面,则该多面体有 条棱. 14.欢欢将自己的零花钱存入银行,一年后共取得102元,已知年利 率为2%,则欢欢存入银行的本金是 元. 15. 比较大小: 34-56-.(填“<”、“>”或“=”) 16. 小明家上个月支出共计800元,各项支出如图2所示,其中用于教育上的支出是 元.三、细心想一想,慧眼识金 (每小题6分, 满分24分17. 计算:[]22)32(95542)3(6)2(⨯÷-÷⨯--+-18.求不等式1223++x >39+x 的最小整数解19. 有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中12x =,1y =-”.甲同学把“12x =”错抄成“12x =-”,但他计算的最后结果,与其他同学的结果都一样.试说明理由,并求出这个结果.20. 马小哈在解一元一次方程“⊙329x x -=+”时,一不小心将墨水泼在作业本上了,其中未知数x 前的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“∴原方程的解为2x =-”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?四、用心画一画,马到成功 (每小题4分,满分8分)21、画出如下图3中每个木杆在灯光下的影子。
2015-2016学年第二学期期末七年级数学答案 第1页(共2页)2015—2016学年第二学期期末考试七年级数学试题参考答案及评分标准一、选择题(每小题2分,共30分)16.6 17.105° (17小题有无度数均不扣分)18.14 19.4 20.(14,2) 注:不加括号不能得分三、解答题(本大题共6个小题,共60分.解答应写出文字说明或演算步骤) 21. (每个4分,共16分) 解:(1)①6 ②﹣2 (①②两个小题,结果不正确不能得分) (2)解:由②得y=6﹣x ,代入①得2x ﹣3(6﹣x )=2,解得x=4.------------------2分 把x=4代入②,得y=2. ∴原方程组的解为.-------------------------------------------------------------4分(3)解:,由①得:x >﹣2,-----------------------------------------------------1分 由②得:x ≤3,---------------------------------------------------------2分 ∴不等式组的解集是:﹣2<x ≤3.-----------------------------4分 (其他解法参照此评分标准酌情给分) 22.(本题满分8分) 解:(1)如图所示;------------------------3分(2)由图可知,A ′(2,3)、B ′(1,0)、C ′(5,1);--6分(3)S △A ′B ′C ′=3×4﹣×1×3﹣×1×4﹣×2×3 =12﹣﹣2﹣3=.---------------------------------8分23.(本题满分8分)解:∵AB ⊥BF ,CD ⊥BF , ∴∠B=∠CDF=90°,∴AB ∥CD ,---------------------------------3分 ∵∠1=∠2,∴AB ∥EF ,----------------------------------6分 ∴CD ∥EF .----------------------------------8分 (其他解法参照此评分标准酌情给分)(第22题图)(第23题图)2015-2016学年第二学期期末七年级数学答案 第2页(共2页)24.(本题满分8分) 解:(1)4,6;------------------------2分(2)24, ------------------------------------3分120°,-----------------------------------4分 补图----------------------------------------6分 (3)32÷80×1000=400答:今年参加航模比赛的获奖人数约是400人. -------------------------------------------------8分25.(本题满分10分)解:设后半小时速度为xkm/h ,根据题意得:--------------------------------1分50+0.5x ≥120, --------------------------------------------------------6分解得:x ≥140.---------------------------------------------------------------------- 9分 答:后半小时速度至少为140km/h 才能保证按时到达.----------------- 10分 (其他解法参照此评分标准酌情给分。
市2015--2016学年第二学期初一数学期终复习要点本次考试围:科版义务教育教科书七年级下学期课本全部容:主要包括第7、8、9、10、11、12章容。
考试时间:120分钟。
考试题型:选择、填空、解答三类。
分值:130分。
第七章平面图形认识(二)知识点:探索平行线的条件;平行线的性质;图形的平移;认识三角形;多边形角和与外角和。
1.如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于D,∠C=80°,则∠D的度数是()A.400B.450C.500D.5502.下列各组线段能组成一个三角形的是()A.4 cm,6 cm,11 cm B.4 cm,5 cm,l cmC.3 cm,4 cm,5 cm D.2cm,3 cm,6 cm3.如果一个三角形的两边分别为2和4,则第三边长可能是()A. 8 B. 6 C. 4 D. 24.若一个多边形的角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形5.下列四个图形中,线段BE是△ABC的高的是()ABCD6.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD∥BC且∠B=∠D.其中,能推出AB∥DC的是()A.①④ B.②③ C.①③ D.①③④7.一个多边形的角和是1080°,这个多边形的边数是()A.6 B.7C.8 D.98.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A.57° B.60°C.63° D.123°9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个 B.2个C.3个 D.4个11.如图,四边形EFGH是由四边形ABCD通过平移得到,且点A、E、B,在同一条直线上.若AF=14,BE=6.则AB的长度是________.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是___________.(第12题)(第13题)13.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE=_______°.14.在△ABC中,∠A=100°,当∠B= °时,△ABC是等腰三角形.15.若三角形三条边长分别是1,a,5(其中a为整数),则a的取值为▲.16.如图,将三角尺的直角顶点放在直尺的一边上,∠1=25°,∠3=20°则∠2的度数为▲°.17.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= ▲°.(第16题)(第17题)18.角和等于外角和2倍的多边形是边形.19.如图,在Rt△ABC中,∠A=90°,∠C=30°,D为斜边上的一点且BD=AB,过点D作BC的垂线,交AC于点E.若△CDE的面积为a,则四边形ABDE的面积为.(第19题)(第20题)20.如图,等边三角形ABC的边长为10厘米.点D是边AC的中点.动点P从点C出发,沿BC 的延长线以2厘米/秒的速度作匀速运动,设点P的运动时间为t(秒).若△BDP是等腰三角形,则为t= .21. 叙述三角形角和定理并将证明过程填写完整.定理:_________.已知:△ABC.求证:∠A +∠B+∠C=180°.证明:作边BC的延长线CD,过C点作CE∥AB.∴∠1=∠A(__________),∠2=∠B( _____________),∵∠ACB+∠1+∠2=180°( ____________),∴∠A+∠B+∠ACB=180°(_____________).22. 如图,在△ABC中,已知AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠DAE的度数;(2)小明认为如果只知道∠B-∠C=40°,也能算出∠DAE的度数.你认为可以吗?若能,请能写出解题过程;若不能,请说明理由.23. 请将下列证明过程补充完整:已知:如图,AD是△ABC的角平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠BEF+∠ADC=180°.求证:∠AFG=∠G.证明:∵∠BEF+∠ADC=180°(已知),又∵(平角的定义),∴∠GED=∠ADC(等式的性质),∴AD∥GE(),∴∠AFG=∠BAD(),且∠G=∠CAD(),∵AD是△ABC的角平分线(已知),∴(角平分线的定义),∴∠AFG=∠G.24. △ABC中,∠B>∠C,∠BAC的平分线交BC于点D,设∠B=x,∠C=y.(1)如图1,若AE⊥BC于点E,试用x、y表示∠EAD,并说明理由.(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,则∠G= .(用x、y表示)25. 如图,一个三角形的纸片ABC,其中∠A=∠C.(1) 把△ABC纸片按 (如图1) 所示折叠,使点A落在BC边上的点F处,.DE是折痕.说明BC∥DF;(2) 把△ABC纸片沿DE折叠,当点A落在四边形BCED时 (如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时 (如图3),∠C与∠1、∠2的关系是▲.(直接写出结论)26. 如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米. 动点P从A出发,以1厘米/秒的速度沿A→B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),(1) 当点Q在BC边上运动时,t为何值,AP=BQ;(2) 当t为何值时,S△ADP=S△BQD.第八章 幂运算、第九章 整式乘法与因式分解知识点:同底数幂相乘;幂的乘方与积的乘方;同底数幂的除法;零指数与负指数;科学记数法。
