51单片机的串行接口
- 格式:doc
- 大小:64.50 KB
- 文档页数:4
51单片机基本结构详解51单片机(也称为8051单片机)是一种8位微控制器,由Intel公司于1980年代推出。
它是目前市场上最广泛使用的低成本单片机之一,被广泛应用于各个领域,包括家电、工业控制、仪器仪表等。
本文将详细介绍51单片机的基本结构。
一、51单片机的总体结构51单片机的总体结构主要分为五个部分,包括中央处理器(CPU)、存储器、IO口、定时器/计数器以及串行通信接口。
1. 中央处理器(CPU)51单片机中心的核心是一个8位的CPU,负责执行指令集中的操作。
它包括一个累加器(Accumulator)用于存放运算结果,以及一组寄存器用于存放操作数和地址。
2. 存储器51单片机的存储器主要包括内部RAM和内部ROM。
内部RAM用于存放程序和数据,容量通常较小,而内部ROM则用于存储不变的程序指令。
3. IO口51单片机提供了多个通用IO口,用于与外部设备进行数据交互。
这些IO口既可以作为输入口用于接收外部信号,也可以作为输出口用于发送信号控制外部设备。
4. 定时器/计数器51单片机内置的定时器/计数器模块可用于产生精确的时间延时和计数应用。
它能够协助实现各种时间相关的功能,如PWM输出、测速和脉冲计数等。
5. 串行通信接口51单片机的串行通信接口可用于与其他设备进行数据的串行传输。
常见的串行通信协议包括UART、SPI和I2C等。
二、51单片机的工作原理51单片机的工作原理可以概括为以下几个步骤:1. 程序存储器中的指令被复制到内部RAM中。
2. CPU从内部RAM中取出指令并执行。
3. 根据指令的要求,CPU可能会与IO口、定时器/计数器或串行通信接口进行数据交互。
4. 执行完指令后,CPU将结果存回内部RAM或IO口。
三、51单片机的应用领域51单片机由于其成本低、技术成熟、易于开发和应用广泛等优点,被广泛应用于各个领域。
1. 家电控制51单片机可以用于家电控制,如空调、洗衣机、电视机等。
AT89C51单片机与PC机串行通信的接口实现[摘要] 本文介绍了AT89C51单片机与PC机采用RS232C标准进行串行通信的接口实现。
在接口中采用MAX232作电平转换电路,简单的通信协议,PC 机用VB编程,AT89C51单片机采用中断收发方式。
文章给出了相应通信接口电路与程序。
[关键词] 通信协议RS232C 通信接口电路通信接口程序AT89C51是一种带4K字节可编程可擦除只读存储器(FLASH FPEROM)和128字节的存取数据存储器(RAM)的低电压,高性能CMOS8位微处理器。
采用了ATMEL公司的高密度、不容易丢失存储技术,与MCS-51系列的单片机兼容。
具有集成程度高、系统结构简单、价格低廉等优点被广泛应用到控制领域中。
但是在复杂的数据处理、良好的人机交互等方面不能满足需要,常采用PC 机与AT89C51单片机进行通信,AT89C51单片机(下位机)实时采集数据传送给PC机(上位机)处理,然后接收PC机处理的结果,并进行相应的控制的方式来弥补。
本文介绍单片机与PC机进行串行通信的一种接口实现。
一、接口电路的设计(一)接口逻辑电平的转换在PC机系统大都装有异步通信适配器,为标准的RS-232C接口。
RS-232C 为负逻辑,用+3V~+15V表示逻辑“0”, 用-3V~-15V表示逻辑“1”。
AT89C51单片机采用正逻辑TTL电平0和+5V.所以AT89C51与PC机通信时必须进行电平转换。
转换的方法有多种。
常采用MAXIM公司生产的专用的双向电平转换集成电路MAX232。
MAX232引脚排列与外围电路如图1所示。
图1MAX引脚及外围接口图(二)通信接口电路本文采用可靠性高的MAX232作电平转换芯片,选择其中一对发送器与接收器,PC机的串行口与MAX232的电平端口相连,MAX232的逻辑电平端口与单片机的串行口相连,接口电路如图2所示。
图2PC机与AT89C51通信接口图二、通信接口程序(一)通信协议PC机与AT89C51进行通信必须有一定的通信协议,本文采用简单的通信协议。
