【五年级数学】苏教版五年级数学兴趣班:排列组合测试题
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
五年级下册排列组合提高题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]五(下)数学兴趣班(6)(排列组合1)班级姓名得分1、由数字1、2、3、4可以组成多少个没有重复数字的三位数2、用0~9这十个数字可以组成多少个没有重复数字的四位数和四位偶数3、5个同学排成一排照相。
问:(1)共有多少种排法(2)如果某人不坐在两端,共有多少种排法(3)如果某两人座位相邻,共有多少种排法、幼儿园里6名小朋友去坐3把不同的椅子(每人只能坐一把),有多少种不同的坐法5、幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法6、四名甲队队员,三名乙队队员站成一排,任何两名乙队队员不靠在一起,有多少种不同的排法7、5个人排成一排,其中甲不站在两边,乙不站在中间,共有多少种排法8、用0、1、2、3这四个数字组成三位数,其中:(1)有多少个没有重复数字的三位数(2)有多少个不相等的三位数(3)有多少个没有重复数字的三位偶数(4)有多少个没有重复数字,且为3的倍数的三位数9、某沿海城市管辖7个县,这7个县的位置如图。
现用红、黄、黑、蓝、紫五种颜色给地图染色。
要求任意两个相邻的县染不同的颜色,共有多少种不同的染法10、上午第一节到第四节准备上数学、语文、体育、英语各一节。
如果限定数学只能在前两节上,而体育不能在前两节。
有多少种排课方式11、从1、3、5中任意取两个数字,从0、2、4任意取两个数字,共可组成多少个没有重复数字的四位数其中偶数有多少个12、用1、2、3、4、5这五个数码可以组成120个没有重复数字的四位数,将他们从小到大排列起来,4125是第几个五(下)数学兴趣班(7)(排列组合2)班级姓名得分1、平面内有12个点,任何三个点都不在同一条直线上,以每4个点为顶点画一个四边形,一共可以画多少个四边形2、国家举行足球赛,共13个队参加。
比赛时,先分成两组,第一组7个队,第二组6个队,各组都进行单循环赛(即本组每一个队都要和其他队比赛一场),然后再由各组的前两名共4个队进行单循环赛,决出冠、亚军。
(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。
三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。
排列组合的数学练习题及答案关于排列组合的数学练习题及答案数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
下面是店铺精心整理的关于排列组合的数学练习题及答案,仅供参考,欢迎大家阅读。
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A、768种B、32种C、24种D、2的10次方中解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种,综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种解:5全排列5*4*3*2*1=120,有两个l所以120/2=60,原来有一种正确的所以60-1=593.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
4.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
一般地,从n 个不同的元素中取出m (n m ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做mn P 。
)1()2()1(+-⋅⋅-⋅-⋅=m n n n n P m n ΛΛ一般地,对于n m =的情况,表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列,记做nn P 。
123)2()1(⨯⨯⋅⋅-⋅-⋅=ΛΛn n n P m n一般地,从n 个不同元素中取出m (n m ≤)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数,记作mn C 。
123)2()1()1()2()1(⨯⨯⋅⋅-⋅-⋅+-⋅⋅-⋅-⋅==ΛΛΛΛm mm m n n n n P P C m m m n m n组合数有下面的重要性质:m n n m n C C -=(n m ≤); 1=n n C ; 10=n C ; n C n =1 。
插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的;②所要分解的物体必须全部分完;③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现。
在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法。
使用插板法一般有如下三种类型:(1)m 个人分n 个东西,要求每个人至少有一个。
这个时候我们只需要把所有的东西排成一排,在其中的)1(-n 个空隙中放上)1(-m 个插板,所以分法的数目为11--m n C ;(2)m 个人分n 个东西,要求每个人至少有a 个。
这个时候,我们先发给每个人)1(-a 个,还剩下)]1([--a m n 个东西,这个时候,我们把剩下的东西按照类型(1)来处理就可以了,所以分法的数目为11)1(----m a m n C ;(3)m 个人分n 个东西,允许有人没有分到。
小学五年级数的组合练习题
一、填空题
1. 请计算:5个班级里一共有多少个学生?