2015-2016学年第二学期初一数学期末试卷分值:130分;一、选择题:(本题共12小题,每小题2分,共24分)1.下列计算正确的是………………………………………………………………( )A .2223a a a += ;B .824a a a ÷=;C .326a a a ⋅=;D .()236a a =;2. 已知等腰三角形的两条边长分别为2和3,则它的周长为…………………………( )A .7B .8C .5D .7或8 3.若2m a =,3n a =,则m n a +等于………………………………………………( )A .5B .6C .8D .104.下列命题:①同旁内角互补,两直线平行:②全等三角形的周长相等;③直角都相等;④相等的角是对项角.它们的逆命题是真命题的个数是………………………………( )A .1个B .2个C .3个D .4个5.(2014.梅州)如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为……………………………………………………( )A .115°;B .125°;C .155°;D .165°;6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是…………( )A .6 ;B .7 ;C .8;D .9;7.到三角形的三边距离相等的点是………………………………………………… ( )A .三角形三条高的交点;B .三角形三条内角平分线的交点;C .三角形三条中线的交点;D .三角形三条边的垂直平分线的交点;8.如图,把纸片△ABC 沿DE 折叠,当点A 落在四边形BCDE 内时,则下列结论正确的是…( )A .∠A=∠1+∠2 ;B .2∠A=∠1+∠2;C .3∠A=∠1+∠2;D .3∠A=2(∠1+∠2);9.如图,在△ABC 中,AB=AC ,∠A=40°,点P 为△ABC 内的一点, 且∠PBC=∠PCA ,则∠BPC 的大小( )A .110°B .120°C .130°D .140°10.在数学中,为了书写简便,我们记()11231n k k n n ==++++-+∑ ,()()()112nk x k x x =+=+++∑+…()x n +++ ,则化简()()311k x k x k =---⎡⎤⎣⎦∑的的结果是…………………( )第9题图第8题图第5题图第17题图 A .231520x x -+; B .2398x x -+; C .23620x x --; D .23129x x --;二、填空题:(本题共8小题,每小题3分,共24分)11.用科学计数法表示数:0.000123=___________.12.已知:32a b +=,1ab =,化简()()22a b --的结果是_______. 13.如果()22216x m x +++是完全平方式,则m 的值等于__________.14.如图,在△ABC 中,AB=AC=10cm ,AB 的垂直平分线交AC 于点D ,且△BCD 的周长为17cm ,则BC=_________cm .15.如图,△ABC 是等腰三角形,且AB=AC ,BM 、CM 分别平分∠ABC 、∠ACB ,DE 经过点M ,且DE ∥BC ,则图中有________个等腰三角形.16.如图,△ABC 中,∠ACB=90°,∠A=42°,D 是AB 中点,则∠ADC=_______°.17.(2014•老河口市模拟)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为 .18.如果等式2(21)1a a +-=,则a 的值可以是 .三、解答题:(本大题共79分)19.计算:(本题满分8分) (1)()()2201302013113.14323π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)()()2222321ab a b ab -⋅--;20. (本题满分7分)分解因式:(1) 3169a a -;(2) 22344ab a b b --; 21. (本小题5分)解不等式组:()()3261231x x x x ⎧--≤⎪⎨+>-⎪⎩第15题第16题第14题22.(本小题5分)先化简,再求值:()()()22253a b a a b a b +++--,其中3a =,23b =-.23. (本题5分)已知22610340a a b b ++-+=,求代数式()()2324a b a b ab +-+的值24.(6分)(1)如图(1),已知∠AOB 和线段CD ,求作一点P ,使PC=PD ,并且点P 到∠AOB 的两边距离相等(尺规作图....,不写作法,保留作图痕迹,写出结论); (2)如图(2)是一个台球桌,若击球者想通过击打E 球,让E 球先撞上AB 边上的点P ,反弹后再撞击F 球,请在图(2)中画出这一点P .(不写作法,保留作图痕迹,写出结论)25.(6分)如图,已知△ABC 中,AB=BD=DC ,∠ABC=105°,求∠A 、∠C 度数.26.(6分)已知:如图,△ABC 中,AB=AC ,D 是BC 上一点,点E 、F 分别在AB 、 AC 上,BD=CF ,CD=BE ,G 为EF 的中点.求证:(1)△BDE ≌△CFD ; (2)DG ⊥EF .27. (本题满分7分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.28. (本题满分6分)二元一次方程组3102x yx y m+=⎧⎨+=⎩的解x、y()x y≠的值是一个等腰三角形两边的长,且这个等腰三角形的周长为8,求腰的长和m的值.29. (本题满分7分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?30. (本题满分8分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B 出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D 运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.2015-2016学年第二学期初一数学期末试卷参考答案一、选择题:1.D ;2.D ;3.B ;4.B ;5.A ;6.C ;7.B ;8.B ;9.A ;10.A ;二、填空题:11. 41.2310-⨯;12.2;13.2或-6;14.7;15.5;16.96°17.2;18.-2,1,0;三、解答题:19.(1)-4;(2)4535241284a b a b a b --;20.(1)()()4343a a a +-;(2)()22b a b --;21. 04x ≤<;22. 1530ab =-;23.-41;24. 解:(1)如图(1):根据分析得OP 为∠AOB 的角平分线,PE 是线段CD 的中垂线.(2)如图(2)E'为E 以AB 为轴的对称点,由入射角∠EPQ=∠FPQ 则由E 点打击P 点可击中F 点.25.50°,25°;26. 解:(1)在△ABC 中,AB=AC ,∴∠B=∠C ,∵BD=CF ,CD=BE ,∴△BDE ≌△CFD ,∴DE=DF .(2)由(1)知DE=DF ,即△DEF 是等腰三角形,∵G 为EF 的中点,∴DG ⊥EF .27. 数量关系为:BE=EC ,位置关系是:BE ⊥EC .证明:∵△AED 是直角三角形,∠AED=90°,且有一个锐角是45°, ∴∠EAD=∠EDA=45°,∴AE=DE ,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=45°+90°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC ,∵D 是AC 的中点,∴AD=CD=12AC ,∵AC=2AB ,∴AB=AD=DC ,∵在△EAB 和△EDC 中AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△EAB ≌△EDC (SAS ),∴EB=EC ,且∠AEB=∠DEC , ∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=90°,∴BE ⊥EC .28. 解:①x 为底边,y 为腰长,由题意得:31028x y x y +=⎧⎨+=⎩,解得:42x y =⎧⎨=⎩; ∵2+2=4,∴不能构成三角形,故此种情况不成立;②y 为底边,x 为腰长,由题意得:31028x y x y +=⎧⎨+=⎩,解之得 2.82.4x y =⎧⎨=⎩,∵2.4+2.8>2.8,∴能构成三角形,∴2.8+2.4=2m ,解得:m=2.6.29. 解:(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +=⎧⎨+=⎩,解得10075x y =⎧⎨=⎩. 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(2m+4)套.根据题意得:()24403020241200m m m +≤⎧⎪⎨++≥⎪⎩,解得16≤m ≤18 ∵m 为正整数,∴m=16、17、18∴2m+4=36、38、40答:有三种进货方案(1)A 种品牌得化妆品购进16套,B 种品牌得化妆品购进36套.(2)A 种品牌得化妆品购进17套,B 种品牌得化妆品购进38套.(3)A 种品牌得化妆品购进18套,B 种品牌得化妆品购进40套.35.解:(1)点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,点P 的运动时间为t 秒时,BP=2t ,则PC=10-2t ;(2)当t=2.5时,△ABP ≌△DCP ,∵当t=2.5时,BP=2.5×2=5,∴PC=10-5=5,∵在△ABP 和△DCP 中,90AB DC B C BP CP =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABP ≌△DCP (SAS );(2)①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∵AB=6,∴PC=6,∴BP=10-6=4,2t=4,解得:t=2,CQ=BP=4,v ×2=4,解得:v=2;②当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,∵PB=PC ,∴BP=PC=12BC=5,2t=5,解得:t=2.5,CQ=BP=6,v ×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP 与△PQC 全等.。
苏州市2015--2016学年第二学期初一数学期终复习要点本次考试范围:苏科版义务教育教科书七年级下学期课本全部内容:主要包括第7、8、9、10、11、12章内容。
考试时间:120分钟。
考试题型:选择、填空、解答三类。
分值:130分。
第七章平面图形认识(二)知识点:探索平行线的条件;平行线的性质;图形的平移;认识三角形;多边形内角和与外角和。
1.如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于D,∠C=80°,则∠D的度数是()A.400B.450C.500D.5502.下列各组线段能组成一个三角形的是()A.4 cm,6 cm,11 cm B.4 cm,5 cm,l cmC.3 cm,4 cm,5 cm D.2cm,3 cm,6 cm3.如果一个三角形的两边分别为2和4,则第三边长可能是()A.8 B.6 C. 4 D. 24.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形5.下列四个图形中,线段BE是△ABC的高的是()ABCD6.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD∥BC且∠B=∠D.其中,能推出AB∥DC的是()A.①④B.②③C.①③D.①③④7.一个多边形的内角和是1080°,这个多边形的边数是()A.6 B.7C.8 D.98.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A.57°B.60°C.63°D.123°9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个11.如图,四边形EFGH是由四边形ABCD通过平移得到,且点A、E、B,在同一条直线上.若AF=14,BE=6.则AB的长度是________.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是___________.(第12题)(第13题)13.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE=_______°.14.在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.15.若三角形三条边长分别是1,a,5(其中a为整数),则a的取值为▲.16.如图,将三角尺的直角顶点放在直尺的一边上,∠1=25°,∠3=20°则∠2的度数为▲°.17.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= ▲°.(第16题)(第17题)18.内角和等于外角和2倍的多边形是边形.19.如图,在Rt△ABC中,∠A=90°,∠C=30°,D为斜边上的一点且BD=AB,过点D作BC的垂线,交AC于点E.若△CDE的面积为a,则四边形ABDE的面积为.(第19题)(第20题)20.如图,等边三角形ABC的边长为10厘米.点D是边AC的中点.动点P从点C出发,沿BC的延长线以2厘米/秒的速度作匀速运动,设点P的运动时间为t(秒).若△BDP是等腰三角形,则为t=.21. 叙述三角形内角和定理并将证明过程填写完整.定理:_________.已知:△ABC.求证:∠A +∠B+∠C=180°.证明:作边BC的延长线CD,过C点作CE∥AB.∴∠1=∠A(__________),∠2=∠B( _____________),∵∠ACB+∠1+∠2=180°( ____________),∴∠A+∠B+∠ACB=180°(_____________).22. 如图,在△ABC中,已知AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠DAE的度数;(2)小明认为如果只知道∠B-∠C=40°,也能算出∠DAE的度数.