实验四 串行通信实验一、实验目的1.了解51单片机串行口的结构、串行通讯的原理。
2.掌握51单片机与PC 机之间通讯的方法。
3. 学习系统应用程序的设计和调试二、实验设备PC 机一台 、 实验教学板一块。
三、实验原理51单片机的串行接口是全双工的,它能做异步接收器/发送器(UART ),也能做同步移位寄存器使用。
在做UART 使用时,相关的寄存器有SBUF 、SCON 、和PCON 中的波特率倍增位SMOD 。
SBUF 是数据发送缓冲器和接收缓冲器,逻辑上用同一个地址,物理上是分开的,用读写操作来选择。
SCON 是串行口控制寄存器,用于设定串行口的工作方式;保存方式2和方式3的第9位数据;存放发送、接收的中断标志。
在串行通讯的方式1和方式3中,通信的波特率是可以设置的,满足下式:2/132SMOD=⨯波特率(定时器计数器的溢出率)PC 机的串行通讯口是借助通用异步接收发送器8250(或16C550等)实现的,可使用comdebug.exe 等提供了有关串行口的收、发操作窗口的软件实现通讯。
PC 机的串行通讯采用RS232电平,因此要求单片机的实验板也要配置RS232接口,解决逻辑电平的配接。
如果通讯距离较远,则要配接调制解调器。
四、实验内容1, 自发自收用一根短路线,将实验板中RS232插口的RXD 和TXD 两个插孔短路。
然后编程设定串行口为工作方式1,传送55H 和0AAH 两个数据。
实验要求:程序采用查询方式。
每传送、接收一个数据,做一次检查,看是否正确,若两次都正确,则在显示器上显示“GOOD”,若不正确,则不显示,并要重新传送。
2, 单片机与PC 机的通信先使用通讯电缆将单片机的RS232接口与PC 机的COM1口连接,PC 机起动并运行comdebug.exe 软件,窗口上设置波特率为1200,8位数据、一个停止位。
单片机端也采用工作方式1,波特率为1200,完成单片机与PC 机的通信。
51单片机的2个串口资源分别通信的方法当使用51单片机的2个串口资源进行通信时,比如用一个串口与PLC的串口使用RS485协议通信,一个串口通过蓝牙模块和另一个单片机无线通信时,该如何处理呢?传统的51单片机只有1个串口资源,只能采用分时复用的方法。
STC的15系列增强版51单片机具有多个串口资源,本文将描述如何使用IAP15W4K58S单片机用一个串口资源与PLC的RS485有线通信,另一个串口资源与Arduino单片机通过蓝牙模块无线通信,该通讯连接过程中PLC作为主机,IAP15W4K58S作为中间机,Arduino单片机作为最低层级。
工作过程是按下启动按键,PLC发信息给IAP15W4K58S单片机发高速脉冲控制步进电机驱动的机械臂运动取走货物,当货物取走后,IAP15W4K58S单片机通过蓝牙模块通知Arduino单片机控制的小车将新货物运送过来。
连接结构示意图如下图所示。
本例程使用的单片机型号为:IAP15W4K58S,该单片机有4个采用UART 工作方式的全双工异步串行通信接口(分别为串口1、串口2、串口3和串口4),每个串行口由2个数据缓冲器、1个移位寄存器、1个串行控制寄存器和1个波特率发生器等组成。
本项目使用串行口1和串行口2。
串行口1的两个缓冲器共用寄存器SBUF (99H),串行口2的两个缓冲器共用寄存器S2BUF(9BH)。
10位(1起始位,8位数据位,1停止位)可变波特率(9600)。
串口1对应的硬件部分是TxD和RxD,串行口2对应硬件部分是TxD2和RxD2。
串口1选择引脚P3.0(RxD)和P3.1(TxD),串口2选择引脚P1.0(RxD)和P1.1(TxD)。
串口1既可以选择T1作为波特率发生器,也可以选择T2作为波特率发生器。
本文串口1提供2个选择(T1和T2),串口2只能选择T2作波特率发生器。
但是当串口1和串口2的波特率相同时,可以共用T2作为波特率发器,当T2工作在1T模式时,串行口1的波特率=SYSclk/(65536-[RL_TH2,RL_TL2])/4,SYSclk表示系统时钟频率,[RL_TH2,RL_TL2]表示T2H,T2L的定时初值设置值。