答:(填上自己认为正确的数字)
2. 有3个红球和4个蓝球,请问一共有多少种选择一颗球的方式?
答:(填上自己认为正确的数字)
3. 请计算:如果一个华人家庭有3个孩子,每个孩子都可以选择穿红色、黄色或白色的衣服,一共有多少种不同的穿衣风格?
答:(填上自己认为正确的数字)
二、选择题
1. 请问在1-10中,选取3个数字的组合有多少种?
A. 6种
B. 10种
C. 15种
D. 20种
2. 请问在1-5中,选取2个数字的组合有多少种?
A. 2种
B. 4种
C. 6种
D. 8种
3. 请计算:如果有4个小朋友,每个小朋友都可以选择一样的颜色
的铅笔盒(有红、黄、蓝三种颜色可选),一共有多少种不同的组合?
A. 2种
B. 6种
C. 8种
D. 12种
三、应用题
1. 小明有5种不同的颜色的糖果,他想从这5种糖果中选取3种,
每种选取总数不限。
请问一共有多少种不同的选择方式?
答:(填上自己认为正确的数字)
2. 小芳家有3种口味的冰淇淋,她想选择两种口味来做一个双层冰
淇淋,请问一共有多少种不同的双层冰淇淋选择方式?
答:(填上自己认为正确的数字)
3. 小燕有4个不同的魔方,她想从中选取2个魔方来组成一个新的
魔方,请问一共有多少种不同的新魔方组合方式?
答:(填上自己认为正确的数字)
以上是一份关于小学数学的练习题,希望对您有所帮助!。
《排列组合》练习题(含答案)内容概述加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用. 排 列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中任取出m 个(m ≤n )元素,按照一定的顺序排成一列.叫做从n 个不同元素中取出m 个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n 个不同元素中取出m 个(m ≤n )元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,我们把它记做(m ≤n ),.其中.【例1】 4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ⨯=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?m np m (1)(2) (1)m n p n n n n m =---+14444244443共个数!(1) (1)n n P n n n ==⨯-⨯⨯分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列..【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ; (2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ; (2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】 用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个). (法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数? 分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成=5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用来计算,分步考虑,用乘法原理可得:599362880P =35P 35P×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +⨯+⨯=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】 由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有=24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应=6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,44P 23P一般先考虑特殊情况再去全排列.【例6】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有=6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法. 由加法原理,不同的订法一共有12+6+l=19种.组 合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1)...(1)!m mn n n n m C m ⨯-⨯⨯-+=64444744448个数这就是组合数公式.【例7】 以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?33P分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下! 计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ⨯==⨯,45543254321C ⨯⨯⨯==⨯⨯⨯,15551C == ; (2)3776535321C ⨯⨯==⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯ ,57765432154321C ⨯⨯⨯⨯==⨯⨯⨯⨯注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ⨯=⨯=(种).