你认为可以吗?若能,请能写出解题过程;若不能,请说明理由.23. 请将下列证明过程补充完整:已知:如图,AD是△ABC的角平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠BEF+∠ADC=180°.求证:∠AFG=∠G.证明:∵∠BEF+∠ADC=180°(已知),又∵(平角的定义),∴∠GED=∠ADC(等式的性质),∴AD∥GE(),∴∠AFG=∠BAD(),且∠G=∠CAD(),∵AD是△ABC的角平分线(已知),∴(角平分线的定义),∴∠AFG=∠G.24. △ABC中,∠B>∠C,∠BAC的平分线交BC于点D,设∠B=x,∠C=y.(1)如图1,若AE⊥BC于点E,试用x、y表示∠EAD,并说明理由.(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,则∠G=.(用x、y表示)25. 如图,一个三角形的纸片ABC,其中∠A=∠C.(1) 把△ABC纸片按(如图1) 所示折叠,使点A落在BC边上的点F处,.DE是折痕.说明B C∥DF;(2) 把△ABC纸片沿DE折叠,当点A落在四边形BCED内时(如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时(如图3),∠C与∠1、∠2的关系是▲.(直接写出结论)26. 如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米. 动点P从A出发,以1厘米/秒的速度沿A →B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),(1) 当点Q在BC边上运动时,t为何值,AP=BQ;(2) 当t为何值时,S△ADP=S△BQD.第八章幂运算、第九章整式乘法与因式分解知识点:同底数幂相乘;幂的乘方与积的乘方;同底数幂的除法;零指数与负指数;科学记数法。
2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)2.(2分)如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°3.(2分)如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)4.(2分)不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数B.零C.负数D.非负数5.(2分)如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤86.(2分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(2分)在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】8.(2分)现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定9.(2分)已知方程组的解满足x+y=2,则k的值为()A.﹣4B.2C.﹣2D.410.(2分)若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0B.4C.﹣4D.﹣4或4二、填空题(共10小题,每小题2分,满分20分)11.(2分)实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00 000 156m,则这个数用科学记数法表示是m.12.(2分)已知:x a=4,x b=3,则x a﹣2b=.13.(2分)如果x﹣y=2,xy=3,则x2y﹣xy2=.14.(2分)若二次三项式4x2+ax+9是一个完全平方式,则a=.15.(2分)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE=.16.(2分)将二元一次方程3x﹣5y=9化成y=kx+m,则k=,m=.17.(2分)若关于x的不等式组只有4个整数解,则a的取值范围是.18.(2分)若(x+m)(x+3)中不含x的一次项,则m的值为.19.(2分)如图,BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=.20.(2分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题21.(6分)计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)22.(6分)解方程组:(1)(2).23.(6分)分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).24.(4分)解不等式组.并把解集在数轴上表示出来..25.(5分)如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.26.(5分)某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.27.(5分)如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.28.(5分)在数学中,为了简便,记=1+2+3+…+(n﹣1)+n,=(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011=;(2)化简:;(3)化简:[(x﹣k)(x﹣k﹣1)].29.(8分)阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.30.(10分)若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.四、附加题(20分)做对加分,做错不扣分31.(10分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.32.(10分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)【考点】J6:同位角、内错角、同旁内角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.2.(2分)如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°【考点】JA:平行线的性质.【解答】解:如右图所示,作EF∥AB,∵AB∥EF,∴∠A+∠AEF=180°,又∵AB∥CD,∴EF∥CD,∴∠D=∠FED,∴∠A+∠AEF+∠FED﹣∠D=180°,即∠A+∠E﹣∠D=180°.故选:C.3.(2分)如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【考点】4G:平方差公式的几何背景.【解答】解:阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:A.4.(2分)不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数B.零C.负数D.非负数【考点】1F:非负数的性质:偶次方;4C:完全平方公式.【解答】解:x2+y2﹣10x+8y+45,=x2﹣10x+25+y2+8y+16+4,=(x﹣5)2+(y+4)2+4,∵(x﹣5)2≥0,(y+4)2≥0,∴(x﹣5)2+(y+4)2+4>0,故选:A.5.(2分)如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤8【考点】CB:解一元一次不等式组.【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.6.(2分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】O1:命题与定理.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(2分)在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】【考点】Q3:坐标与图形变化﹣平移.【解答】解:∵2次平移后的横坐标变化分别为3,5,说明图形向右平移了3个单位,又向右平移了5个单位,那么一共向右平移了3+5=8个单位;纵坐标变化分别为﹣5,2,说明图形向下平移了5个单位后,又向上平移了2个单位,那么是平移了﹣5+2=﹣3个单位;∴△ABC经过平移得到△A2B2C2的过程是【8,﹣3】,故选:B.8.(2分)现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定【考点】4B:多项式乘多项式.【解答】解:根据题意可得:拼成的长方形的面积=4a2+3b2+8ab,又∵4a2+3b2+8ab=(2a+b)(2a+3b),b<3b,∴长=2a+3b.故选:A.9.(2分)已知方程组的解满足x+y=2,则k的值为()A.﹣4B.2C.﹣2D.4【考点】97:二元一次方程组的解.【解答】解:,①﹣②得:x+2y=2,联立得:,解得:,则k=2x+3y=4,故选:D.10.(2分)若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0B.4C.﹣4D.﹣4或4【考点】4B:多项式乘多项式.【解答】解:(x+k)(x﹣4),=x2﹣4x+kx﹣4k,=x2+(k﹣4)x﹣4k,∵不含有x的一次项,∴k﹣4=0,解得k=4.故选:B.二、填空题(共10小题,每小题2分,满分20分)11.(2分)实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00 000 156m,则这个数用科学记数法表示是 1.56×10﹣6m.【考点】1J:科学记数法—表示较小的数.【解答】解:0.000 001 56m这个数用科学记数法表示是1.56×10﹣6m.12.(2分)已知:x a=4,x b=3,则x a﹣2b=.【考点】47:幂的乘方与积的乘方;48:同底数幂的除法.【解答】解:x a﹣2b=x a÷(x b•x b),=4÷(3×3),=.故答案为:.13.(2分)如果x﹣y=2,xy=3,则x2y﹣xy2=6.【考点】53:因式分解﹣提公因式法.【解答】解:∵x﹣y=2,xy=3,∴x2y﹣xy2=xy(x﹣y)=3×2=6.故答案为:6.14.(2分)若二次三项式4x2+ax+9是一个完全平方式,则a=±12.【考点】4E:完全平方式.【解答】解:a=±2×2×3=±12.故答案为:±12.15.(2分)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE=14°.【考点】K2:三角形的角平分线、中线和高;K7:三角形内角和定理.【解答】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=42°,∠C=70°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣42°﹣70°)=34°.在△ACD中,∠ADC=90°,∠C=70°,∴∠DAC=90°﹣70°=20°,∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°.故答案是:14°.16.(2分)将二元一次方程3x﹣5y=9化成y=kx+m,则k=,m=﹣.【考点】93:解二元一次方程.【解答】解:∵3x﹣5y=9,∴5y=3x﹣9,∴y=x﹣.故答案为:;﹣.17.(2分)若关于x的不等式组只有4个整数解,则a的取值范围是﹣11≤a<﹣8.【考点】CC:一元一次不等式组的整数解.【解答】解:解不等式2x>3x﹣3,得:x<3,解不等式3x﹣a>5,得:x>,∵不等式组只有4个整数解,∴﹣2≤<﹣1,解得:﹣11≤a<﹣8,故答案为:﹣11≤a<﹣8.18.(2分)若(x+m)(x+3)中不含x的一次项,则m的值为﹣3.【考点】4B:多项式乘多项式.【解答】解:∵(x+m)(x+3)=x2+(m+3)x+3m,又∵结果中不含x的一次项,∴m+3=0,解得m=﹣3.19.(2分)如图,BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=90°.【考点】K2:三角形的角平分线、中线和高;K7:三角形内角和定理;K8:三角形的外角性质.