51单片机的串行接口
串行接口的一般概念
单片机与外界进行信息交换称之为通讯。
8051单片机的通讯方式有两种:
并行通讯:数据的各位同时发送或接收。
串行通讯:数据一位一位顺序发送或接收。
参看下图:
串行通讯的方式
异步通讯:它用一个起始位表示字符的开始,用停止位表示字符的结束。
其每帧的格式如下:
在一帧格式中,先是一个起始位0,然后是8个数据位,规定低位在前,高位在后,接下来是奇偶校验位(可以省略),最后是停止位1。
用这种格式表示字符,则字符可以一个接一个地传送。
在异步通讯中,CPU与外设之间必须有两项规定,即字符格式和波特率。
字符格式的规定是双方能够在对同一种0和1的串理解成同一种意义。
原则上字符格式可以由通讯的双方自由制定,但从通用、方便的角度出发,一般还是使用一些标准为好,如采用ASCII标准。
波特率即数据传送的速率,其定义是每秒钟传送的二进制数的位数。
例如,数据传送的速率是120字符/s,而每个字符如上述规定包含10数位,则传送波特率为1200波特。
同步通讯:在同步通讯中,每个字符要用起始位和停止位作为字符开始和结束的标志,占用了时间;所以在数据块传递时,为了提高速度,常去掉这些标志,采用同步传送。
由于数据块传递开始要用同步字符来指示,同时要求由时钟来实现发送端与接收端之间的同步,故硬件较复杂。
通讯方向:在串行通讯中,把通讯接口只能发送或接收的单向传送方法叫单工传送;而把数据在甲乙两机之间的双向传递,称之为双工传送。
在双工传送方式中又分为半双工传送和全双工传送。
半双工传送是两机之间不能同时进行发送和接收,任一时该,只能发或者只能收信息。
2.8051单片机的串行接口结构
8051串行接口是一个可编程的全双工串行通讯接口。
它可用作异步通讯方式(UART),与串行传送信息的外部设备相连接,或用于通过标准异步通讯协议进行全双工的8051多机系统也可以通过同步方式,使用TTL或CMOS 移位寄存器来扩充I/O口。
8051单片机通过引脚RXD(P3.0,串行数据接收端)和引脚TXD(P3.1,串行数据发送端)与外界通讯。
SBUF是串行口缓冲寄存器,包括发送寄存器和接收寄存器。
它们有相同名字和地址空间,但不会出现冲突,因为它们两个一个只能被CPU读出数据,一个只能被CPU写入数据。
串行口的控制与状态寄存器
串行口控制寄存器SCON
它用于定义串行口的工作方式及实施接收和发送控制。
字节地址为98H,其各位定义如下表:
SM0、SM1:串行口工作方式选择位,其定义如下:
其中fosc 为晶振频率
SM2:多机通讯控制位。
在方式0时,SM2一定要等于0。
在方式1中,当(SM2)=1则只有接收到有效停止位时,RI 才置1。
在方式2或方式3当(SM2)=1且接收到的第九位数据RB8=0时,RI 才置1。
REN :接收允许控制位。
由软件置位以允许接收,又由软件清0来禁止接收。
TB8: 是要发送数据的第9位。
在方式2或方式3中,要发送的第9位数据,根据需要由软件置1或清0。
例如,可约定作为奇偶校验位,或在多机通讯中作为区别地址帧或数据帧的标志位。
RB8:接收到的数据的第9位。
在方式0中不使用RB8。
在方式1中,若(SM2)=0,RB8为接收到的停止位。
在方式2或方式3中,RB8为接收到的第9位数据。
TI : 发送中断标志。
在方式0中,第8位发送结束时,由硬件置位。
在其它方式的发送停止位前,由硬件置位。
TI 置位既表示一帧信息发送结束,同时也是申请中断,可根据需要,用软件查询的方法获得数据已发送完毕的信息,或用中断的方式来发送下一个数据。
TI 必须用软件清0。
RI : 接收中断标志位。
在方式0,当接收完第8位数据后,由硬件置位。
在其它方式中,在接收到停止位的中间时刻由硬件置位(例外情况见于SM2的说明)。
RI 置位表示一帧数据接收完毕,可用查询的方法获知或者用中断的方法获知。
RI 也必须用软件清0。
特殊功能寄存器PCON
PCON 是为了在CHMOS 的80C51单片机上实现电源控制而附加的。