【例8】 有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:=21(场),第二组要赛:=15(场),决赛阶段要赛:=6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择. 由加法原理,不同的摸法有:5+100+5=110种.27C 26C 24C【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C=20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问:(1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题.(1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C=161700(种).(2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C种;第二步:从98件合格品中抽出2件合格品的抽法有298C种.再用分步计数原理求出总的抽法数,12 2989506C C⨯=.(3)可以从反面考虑,从抽法总数3100C中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C-=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:3581014112C C⨯=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871 181010842753C C C C--⨯=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +⨯+⨯=34749.【例12】 用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个. 在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】 从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法; 第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法. 再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l ,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C =20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C =6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有35C =10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C =4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C =4种选择.由乘法原理,有4×4=1655P种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个? 分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成=24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P ⨯⨯⨯=72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?44P分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法. 5.在一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种. (2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ⨯⨯ =756000(种).。
五年级数的组合练习题题目1:组合的基本性质小朋友们,组合是数学中的一个重要概念,它是指从一组元素中选取若干个元素进行排列的方式。
组合有以下基本性质,请选择正确的答案填空,并给出简要的解释。
1. 组合中元素的顺序是否重要?()A. 重要B. 不重要解释:在组合中,元素的顺序是不重要的,即不同顺序的元素排列被视为同一种组合。
2. 从5个不同的水果中选取3个水果进行组合,有多少种不同的组合方式?A. 5B. 10C. 20D. 60解释:这里应用了组合的计算公式C(n, k) = n! / (k! * (n-k)!),其中n 表示元素总数,k表示选取的元素数。
所以C(5, 3) = 5! / (3! * (5-3)!) = 10。
3. 从6个不同的颜色中选取4个颜色进行组合,有多少种不同的组合方式?A. 6B. 15C. 20D. 30解释:同样利用组合的计算公式,C(6, 4) = 6! / (4! * (6-4)!) = 15。
题目2:应用组合的问题小朋友们,组合不仅有基本性质,还可以应用于实际问题中。
下面是一些应用组合的问题,请选择正确的答案填空,并给出简要的解释。
1. 有7本不同的书和3个友好的小伙伴。
他们想要每个人分到一本书,请问有多少种不同的分配方式?A. 10B. 15C. 20D. 35解释:这道问题可以看作是将7本书和3个小伙伴进行组合,每个小伙伴分到一本书。
所以这里应用的是组合的计算公式C(7, 3) = 7! / (3! * (7-3)!) = 35。
2. 同学们,你们的班级有10个男生和12个女生。