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°.故答案为:90°.20.(2分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.【考点】97:二元一次方程组的解.【解答】解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.三、解答题21.(6分)计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)【考点】47:幂的乘方与积的乘方;49:单项式乘单项式;6E:零指数幂.【解答】解:(1)原式=【(﹣)100×3100】×3﹣1=[﹣×3]100×3﹣1=3﹣1=2;(2)原式=﹣10a3b4+12a3b4=2a3b4.22.(6分)解方程组:(1)(2).【考点】98:解二元一次方程组;9C:解三元一次方程组.【解答】解:(1)②×3﹣①得:y=1把y=1代入②,得:x=3经检验,原方程组的解为:(2 )①+②,③﹣②得:(5)×3﹣(4)得:把代入③得:y=3经检验:是原方程组的解.23.(6分)分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).【考点】55:提公因式法与公式法的综合运用.【解答】解:(1)原式=y(x2﹣9)=(x+3)(x﹣3);(2)原式=(2x+y)(2x﹣3y+x)=3(2x+y)(x﹣y).24.(4分)解不等式组.并把解集在数轴上表示出来..【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【解答】解:不等式①去分母,得x﹣3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1﹣3x+3<8﹣x,移项,合并得x>﹣2,∴不等式组的解集为:﹣2<x≤1.数轴表示为:25.(5分)如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.【考点】97:二元一次方程组的解.【解答】解:方程组得:,已知x和y的绝对值相等,当x、y同号时,则2a﹣12=8﹣a,得:a=,当x、y异号时,则2a﹣12=﹣(8﹣a),得:a=4,所以a的值为:或4.26.(5分)某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【解答】解:(1)设大货车x辆,则小货车有(20﹣x)辆,15x+10(20﹣x)=240,解得:x=8,20﹣x=20﹣8=12(辆),答:大货车用8辆.小货车用12辆;(2)①调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,由题意得:15m+10(10﹣m)≥115,解得:m≥3,∵大车共有8辆,∴3≤m≤8;②设总运费为W元,∵调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,∴到B的大车(8﹣m)辆,到B的小车有[12﹣(10﹣m)]=(2+m)辆,W=630m+420(10﹣m)+750(8﹣m)+550(2+m),=630m+4200﹣420m+6000﹣750m+1100+550m,=10m+11300.又∵W随m的增大而增大,∴当m=3时,w最小.当m=3时,W=10×3+11300=11330.因此,应安排3辆大车和7辆小车前往A地,安排5辆大车和5辆小车前往B地,最少运费为11330元.27.(5分)如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.【考点】JA:平行线的性质;K8:三角形的外角性质.【解答】解:∵AE∥BD,∠CBD=50°,∴∠A=∠CBD=50°,∵∠AEF=130°,∴∠C=∠AEF﹣∠A=130°﹣50°=80°.28.(5分)在数学中,为了简便,记=1+2+3+…+(n﹣1)+n,=(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011=;(2)化简:;(3)化简:[(x﹣k)(x﹣k﹣1)].【考点】4I:整式的混合运算.【解答】解:(1)1+2+3+…+2011=;(2)=(x﹣1)+(x﹣2)+(x﹣3)+…+(x﹣n)=(x+x…+x)﹣(1+2+3…+n)=nx﹣;(3)[(x﹣k)(x﹣k﹣1)]=(x﹣1)(x﹣2)+(x﹣2)(x﹣3)+(x﹣3)(x﹣4)=x2﹣3x+2+x2﹣5x+6+x2﹣7x+12=3x2﹣15x+20.29.(8分)阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.【考点】98:解二元一次方程组.【解答】解:设,则原方程组可变形为关于m、n的方程组,①+②得:8m=24,解得:m=3,将m=3代入①得:n=﹣2,则方程组的解为:,由=3,=﹣2,故方程组的解为:.30.(10分)若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.【考点】59:因式分解的应用.【解答】解:∵(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=(x﹣y)2+(z﹣y)2+2y2﹣2xy﹣2yz+2xz=(x﹣y)2+(z﹣y)2+2y(y﹣x)﹣2z(y﹣x)=(x﹣y)2+(z﹣y)2+2(y﹣x)(y﹣z)=0=[(x﹣y)+(z﹣y)]2=0,即x﹣y+z﹣y=0,∴x+z=2y,又∵x+y+z=48,∴2y+y=48,即3y=48,则y=16.四、附加题(20分)做对加分,做错不扣分31.(10分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】K7:三角形内角和定理;K8:三角形的外角性质.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.32.(10分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】JA:平行线的性质.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.。
2015-2016学年度第二学期七年级期末考试数学试卷 2016.6一、选择题:(本大题共有10小题,每小题2分,共20分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x ) 3÷(-3x )=9x 2D .(-ab 2) 2=-a 2b 42.如果b a >,那么下列各式中一定正确的是 ( ) A . 33-<-b a ; B . b a 33>; C . b a 33->-; D .1313-<-b a 3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .1)1)(1(2-=-+a a aB .22)3(96-=+-a a aC .1)2(122++=++x x x xD .y x y x y x 222343618∙-=-4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是 ( )A .70°B .68°C . 60°D .72°5.下列命题是假命题的是 ( ) A . 同旁内角互补; B . 垂直于同一条直线的两条直线平行; C . 对顶角相等; D . 同角的余角相等.6.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有 ( ) A .1 B .2 C .3 D .47. 如果0)2014(-=a 、1)101(--=b 、2)35(-=c ,那么其大小关系为 ( ) A .c b a >> B .b c a >> C .a b c >> D .b a c >>8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是 ( ) A .80° B .100° C .108° D .110° 9. 若2=ma,3=n a ,则n m a -2的值是 ( )A .1B .12C .43 D .34第4题 第8题10.在方格纸中,把一个图形先沿水平方向平移a 格(当a 为正数时,表示向右平移;当a 为负数时,表示向左平移),再沿竖直方向平移b 格(当b 为正数时,表示向上平移;当b 为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a ,b 】.例如,把图中的△ABC 先向右平移3格,再向下平移5格得到△A 1B 1C 1,可以把这个过程记为【3,-5】.若再将△A 1B 1C 1经过【5,2】得到△A 2B 2C 2,则△ABC 经过平移得到△A 2B 2C 2的过程是 ( ) A .【2,7】 B .【8,-3】 C .【8,-7】 D .【-8,-2】 二、填空题:(本大题共8小题,每空2分,共18分.) 11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示为 米. 12. 因式分解:162-m = ;22882y xy x +-= . 13.已知二元一次方程x -y =1,若y 的值大于-1,则x 的取值范围是 . 14.写出命题“直角三角形的两个锐角互余”的逆命题: ____ _.15. 如图,BC⊥ED 于O ,∠A=45°,∠D=20°,则∠B=________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17.已知关于x 的不等式m x <2只有2个正整数解,则m 的取值范围是 . 18.如图,△ABC 中,∠A =35°,沿BE 将此三角形对折,又沿BA' 再一次对折,点C 落在BE 上的C'处,此时∠C'DB =85°,则原三角形的∠ABC 的度数为 . 三、解答题(本大题共10小题,共62分.) 19.(本题满分6分,每小题3分) (1)计算:20141)1(2)14.3(-+---π (2) 计算:2244223)2()(a a a a a ÷+∙--;20.(本题满分6分,每小题3分)第15题 第16题 第18题(1)计算:n (n+1)(n+2) (2)化简求值:2)1()2)(2(---+x x x ,其中1-=x . 21.(本题满分6分,每小题3分)解方程组:(1) ⎩⎨⎧=-=+3252y x y x (2) ⎩⎨⎧=--=-01083572y x y x22. (本题满分6分)(1)解不等式:7)1(68)2(5+-<+-x x ;(2)若(1)中的不等式的最小整数解是方程32=-ax x 的解,求a 的值.23.(本题满分6分)解不等式组()432,121.3x x x x -≤-⎧⎪⎨++>⎪⎩,并把解集在数轴上表示出来.24.(本题满分6分)若关于x 、y 的方程组325233x y a x y a -=-⎧⎨+=+⎩的解都为正数,求a 的取值范围.25.(本题满分6分)如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E ,若∠C=70o ,∠BED=64o,求∠BAC 的度数. 26.(本题满分6分)已知:如图,在△ABC 中,∠A=∠ABC ,直线EF 分别交△ABC 的边AB 、AC 和CB 的延长线于点D 、E 、F.求证:∠F+∠FEC=2∠A.27.(本题满分6分)一天,小明在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式,比如图②可以解释为等式:2223))(2(b ab a b a b a ++=++.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为22372b ab a ++,并请在图中标出这个长方形的长和宽.(3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(y x >),观察图案,指出以下关系式:(a )x y n -=;(b )224m n xy -=;(c )22x y mn -=; (d )22222m n x y ++=.其中正确的关系式的个数有 个.A BC DE F28.(本题满分8分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2013年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2013年5月份,该市居民甲用电200千瓦时,交费122.5元;居民乙用电400千瓦时,交费277.5元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?