其中最高位是SMOD 。
串行口的工作方式
8051单片机的全双工串行口可编程为4种工作方式,现分述如下:
方式0为移位寄存器输入/输出方式。
可外接移位寄存器以扩展I/O 口,也可以外接同步输入/输出设备。
8位串行数据者是从RXD 输入或输出,TXD 用来输出同步脉冲。
输出串行数据从RXD 引脚输出,TXD 引脚输出移位脉冲。
CPU 将数据写入发送寄存器时,立即启动发送,将8位数据以fos/12的固定波特率从RXD 输出,低位在前,高位在后。
发送完一帧数据后,发送中断标志
TI 由硬件置位。
输入 当串行口以方式0接收时,先置位允许接收控制位REN 。
此时,RXD 为串行数据输入端,TXD 仍为同步脉冲移位输出端。
当(RI )=0和(REN )=1同时满足时,开始接收。
当接收到第8位数据时,将数据移入接收寄存器,并由硬件置位RI 。
下面两图分别是方式0扩展输出和输入的接线图。
方式1
为波特率可变的10位异步通讯接口方式。
发送或接收一帧信息,包括1个起始位0,8个数据位和1个停止位1。
输出当CPU执行一条指令将数据写入发送缓冲SBUF时,就启动发送。
串行数据从TXD引脚输出,发送完一帧数据后,就由硬件置位TI。
输入在(REN)=1时,串行口采样RXD引脚,当采样到1至0的跳变时,确认是开始位0,就开始接收一帧数据。
只有当(RI)=0且停止位为1或者(SM2)=0时,停止位才进入RB8,8位数据才能进入接收寄存器,并由硬件置位中断标志RI;否则信息丢失。
所以在方式1接收时,应先用软件清零RI和SM2标志。
方式2
方式月为固定波特率的11位UART方式。
它比方式1增加了一位可程控为1或0的第9位数据。
输出: 发送的串行数据由TXD端输出一帧信息为11位,附加的第9位来自SCON寄存器的TB8位,用软件置位或复位。
它可作为多机通讯中地址/数据信息的标志位,也可以作为数据的奇偶校验位。
当CPU执行一条数据写入SUBF的指令时,就启动发送器发送。
发送一帧信息后,置位中断标志TI。
输入: 在(REN)=1时,串行口采样RXD引脚,当采样到1至0的跳变时,确认是开始位0,就开始接收一帧数据。
在接收到附加的第9位数据后,当(RI)=0或者(SM2)=0时,第9位数据才进入RB8,8位数据才能进入接收寄存器,并由硬件置位中断标志RI;否则信息丢失。
且不置位RI。
再过一位时间后,不管上述条件时否满足,接收电路即行复位,并重新检测RXD上从1到0的跳变。
工作方式3
方式3为波特率可变的11位UART方式。
除波特率外,其余与方式2相同。
波特率选择
如前所述,在串行通讯中,收发双方的数据传送率(波特率)要有一定的约定。
在8051串行口的四种工作方式中,方式0和2的波特率是固定的,而方式1和3的波特率是可变的,由定时器T1的溢出率控制。
方式0
方式0的波特率固定为主振频率的1/12。
方式2
方式2的波特率由PCON中的选择位SMOD来决定,可由下式表示:
波特率=2的SMOD次方除以64再乘一个fosc,也就是当SMOD=1时,波特率为1/32fosc,当SMOD=0时,波特率为1/64fosc
3.方式1和方式3
定时器T1作为波特率发生器,其公式如下:
波特率=定时器T1溢出率
T1溢出率= T1计数率/产生溢出所需的周期数
式中T1计数率取决于它工作在定时器状态还是计数器状态。
当工作于定时器状态时,T1计数率为fosc/12;当工作于计数器状态时,T1计数率为外部输入频率,此频率应小于fosc/24。
产生溢出所需周期与定时器T1的工作方式、T1的预置值有关。
定时器T1工作于方式0:溢出所需周期数=8192-x
定时器T1工作于方式1:溢出所需周期数=65536-x
定时器T1工作于方式2:溢出所需周期数=256-x
因为方式2为自动重装入初值的8位定时器/计数器模式,所以用它来做波特率发生器最恰当。
当时钟频率选用11.0592MHZ时,取易获得标准的波特率,所以很多单片机系统选用这个看起来“怪”的晶振就是这个道理。
下表列出了定时器T1工作于方式2常用波特率及初值。