班级要选取一个男生和一个女生代表参加学校的比赛,请问有多少种不同的代表组合方式?A. 10B. 12C. 20D. 22解释:这道问题相当于从10个男生中选取一个男生,从12个女生中选取一个女生,所以应用的是组合的计算公式C(10, 1) * C(12, 1) =10 * 12 = 120。
五(下)数学兴趣班(6)(排列组合1)班级姓名得分1、由数字1、2、3、4可以组成多少个没有重复数字的三位数?2、用0~9这十个数字可以组成多少个没有重复数字的四位数和四位偶数?3、5个同学排成一排照相。
问:(1)共有多少种排法?(2)如果某人不坐在两端,共有多少种排法?(3)如果某两人座位相邻,共有多少种排法?4、幼儿园里6名小朋友去坐3把不同的椅子(每人只能坐一把),有多少种不同的坐法?5、幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?6、四名甲队队员,三名乙队队员站成一排,任何两名乙队队员不靠在一起,有多少种不同的排法?7、5个人排成一排,其中甲不站在两边,乙不站在中间,共有多少种排法?8、用0、1、2、3这四个数字组成三位数,其中:新课标第一网(1)有多少个没有重复数字的三位数?(2)有多少个不相等的三位数?(3)有多少个没有重复数字的三位偶数?(4)有多少个没有重复数字,且为3的倍数的三位数?9、某沿海城市管辖7个县,这7个县的位置如图。
要求任意两个相邻的县染不同的颜色,共有多少种不同的染法?10、上午第一节到第四节准备上数学、语文、体育、英语各一节。
如果限定数学只能在前两节上,而体育不能在前两节。
有多少种排课方式?11、从1、3、5中任意取两个数字,从0、2、4任意取两个数字,共可组成多少个没有重复数字的四位数?其中偶数有多少个?12、用1、2、3、4、5这五个数码可以组成120个没有重复数字的四位数,将他们从小到大排列起来,4125是第几个?五(下)数学兴趣班(7)(排列组合2)班级姓名得分1、平面内有12个点,任何三个点都不在同一条直线上,以每4个点为顶点画一个四边形,一共可以画多少个四边形?2、国家举行足球赛,共13个队参加。
比赛时,先分成两组,第一组7个队,第二组6个队,各组都进行单循环赛(即本组每一个队都要和其他队比赛一场),然后再由各组的前两名共4个队进行单循环赛,决出冠、亚军。
排列组合复习题型总结一、特殊对象问题:优先进行处理1.有5人排成一列,其中甲不在第一的位置,有多少种排法?2.有5人排成一列,其中甲不能在第一,乙不能在最后,有多少种排法?二、名额分配问题:名额插挡板法3.有10个三好学生的名额分给3个班,要求每班至少有一个名额,怎么分?4.有7个三好学生的名额,分给3个班,怎么分?三、分组分配问题:分配等于先分组,再把组分配出去5.有6本不同的书,平均分给甲乙丙三人,有多少种分法?6.有6本不同的书,平均分为三组,有多少种分法?7.有6本不同的书,分甲1本,乙2本,丙3本,有多少种分法?8.有6本不同的书,分三组,一组1本,一组2本,一组3本,有多少分法?9.有6本不同的书,分给三个人,一人1本,一人2本,一人3本,有多少种分法?10.有9本不同分成三组,一组5本,另外两组各2本,有多少种分法?11.有9本不同的书,分给甲乙均2本,丙5本,有多少种分法?12.有9本不同的书,分给两人各2本,另一人5本,有多少种分法?四、相邻问题:捆绑法13.8人排成一列,甲乙丙三人必须相邻,有多少种排法?14.8人排成一列,甲乙两人必须相邻,且都不和丙相邻,有多少种排法?15.一排8个座位,3人坐,5个空座位相邻,有多少种坐法?16.一排8个座位,3人坐,其中恰有4个空座位相邻,有多少种坐法?五、不相邻问题:插空法17.某人射击训练,8枪命中3枪,恰好没有任何2枪连续命中,有多少情况?18.8人排成一列,甲乙丙三人不可相邻,有多少种排法?19.8盏灯关掉3盏,不许关掉相邻的,也不许关掉两端,多少种方法?20.某人射击训练,8枪命中3枪,恰好2枪连续命中,有多少种情况?六、成双成对问题:先按双取出,再从各双分别取出一只,自然不成双21.从6双不同鞋子中取出4只,要求都不许成双,有多少种方法?22.从6双不同鞋子中取出4只,要求恰好有一双,有多少种方法?七、可(不可)重复使用的对象:问题中有两组对象,解决问题时要以不可重复使用的对象作为分步的标准(住店、投信、映射、冠亚军等)23.5人住3家店,有多少种住法?24.若有4项冠军在3个人中产生,没有并列冠军,问有多少种不同的夺冠可能性。
小学五年级数学奥数题专项训练:排列组合问题(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writing method!小学五年级数学奥数题专项训练:排列组合问题五年级数学,五年级奥数题。
苏教版五年级数学兴趣班:排列组合测试题
五(下)数学兴趣班(7)(排列组合2)
班级姓名得分
1、平面内有12个点,任何三个点都不在同一条直线上,以每4个点为顶点画一个四边形,一共可以画多少个四边形?
2、国家举行足球赛,共13个队参加。
比赛时,先分成两组,第一组7个队,第二组6个队,各组都进行单循环赛(即本组每一个队都要和其他队比赛一场),然后再由各组的前两名共4个队进行单循环赛,决出冠、亚军。
问(1)共需要比赛多少场?
(2)如果实行主、客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?
3、某种产品100,其中有2次品,其余为合格品。
从中抽检3产品,至少有一次品的情形有多少种?
4、有三条平行的直线。
在第一条直线上取2个点,第二条直线上取4个点,第三条直线上取3个点,且不在同一条直线上的三个点不共线。
问用这些点共可以组成多少个三角形?
5、有1元、5角、2角、1角、5分,2分、1分各一张,可以组成多少种不同的币值?
6、某学生要从六门学科中选学两门。
其中甲、乙两门学科因时间冲突不能同时选学,还有丙、丁两门学科也不能同时选学,问共有多少种选法?
7、从分别写有1、2、3、4、5、6、7、8的八张卡片中任取两张作成一道两个一位数的加法题。
问有多少种不同的和?有多少种不同。