初一数学参考答案与评分标准2016.6一、选择题(每小题2分,共30分):C B B A A CD B D B 二、填空题(每空2分,共18分)11、8108-⨯;12、)4)(4(+-m m ,2)2(2y x -;13、 0>x ;14、 有两个角互余的三角形是直角三角形;15、25;16、 67;17、 64≤<m ;18、 75°. 三、解答题19(1)201410)1(2)14.3(-+---π =1211+--------------------(2分) =211--------------------------(3分) (2)2244223)2()(a a a a a ÷+⋅--=28664a a a a ÷+----------------(2分) =64a -----------------------------------(3分)20.(1)原式=n(n 2+3n+2) ---------------(2分)=n 3+3n 2+2n-------------------------------(3分)(2)原式=)12(422+---x x x ------------------------(1分) =12422-+--x x x=52-x ------------------------------------------------(2分) 当1-=x 时,原式=5)1(2--⨯=7--------------------------(3分)21.(1)解:先解出一个未知数,得1分,再解出另一个得2分,最后回答⎩⎨⎧==12y x (3分) (2)解:先解出一个未知数,得1分,再解出另一个得2分,最后回答⎩⎨⎧==16y x (3分)22. 解:(1)x>-3-----------------------------------(3分)(2)x>-3的最小整数解是2-=x ,------(4分)把2-=x 代入32=-ax x 中,解得27=a ---------------(6分) 23.(1)解:解①:1≥x -------------------------(1分) 解②:4<x ---------------------------(2分) 原不等式组的解集是41<≤x --------------(4分)画数轴表示正确------------------------------------------(6分)24.解:先解出⎩⎨⎧+=-=21a y a x ---------------------------------------------(4分)再得⎩⎨⎧>+>-0201a a -------------------------------------------------------(5分)解不等式组得解集:1>a -------------------------------------------------------------(6分) 25.解:∵AD 是△ABC 的高, ∴∠ADC=∠ADB=90° 又∵∠C=70°,∴∠DAC=90°-70°=20°----------------------(1分) 又∵∠BED=64°,∴∠DBE=90°-64°=26°----------------------(2分) ∵BE 平分∠ABC∴∠ABE=∠EBD=26°---------------------------(3分) ∵∠BED=∠ABE+∠BAE∴∠BAE=64°-26°=38°-------------------------(5分) ∴∠BAC=38°+20°=58°--------------------------(6分) (其他解法参照上述评分标准相应给分)26.证得∠C+∠A+∠ABC=1800----------------------(1分)由∠A=∠ABC 得∠C+2∠A=1800----------------------(2分)∠C+∠F+∠FEC=1800----------------------(4分) 得到∠F+∠FEC=2∠A ----------------------(6分) 27.(1)22252)2)(2(b ab a b a b a ++=++---------------------------------------------(2分)(2)图略--------------------------------------------------------------------------------------(4分) (3)4------------------------------------------------------------------------------------------(6分)28.解:(1)⎩⎨⎧=+++=+5.277)3.0(1001501505.12250150a b a b a --------------(2分)解得⎩⎨⎧==65.06.0b a -------------------------------------------(4分)(2)分3种情况:设一户居民月用电量为x 千瓦时①当150≤x 时,x x 62.06.0≤,解得0≥x ,故1500≤≤x ;-------------(5分)②当300150≤<x 时,x x 62.0)150(65.01506.0≤-+⨯,解得250≤x ,故250150≤<x ;----------------------------------------------------(6分)③当300>x 时,x x 62.0)300(9.015065.01506.0≤-+⨯+⨯,解得149294≤x ,故x 无解;-----------------------------------------------------------(7分)综上所述,试行“阶梯电价”收费以后,该市一户居民月用电不大于250千瓦时,其当月的平均电价每千瓦时不超过0.62元-------------------------------------------------------(8分)注:不分类讨论解出不大于250得6分2015-2016学年度第二学期七年级期末考试数学试卷 2016.6一、选择题(每题有且只有一个答案正确,请把你认为正确的答案填在答题纸上,每题3分,共24分) 1. -12等于( ▲ ) A .12B .12-C .2D .2-2.下列运算中,正确的是( ▲ )A.44m m m =B.5210m m =()C.623m m m ÷=D.336+m m m = 3.已知b a <,c 是有理数,下列各式中正确的是( ▲ )A.22bc ac < B.b c a c -<- C.a c b c -<- D.cb c a < 4. 下列命题中的真命题...是( ▲ ) A .相等的角是对顶角 B .三角形的一个外角等于两个内角之和C .如果33a b =,那么a b = D. 内错角相等5. 如图,把三角板的直角顶点放在直尺的一边上,若130∠=︒,则2∠的度数为( ▲ )A.60︒ B.50︒ C.40︒ D.30︒第5题图 第6题图① 第6题图② 6. 把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,盒底底面未被卡片覆盖的部分用阴影表示.若按图①摆放时,阴影部分的面积为1S ,若按图②摆放时,阴影部分的面积为2S ,则1S 与2S 的大小关系为( ▲ )A. 1S >2SB. 1S <2SC. 1S =2SD.不能确定7.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( ▲ ) A.14016615x y x y +=⎧⎨+=⎩, B.140 61615x y x y +=⎧⎨+=⎩, C.15166140x y x y +=⎧⎨+=⎩, D.15616140x y x y +=⎧⎨+=⎩, 8. 如图,在四边形ABCD 中,A B C ∠∠∠==,点E 在边AB 上,60AED ∠︒=,则一定有( ▲ )A .20ADE ∠︒=B .30ADE ∠︒=C .12ADE ADC ∠∠=D .13ADE ADC ∠∠=二、填空题(每题3分,共30分)9. 某种生物细胞的直径约为0.00056米,用科学记数法表示为 ▲ 米.10.多项式29x -因式分解的结果是 ▲ .11.等腰三角形的两边长分别为5和10,则它的周长为 ▲ . 12.若,21,8==n ma a则m n a -= ▲ . 13.如果2x y -=,3xy =,则22x y xy -= ▲ .14.一个多边形的内角和是其外角和的2倍,那么这个多边形的边数n = ▲ . 15.“同位角相等”的逆命题是 ▲ .16.已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 ▲ .17.小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A 、B 两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是 ▲ .18.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108︒,那么这个“梦想三角形”的最小内角的度数为 ▲ .三.解答题(本大题共10题,满分96分)19.(本题满分8分,每小题4分)(1)计算:0231(2009)()(2)2--++-; (2)化简:()()()y x x y y x -+--33322.20.(本题满分8分,每小题4分)(1)因式分解:2244ax axy ay -+; (2)解方程组: 31,328x y x y +=-⎧⎨-=⎩21. (本题满分8分,每小题4分)(1) 先化简,再求值:()()()2x y x y x x y xy +--++ ,其中1,2x y =-=(2)解不等式组:⎩⎨⎧>-+-≤-0)3()1(202x x x ,并把它的解集在数轴上表示出来.22.(本题满分8分)如图,EF BC ∥,AC 平分BAF ∠,80B ∠=︒.求C ∠的度数.23.(本题满分10分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?24.(本题满分10分)如图,已知DAC ∠是ABC ∆的一个外角,请在下列三个关系: ①B C ∠=∠; ②AE 平分DAC ∠ ③AE BC 中,选出两个恰当的关系作为条件,另一个作为结论,组成一个命题.(1)请写出所有的真命题(用序号表示);(2)请选择其中的一个真命题加以证明.25.(本题满分10分)在如图所示的方格纸中,每个小正方形方格的边长都为1,△ABC 的三个顶点在格点上.(1)画出△ABC 的AC 边上的高,垂足为D ;(标出画高时,你所经过的两个格点,用M 、N 表示)(2)画出将△ABC 先向左平移2格,再向下平移2格得到的△111A B C ;(3)求平移后,线段AC 所扫过的部分所组成的封.闭图形...的面积.26.(本题满分10分)某小区为了绿化环境,计划分两次购进A 、B 两种花草,第一次分别购进A 、B 两种花草30棵和15棵,共花费675元;第二次分别购进A 、B 两种花草12 棵和5棵..两次共...花费940元(两次购进的A 、B 两种花草价格均分别相同). (1)A 、B 两种花草每棵的价格分别是多少元?(2)若再次购买A 、B 两种花草共12棵(A 、B 两种花草价格不变),且A 种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.27.(本题满分12分)对于三个数,,a b c ,{},,M a b c 表示,,a b c 这三个数的平均数, {}min ,,a b c 表示,,a b c 这三个数中最小的数,如:{}12341,2,333M -++-==, {}1,2,min 31-=-;{}1211,2,33a a M a -+++-==,{}1in ,m ,2a -=()11(1)a a a ⎧≤-⎪⎨->-⎪⎩; 解决下列问题:(1)填空:{}220min 2,2,2013--=_______;(2)若{}min 2,22,422x x +-=,求x 的取值范围;(3)①若{}2,1,2M x x +={}min 2,1,2x x +,那么x =_______;②根据①,你发现结论“若{},,M a b c {}min ,,a b c =,则_______”(填,,a b c 的大小关系);③运用②解决问题:若{}22,2,2x y x y M y x +++-{}min 22,2,2x y x y x y =+++-,求x y +的值.28. (本题满分12分)已知△ABC 中,ABC ACB ∠=∠,D 为射线..CB 上一点(不与C 、B 重合),点E 为射线..CA 上一点,ADE AED ∠=∠.设BAD α∠=,CDE β∠=.(1) 如图(1),① 若40BAC ∠︒=,30DAE ∠︒=,则α=_____,β=_____.② 写出α与β的数量关系,并说明理由;(2) 如图(2),当D 点在BC 边上,E 点在CA 的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3) 如图(3),D 在CB 的延长线上,根据已知补全图形,并直接写出α与β的关系式__________________.图(1)图(2)图(3)七年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)二、填空题(本大题共10小题,每题3分,共30分)9.-45.610⨯ 10.(3)(3)x x +- 11.25 12.1613.6 14.6 15.相等的角是同位角 16.1- 17.BABBA 18. 18︒或36︒三、 解答题:(本大题有8题,共96分)19.(1)解:原式=1+4+(8)- ……2分3=- …………4分(2)解:原式=22224129(9)x xy y x y -+-- ……2分=2251210x xy y --+ ………4分20.(1)解:原式=)44(22y xy x a +- ………………………2分=2)2(y x a - ……………………… 4分(2)解:①⨯3,得393x y +=- ③ ③-②,得1111y =- 解得1y =-将1y =-代入①,得2x =故方程组的解为2,1x y =⎧⎨=-⎩ ………………………4分 21.(1)原式=xy xy x y x 2222+---=xy y +-2………………………2分=24--=6-………………………4分(2)解不等式①,得2≤x ………………………1分解不等式②,得1->x ………………………2分所以原不等式组的解集为21≤<-x ………………………3分………………………4分22.解:∵EF BC∴180100FAB B ∠=︒-∠=︒∵AC 平分BAF ∠ ∴1502FAC FAB ∠=∠=︒ ∵EF BC∴50C FAC ∠=∠=︒ ………………………8分23.解设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得:10023270x y x y +=⎧⎨+=⎩………………………6分 解得:3070x y =⎧⎨=⎩. ………………………9分 答:A 饮料生产了30瓶,B 饮料生产了70瓶. ………………………10分24.(1)①②⇒③或①③⇒②或②③⇒①………………………3分(2)选②③⇒①,证明如下:∵BC ∥AE∴C EAC B DAE ∠∠∠∠= =∵AE 平分DAC ∠∴EAC DAE ∠∠=∴C B ∠∠=………………………10分25.(1)4个格点中任取两个作为M 和N 各1分,标出D 点1分(2)………………………6分(3)9………………………10分26.(1)设A 种花草每棵的价格x 元,B 种花草每棵的价格y 元,根据题意得: 3015675125940675x y x y +=⎧⎨+=-⎩解得 205x y =⎧⎨=⎩∴ A 种花草每棵的价格是20元,B 种花草每棵的价格是5元.……………………………………………………5分(2)设A 种花草的数量为m 株,则B 种花草的数量为(12)m -株, ∵A 种花草的数量不少于B 种花草的数量的4倍,∴4(12)m m ≥-解得:9.6m ≥9.612m ∴≤≤设购买树苗总费用为205(12)1560W m m m =+-=+,当10m =时,最省费用为:151060210⨯+=(元).答:购进A 种花草的数量为10株、B 种2株,费用最省;最省费用是210元. (本题也可以算出所有方案费用,取最小值.) …10分27. (1)-4 …………………………1分(2)由题意,得222,422x x +≥⎧⎨-≥⎩解得01x ≤≤ …………………………4分(3)①1 …………………………6分②a b c == …………………………8分③由题意,得22222x y x y x y x y ++=+⎧⎨+=-⎩ 解得31x y =-⎧⎨=-⎩∴4x y +=- . …………………………12分28(本题满分12分)(1)①α=10︒,β=5︒.…………………………2分②解:=2αβ …………………………3分设,BAC x DAE y ∠=︒∠=︒ ,则x y α=︒-︒ ∵ABC ACB ∠=∠∴1802x C ︒-︒∠= ∵ADE AED ∠=∠ ∴1802y AED ︒-︒∠= ∴180180222y x x y β︒-︒︒-︒︒-︒=-= ∴=2αβ…………………………5分 (2) 1802αβ︒+=…………………………6分 设,BAC x DAE y ∠=︒∠=︒ ,则180CAD y ∠=︒-︒∴(180)180x y x y α=︒-︒-︒=︒-︒+︒∵ABC ACB ∠=∠∴1802x C ︒-︒∠= ∵ADE AED ∠=∠ ∴1802y AED ︒-︒∠= ∴180180180222y x x y β︒-︒︒-︒︒+︒=︒--= ∴1802αβ︒+=…………………………8分 (3)画图…………………………10分 180-=2αβ︒ …………………………12分。
2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷一、选择题(共10小题,每小题2分,满分20分)1.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)2.如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°3.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)4.不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数 B.零C.负数 D.非负数5.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤86.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°7.在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】8.现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定9.已知方程组的解满足x+y=2,则k的值为()A.﹣4 B.2 C.﹣2 D.410.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0 B.4 C.﹣4 D.﹣4或4二、填空题(共10小题,每小题2分,满分20分)11.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是m.12.已知:x a=4,x b=3,则x a﹣2b= .13.如果x﹣y=2,xy=3,则x2y﹣xy2= .14.若二次三项式4x2+ax+9是一个完全平方式,则a= .15.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE= .16.将二元一次方程3x﹣5y=9化成y=kx+m,则k= ,m= .17.若关于x的不等式组只有4个整数解,则a的取值范围是.18.若(x+m)(x+3)中不含x的一次项,则m的值为.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P= .20.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题21.计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)22.解方程组:(1)(2).23.分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).24.解不等式组.并把解集在数轴上表示出来..25.如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.26.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.27.如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.28.在数学中,为了简便,记=1+2+3+…+(n﹣1)+n, =(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011= ;(2)化简:;(3)化简: [(x﹣k)(x﹣k﹣1)].29.阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.30.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.四、附加题做对加分,做错不扣分31.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.32.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2015-2016学年江苏省苏州市七年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)【考点】同位角、内错角、同旁内角.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选A.2.如图,已知AB∥CD,则∠A、∠E、∠D之间的数量关系为()A.∠A+∠E+∠D=360°B.∠A+∠E+∠D=180°C.∠A+∠E﹣∠D=180°D.∠A﹣∠E﹣∠D=90°【考点】平行线的性质.【分析】先作EF∥AB,根据两直线平行同旁内角互补可知∠A+∠AEF=180°,而AB∥CD,利用平行于同一直线的两条直线平行可得EF∥CD,再根据两直线平行内错角相等可知∠D=∠FED,于是有∠A+∠AEF+∠FED﹣∠D=180°,即可求∠A+∠E﹣∠D=180°.【解答】解:如右图所示,作EF∥AB,∵AB∥EF,∴∠A+∠AEF=180°,又∵AB∥CD,∴EF∥CD,∴∠D=∠FED,∴∠A+∠AEF+∠FED﹣∠D=180°,即∠A+∠E﹣∠D=180°.故选C.3.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【考点】平方差公式的几何背景.【分析】根据正方形和梯形的面积公式,观察图形发现这两个图形阴影部分的面积=a2﹣b2=(a+b)(a﹣b).【解答】解:阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选A.4.不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数 B.零C.负数 D.非负数【考点】完全平方公式;非负数的性质:偶次方.【分析】根据完全平方公式对代数式整理,然后再根据平方数非负数的性质进行判断.【解答】解:x2+y2﹣10x+8y+45,=x2﹣10x+25+y2+8y+16+4,=(x﹣5)2+(y+4)2+4,∵(x﹣5)2≥0,(y+4)2≥0,∴(x﹣5)2+(y+4)2+4>0,故选:A.5.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8【考点】解一元一次不等式组.【分析】根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可.【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为【a,b】.例如,把图中的ABC先向右平移3格,再向下平移5格得到△A1B1C1,可以把这个过程记为【3,﹣5】.若再将△A1B1C1经过【5,2】得到△A2B2C2,则△ABC经过平移得到△A2B2C2的过程是()A.【2,7】B.【8,﹣3】C.【8,﹣7】D.【﹣8,﹣2】【考点】坐标与图形变化-平移.【分析】2次平移后的横坐标变化分别为3,5,纵坐标变化分别为﹣5,2,那么让坐标分别相加即为△ABC 经过平移得到△A2B2C2的过程.【解答】解:∵2次平移后的横坐标变化分别为3,5,说明图形向右平移了3个单位,又向右平移了5个单位,那么一共向右平移了3+5=8个单位;纵坐标变化分别为﹣5,2,说明图形向下平移了5个单位后,又向上平移了2个单位,那么是平移了﹣5+2=﹣3个单位;∴△ABC经过平移得到△A2B2C2的过程是【8,﹣3】,故选B.8.现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为()A.2a+3b B.2a+b C.a+3b D.无法确定【考点】多项式乘多项式.【分析】根据题意可知拼成的长方形的面积是4a2+3b2+8ab,再对此多项式因式分解,即可得出长方形的长和宽.【解答】解:根据题意可得:拼成的长方形的面积=4a2+3b2+8ab,又∵4a2+3b2+8ab=(2a+b)(2a+3b),b<3b,∴长=2a+3b.故选A.9.已知方程组的解满足x+y=2,则k的值为()A.﹣4 B.2 C.﹣2 D.4【考点】二元一次方程组的解.【分析】方程组中两方程相减消去k得到关于x与y的方程,与x+y=2联立求出解,即可确定出k的值.【解答】解:,①﹣②得:x+2y=2,联立得:,解得:,则k=2x+3y=4,故选D10.若(x+k)(x﹣4)的积中不含有x的一次项,则k的值为()A.0 B.4 C.﹣4 D.﹣4或4【考点】多项式乘多项式.【分析】根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,列式求解即可.【解答】解:(x+k)(x﹣4),=x2﹣4x+kx﹣4k,=x2+(k﹣4)x﹣4k,∵不含有x的一次项,∴k﹣4=0,解得k=4.故选B.二、填空题(共10小题,每小题2分,满分20分)11.实验表明,人体内某种细胞的形状可近似看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是 1.56×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001 56m这个数用科学记数法表示是1.56×10﹣6m.12.已知:x a=4,x b=3,则x a﹣2b= .【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法及乘法进行计算即可.【解答】解:x a﹣2b=x a÷(x b•x b),=4÷(3×3),=.故答案为:.13.如果x﹣y=2,xy=3,则x2y﹣xy2= 6 .【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:∵x﹣y=2,xy=3,∴x2y﹣xy2=xy(x﹣y)=3×2=6.故答案为:6.14.若二次三项式4x2+ax+9是一个完全平方式,则a= ±12 .【考点】完全平方式.【分析】此题考查了配方法,一次项系数等于二次项系数与常数项的平方根的积的2倍,注意完全平方式有两个,所以一次项系数有两个且互为相反数.【解答】解:a=±2×2×3=±12.故答案为:±12.15.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,则∠DAE= 14°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC﹣∠DAC.【解答】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=42°,∠C=70°,∴∠BAE=∠EAC===34°.在△ACD中,∠ADC=90°,∠C=70°,∴∠DAC=90°﹣70°=20°,∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°.故答案是:14°.16.将二元一次方程3x﹣5y=9化成y=kx+m,则k= ,m= ﹣.【考点】解二元一次方程.【分析】将方程移项后,再将y的系数变为1即可得出结论.【解答】解:∵3x﹣5y=9,∴5y=3x﹣9,∴y=x﹣.故答案为:;﹣.17.若关于x的不等式组只有4个整数解,则a的取值范围是﹣11≤a<﹣8 .【考点】一元一次不等式组的整数解.【分析】首先求出不等式的解集,根据不等式组整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式2x>3x﹣3,得:x<3,解不等式3x﹣a>5,得:x>,∵不等式组只有4个整数解,∴﹣2≤<﹣1,解得:﹣11≤a<﹣8,故答案为:﹣11≤a<﹣8.18.若(x+m)(x+3)中不含x的一次项,则m的值为﹣3 .【考点】多项式乘多项式.【分析】把式子展开,找到x的一次项的所有系数,令其为0,可求出m的值.【解答】解:∵(x+m)(x+3)=x2+(m+3)x+3m,又∵结果中不含x的一次项,∴m+3=0,解得m=﹣3.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P= 90°.【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°.故答案为:90°.20.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.【考点】二元一次方程组的解.【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【解答】解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.三、解答题21.计算题:①()100×3101﹣(﹣2011)0②5a2b•(﹣2ab3)+3ab•(4a2b3)【考点】单项式乘单项式;幂的乘方与积的乘方;零指数幂.【分析】(1)根据积的乘方等于乘方的积,可得答案;(2)根据单项式的乘法,可得整式的加减,根据整式的加减,可得答案.【解答】解:(1)原式=【(﹣)100×3100】×3﹣1=[﹣×3]100×3﹣1=3﹣1=2;(2)原式=﹣10a3b4+12a3b4=2a3b4.22.解方程组:(1)(2).【考点】解三元一次方程组;解二元一次方程组.【分析】(1)应用加减消元法或代入消元法先消去x,求出y的值,然后代入①或②求出y的值即可.(2)是三元一次方程组,应用加减消元法先消去未知数y,将三元一次方程组转化为二元一次方程组,然后再与(1)同法解之.【解答】解:(1)②×3﹣①得:y=1把y=1代入②,得:x=3经检验,原方程组的解为:(2 )①+②,③﹣②得:(5)×3﹣(4)得:把代入③得:y=3经检验:是原方程组的解.23.分解因式:(1)x2y﹣3y.(2)(2x+y)(2x﹣3y)+x(2x+y).【考点】提公因式法与公式法的综合运用.【分析】(1)根据提取公因式法,可得平方差公式,根据平方差公式,可得答案;(2)根据提公因式法,可得答案.【解答】解:(1)原式=y(x2﹣9)=(x+3)(x﹣3);(2)原式=(2x+y)(2x﹣3y+x)=3(2x+y)(x﹣y).24.解不等式组.并把解集在数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解每一个不等式,再求解集的公共部分即可.【解答】解:不等式①去分母,得x﹣3+6≥2x+2,移项,合并得x≤1,不等式②去括号,得1﹣3x+3<8﹣x,移项,合并得x>﹣2,∴不等式组的解集为:﹣2<x≤1.数轴表示为:25.如果关于x、y的二元一次方程组的解x和y的绝对值相等,请求出a的值.【考点】二元一次方程组的解.【分析】首先解二元一次方程组,得出的x、y是含a的代数式,然后由已知x和y的绝对值相等,分两种情况求出a的值.【解答】解:方程组得:,已知x和y的绝对值相等,当x、y同号时,则2a﹣12=8﹣a,得:a=,当x、y异号时,则2a﹣12=﹣(8﹣a),得:a=4,所以a的值为:或4.26.某公司准备把240吨白砂糖运往A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量运往A地的费用运往B地的费用大车15吨/辆630元/辆750元/辆小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A地,其中大车有m辆,其余货车前往B地,且运往A地的白砂糖不少于115吨,①求m的取值范围;②请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设大车货x辆,则小货车(20﹣x)辆,根据“大车装的货物数量+小车装的货物数量=240吨”作为相等关系列方程即可求解;(2)①调往A地的大车m辆,小车(10﹣m)辆;调往B地的大车(8﹣m)辆,小车(m+2)辆,根据“运往A地的白砂糖不少于115吨”列关于m的不等式求出m的取值范围,②设总运费为W元,根据运费的求算方法列出关于运费的函数关系式W=10m+11300,再结合一次函数的单调性得出w的最小值即可求解.【解答】解:(1)设大货车x辆,则小货车有(20﹣x)辆,15x+10(20﹣x)=240,解得:x=8,20﹣x=20﹣8=12(辆),答:大货车用8辆.小货车用12辆;(2)①调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,由题意得:15m+10(10﹣m)≥115,解得:m≥3,∵大车共有8辆,∴3≤m≤8;②设总运费为W元,∵调往A地的大车有m辆,则到A地的小车有(10﹣m)辆,∴到B的大车(8﹣m)辆,到B的小车有[12﹣(10﹣m)]=(2+m)辆,W=630m+420(10﹣m)+750(8﹣m)+550(2+m),=630m+4200﹣420m+6000﹣750m+1100+550m,=10m+11300.又∵W随m的增大而增大,∴当m=3时,w最小.当m=3时,W=10×3+11300=11330.因此,应安排3辆大车和7辆小车前往A地,安排5辆大车和5辆小车前往B地,最少运费为11330元.27.如图,AE∥BD,∠CBD=50°,∠AEF=130°.求∠C的度数.【考点】平行线的性质;三角形的外角性质.【分析】根据两直线平行,同位角相等求出∠A=∠CBD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AE∥BD,∠CBD=50°,∴∠A=∠CBD=50°,∵∠AEF=130°,∴∠C=∠AEF﹣∠A=130°﹣50°=80°.28.在数学中,为了简便,记=1+2+3+…+(n﹣1)+n, =(x+1)+(x+2)+…+(x+n).(1)请你用以上记法表示:1+2+3+…+2011= ;(2)化简:;(3)化简: [(x﹣k)(x﹣k﹣1)].【考点】整式的混合运算.【分析】(1)根据题意简便的记法,已知第一个式子中令n=2011即可把所求的式子记作;(2)把已知第二个式子中的k化为﹣k,变形后,根据n个x相加记作nx,从1开始连续的自然数相加利用首项加末项除以2乘以项数进行化简,即可得到结果;(3)所求式子表示(x﹣1)(x﹣2)+(x﹣2)(x﹣3)+(x﹣3)(x﹣4),利用多项式乘以多项式的法则变形后,合并同类项即可得到结果.【解答】解:(1)1+2+3+…+2011=;(2)=(x﹣1)+(x﹣2)+(x﹣3)+…+(x﹣n)=(x+x…+x)﹣(1+2+3…+n)=nx﹣;(3) [(x﹣k)(x﹣k﹣1)]=(x﹣1)(x﹣2)+(x﹣2)(x﹣3)+(x﹣3)(x﹣4)=x2﹣3x+2+x2﹣5x+6+x2﹣7x+12=3x2﹣15x+20.29.阅读理解:解方程组时,如果设,则原方程组可变形为关于m、n的方程组,解这个方程组得到它的解为.由,求得原方程组的解为.利用上述方法解方程组:.【考点】解二元一次方程组.【分析】仿照例题,设,则原方程组可变形为关于m、n的方程组,求出m,n的值,进而求出方程组的解.【解答】解:设,则原方程组可变形为关于m、n的方程组,①+②得:8m=24,解得:m=3,将m=3代入①得:n=﹣2,则方程组的解为:,由=3, =﹣2,故方程组的解为:.30.若x,y,z满足(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=0,且x,y,z是周长为48的一个三角形的三条边长,求y的长.【考点】因式分解的应用.【分析】将已知等式左边第四项去括号后结合,提取公因式变形后,再利用完全平方公式化简,得到底数为0,得到x+z=2y,由周长为48得到x+y+z=48,将x+z=2y代入即可求出y的值.【解答】解:∵(x﹣y)2+(z﹣y)2+2y2﹣2(x+z)y+2xz=(x﹣y)2+(z﹣y)2+2y2﹣2xy﹣2yz+2xz=(x﹣y)2+(z﹣y)2+2y(y﹣x)﹣2z(y﹣x)=(x﹣y)2+(z﹣y)2+2(y﹣x)(y﹣z)=0=[(x﹣y)+(z﹣y)]2=0,即x﹣y+z﹣y=0,∴x+z=2y,又∵x+y+z=48,∴2y+y=48,即3y=48,则y=16.四、附加题做对加分,做错不扣分31.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= 140 °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.32.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【考点】平行线的性质.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.。
2015-2016学年江苏省苏州市七下期末数学一、选择题(共10小题;共50分)1. 计算的结果是A. B. C. D.2. 下列各方程中是二元一次方程的是A. B. C. D.3. 下列计算中,正确的是A. B. C. D.4. 下列各式计算结果等于的是A. B.C. D.5. 画中边上的高,下列四个画法中正确的是A. B.C. D.6. 下列是方程组的解的是A. B. C. D.7. 下列各式从左到右的变形中,属于因式分解的是A. B.C. D.8. 现有纸片:张边长为的正方形,张边长为的正方形,张宽为,长为的长方形,用这张纸片重新拼出一个长方形,那么该长方形的长为A. B. C. D.9. 若,则的值是A. B. C. D.10. 关于,的二元一次方程组的解是正整数,则整数的值的个数为A. B. C. D.二、填空题(共8小题;共40分)11. 分解因式:.12. 若,,则.13. " " 型禽流感病毒的颗粒呈多样形性,其中球形病毒的最大直径为,数字用科学记数法可以表示为.14. 如图,若,则可以判定图中互相平行的线段是.15. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则.16. 一个多边形的内角和是外角和的倍,则这个多边形的边数为.17. 盒子里有若干个大小相同的白球和红球,从中摸到个红球得分,摸到个白球得分.若某人摸到个红球,个白球,共得分,则符合题意的,的值共有对.18. 如图,,,是内的三个点,且在上,在上,在上.若,,,的面积是,则得面积是.三、解答题(共10小题;共130分)19. 计算:(1);(2)(3);(4).20. 先化简,再求值:,其中.21. 将下列各式因式分解:(1);(2).22. 解方程组23. 作图题(1)如图,画出四边形向右平移格得到的四边形;(2)若图中每一个小方格的边长均为,计算折线在平移过程中扫过的面积.24. 如图,已知,,试说明:.请你将解答过程补充完整:25. 如图,把一副三角板如图放置,其中,,,斜边,相交于点.求的度数.26. 太仓市港区中学为了丰富学生的校园生活,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买个足球和个篮球共需元;购买个排球和个篮球共需元.(1)购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共个,且购买三种球的总费用不超过元,求这所中学最多可以购买多少个篮球?27. 如图,,是线段上任意一点(点不与,重合),分别以,为边作正方形,正方形,点在边上.设.(1)求两个正方形的面积之和;(2)分别连接,,,计算的面积,并在图中找出一对面积相等的三角形(等腰直角三角形除外).28. 概念学习在平面中,我们把大于且小于的角称为优角.如果两个角相加等于,那么称这两个角互为组角,简称互组.(1)若,互为组角,且,则;(2)理解应用习惯上,我们把有一个内角大于的四边形俗称为镖形.如图①,在镖形中,优角与钝角互为组角,试探索内角,,与钝角之间的数量关系,并说明理由.(3)拓展延伸如图②,已知四边形中,延长,交于点,延长,交于,的平分线交于点.①写出图中一对互组的角(两个平角除外);②直接运用(2)中的结论,试说明:.答案第一部分1. C2. A3. D4. B5. C6. D7. B8. A9. A 10. A【解析】提示:,或 .第二部分11.12.13.14.15.16.17.18.第三部分原式19. (1)(2)原式原式(3)(4)原式20. 原式.当时,原式.21. (1)原式.(2)原式.22.,得把代入,得所以原方程组的解为23. (1)如图所示,(2)扫过的面积等于正方形的面积.24. 因为,所以.(理由:内错角相等,两直线平行)所以.(理由:两直线平行,同旁内角互补)又因为,所以.(理由:等量代换)所以.(理由:同旁内角互补,两直线平行)25. 因为在中,,,所以.又因为,所以.因为在中,,,所以.26. (1)设购买一个足球需要元,购买一个篮球需要元根据题意,得解这个方程组得答:购买一个足球需要元,一个篮球需要元.(2)设该中学购买篮球个,根据题意,得解这个一元一次不等式得因为是整数,所以(或的最大整数解是).答:这所中学最多可以购买个篮球.27. (1)因为,,则,所以.(2)的面积两个正方形的面积之和的面积的面积的面积,的面积的面积.28. (1)(2)因为在四边形中,优角,又因为优角钝角,所以钝角.(3)①优角与钝角②因为,的平分线交于点,所以,.令,.因为在镖形中,有,在镖形中,有,所以有.因为,所以.所以.。
2015-2016学年江苏省苏州市相城区七下期末数学一、填空题(共1小题;共5分)
1. 已知x=−2,
y=3是方程x−ky=1的解,那么k= ______.
二、选择题(共10小题;共50分)
2. 计算a3÷a2的结果是
A. a5
B. a−1
C. a
D. a2
3. 如图,AB∥CD,AD平分∠BAC,且∠C=80∘,则∠D的度数为
A. 50∘
B. 60∘
C. 70∘
D. 100∘
4. 方程mx−2y=x+5是二元一次方程时,m的取值为
A. m≠0
B. m≠1
C. m≠−1
D. m≠2
5. 如图,AB=AC,添加下列条件,不能使△ABE≌△ACD的是
A. ∠B=∠C
B. ∠AEB=∠ADC
C. AE=AD
D. BE=DC
6. 能够用立方和(差)公式进行计算的是
A. m+n m3+m2n+n3
B. m−n m2+n2
C. x+1x2−x+1
D. x2+1x2−x+1
7. 如果3x=m,3y=n,那么3x−y等于
A. m+n
B. m−n
C. mn
D. m
n
8. 根据如图提供的信息,可知一个热水瓶的价格是
A. 7元
B. 35元
C. 45元
D. 50元
9. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是
A. SSS
B. ASA
C. AAS
D. SAS
10. 将下列命题改下成逆命题,仍然正确的是
A. 两直线平行,内错角相等
B. 对顶角相等
C. 如果两个实数相等,那么它们的绝对值相等
D. 全等三角形对应角相等
11. 如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是
A. α+∠A=180∘
B. α+∠A=90∘
C. 2α+∠A=90∘
D. 2α+∠A=180∘
三、填空题(共7小题;共35分)
12. 十二边形的外角和为______ 度.
13. 将6.18×10−3用小数表示______.
14. 如图,己知AB∥CF,E为DF的中点,若AB=7 cm,CF=4 cm,则BD= ______ cm.
15. x+32x−1是多项式______ 因式分解的结果.
16. 若7x−a2=49x2−bx+9,则 a+b = ______.
17. 如图,AB=12 m,CA⊥AB于A,DB⊥AB于B,且AC=4 m,P点从B向A运动,每分钟走
1 m,Q点从B向D运动,每分钟走
2 m,P,Q两点同时出发,运动______ 分钟后△CAP与
△PQB全等.
18. 好久未见的A,B,C,D,E五位同学欢聚一堂,他们相互握手一次,中途统计各位同学握手次
数为:A同学握手4次,B同学握手3次,C同学握手2次,D同学握手1次,那么此时同学E 握手______ 次
四、解答题(共10小题;共130分)
19. 计算:
(1)−3xy2⋅2x3;
(2)4a3b−ab3÷−ab;
(3)2a−b−32a+b−3.
20. 解方程组:
(1)3x=y+5, 5x+2y=23.
(2)x−y+z=7, x+y=−1, 2x=y+z.
21. 因式分解:
(1)−2m3+8m2−12m;
(2)x2−2y2−1−2y2.
22. 叙述三角形内角和定理并将证明过程填写完整.
定理:______.
已知:△ABC.求证:∠A+∠B+∠C=180∘.
证明:作边BC的延长线CD,过点C作CE∥AB.所以∠1=∠A(______),∠2=∠B(______),因为∠ACB+∠1+∠2=180∘(______),
所以∠A+∠B+∠ACB=180∘(______).
23. 我们已经知道:
①1的任何次幂都为1;
②−1的偶数次幂也为1;
③−1的奇数次幂为−1;
④任何不等于零的数的零次幂都为1;
请问当x为何值时,代数式2x+3x+2016的值为1.
24. 若x+y=3且xy=1.
(1)求x+2y+2的值;
(2)求x2−3xy+y2的值.
25. 在等式ax+y+b=0中,当x=5时,y=6;当x=−3时,y=−10.
(1)求a,b的值;
(2)若x+y<2,求x的取值范围.
26. 己知△ABC的三边长a,b,c都是正整数,且满足a2+b2−6a−14b+58=0.
(1)求a,b的值;
(2)求△ABC的周长的最小值.
27. 如图,OC平分∠AOB,AC=BC,CD⊥OA于D.
(1)求证:∠OAC+∠OBC=180∘;
(2)若OD=3DA=6,求OB的长.
28. 我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如
图 1 可以得到a+2b a+b=a2+3ab+2b2.请解答下列问题:
(1)写出图 2 中所表示的数学等式;
(2)利用(1)中所得到的结论,解决下面的问题:己知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)小明同学用3张边长为a的正方形,4张边长为b的正方形,7张边长分别为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?
(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为25a+7b18a+45b长方形,那么x+y+z= ______.
答案
第一部分
1. −1
第二部分
2. C
3. A
4. B
5. D
6. C
7. D
8. C
9. A 10. A
11. D
第三部分
12. 360
13. 0.00618
14. 3
15. 2x2+5x−3
16. 45
17. 4
18. 2
第四部分
19. (1)原式=−3xy2×8x3
=−24x4y2.
(2)原式=4a 3b÷−ab−ab3÷−ab
=−4a2+b2.
(3)原式=2a−3−b2a−3+b =2a−32−b2
=4a2−12a+9−b2.
20. (1)x=3, y=4.
(2)x=1, y=−2, z=4.
21. (1)−2m m2−4m+6.
(2)x2−4y+1x−1x+1.22. 三角形内角和是180度;
两直线平行,内错角相等;
两直线平行,同位角相等;
平角的定义;
等量代换
23. x=−1,x=−2或x=−2016.
24. (1)11.
(2)4.
25. (1)由题意,得5a+6+b=0,−3a−10+b=0.
解得a=−2, b=4.
(2)由(1)知,−2x+y+4=0,
∴x+y−3x+4=0,
∴x+y=3x−4 .
又知x+y<2,
即x<2.
26. (1)a=3,b=7.
(2)△ABC的周长的最小值15.
27. (1)过点C作CE⊥OB交OB于点E,
△ADC≌△BCE HL⇒∠OAC+∠OBC=180∘.
(2)OB=4.
28. (1)a+b+c2=a2+b2+c2+2ab+2bc+2ac.
(2)由(1)可知:
a2+b2+c2=a+b+c2−2ab+bc+ca
=112−38×2
=121−76
=45.
(3)长方形的面积
=3a2+7ab+4b2=3a+4b a+b .
所以长方形的边长为3a+4b和a+b,
所以较长的一边长为3a+4b.
(4)∵长方形的面积
=xa2+yb2+zab
=25a+7b18a+45b
=450a2+126ab+1125ab+315b2
=450a2+1251ab+315b2
∴x=450,y=1251,z=315.
∴x+y+z=450+1251+315=2016.故答案为:2016。