第2章(2)求解微分方程及拉氏变换
- 格式:ppt
- 大小:1.36 MB
- 文档页数:16
拉斯变换解微分⽅程§2-3拉普拉斯变换及其应⽤时域的函数可以通过线性变换的⽅法在变换域中表⽰,变换域的表⽰有时更为简捷、⽅便。
例如控制理论中常⽤的拉普拉斯变换,简称拉⽒变换,就是其中的⼀种.⼀、拉⽒变换的定义已知时域函数,如果满⾜相应的收敛条件,可以定义其拉⽒变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表⽰为(2-46)因为是复⾃变量的函数,所以是复变函数。
有时,拉⽒变换还经常写为(2-47)拉⽒变换有其逆运算,称为拉⽒反变换,表⽰为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
⼆、常⽤信号的拉⽒变换系统分析中常⽤的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习⼀些基本时域信号拉⽒变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49) 且(2-50)所以(2-51) 说明:单位脉冲函数可以通过极限⽅法得到。
设单个⽅波脉冲如图2-13所⽰,脉冲的宽度为,脉冲的⾼度为,⾯积为1。
当保持⾯积不变,⽅波脉冲的宽度趋于⽆穷⼩时,⾼度趋于⽆穷⼤,单个⽅波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表⽰成单位⾼度的带有箭头的线段。
由单位脉冲函数的定义可知,其⾯积积分的上下限是从到的。
因此在求它的拉⽒变换时,拉⽒变换的积分下限也必须是。
由此,特别指明拉⽒变换定义式中的积分下限是,是有实际意义的。
所以,关于拉⽒变换的积分下限根据应⽤的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表⽰为(2-52)⼜经常写为 (2-53)由拉⽒变换的定义式,求得拉⽒变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉⽒变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表⽰为(2-55)图2-15单位斜坡信号另外,为了表⽰信号的起始时刻,有时也经常写为 ( 2-56) 为了得到单位斜坡信号的拉⽒变换,利⽤分部积分公式得(2-57)(4)指数信号指数信号的数学表⽰为(2-58) 拉⽒变换为 (2-59)(5)正弦、余弦信号正弦、余弦信号的拉⽒变换可以利⽤指数信号的拉⽒变换求得。
第二章拉氏变换的数学方法拉普拉斯变换(Laplace transform)是一种积分变换方法,用于求解线性常系数微分方程组的初值问题。
它是法国数学家皮埃尔-西蒙·拉普拉斯(Pierre-Simon Laplace)于18世纪末发展起来的。
拉普拉斯变换在工程和物理学中有着广泛的应用,特别是在控制系统分析和信号处理中。
拉普拉斯变换将一个时间函数f(t)(t为实数)转换为一个复变函数F(s)(s为复数),可以表达为:F(s) = L[f(t)] = ∫[0,∞] f(t) e^(-st) dt其中,s是复平面上的一个复数,而e^(-st)为拉普拉斯变换的核函数。
拉普拉斯变换的定义域是右半平面Re(s) > 0,当Re(s)=0时,定义域为共轭虚轴Im(s)=0。
这是为了保证积分的绝对收敛性。
拉普拉斯变换有许多基本的性质和定理,其中包括线性性、平移性、尺度性、微分性等。
利用这些性质,我们可以对不同类型的函数进行拉普拉斯变换,从而求解常系数线性微分方程组的初值问题。
在应用拉普拉斯变换求解微分方程组时,首先将微分方程转化为代数方程。
假设我们要求解一个线性常系数微分方程组:a0y^(n) + a1y^(n-1) + ... + an-1y' + any = f(t)其中,a0, a1, ..., an 为常数,y^(n)表示y的n阶导数,f(t)为所给激励函数。
对微分方程两边同时进行拉普拉斯变换,根据拉普拉斯变换的性质和核函数的定义,将方程转化为代数方程:[a0s^nY(s) - a0s^(n-1)y(0) - a0s^(n-2)y'(0) - ... - a0y^(n-1)(0)] + [a1s^(n-1)Y(s) - a1s^(n-2)y(0) - a1s^(n-3)y'(0) - ... - a1y^(n-2)(0)] + ... + [an-1sY(s) - an-1y(0) - an-2y'(0) - ... - y(0)] + [anY(s) - y(0)] = F(s)其中,Y(s)为未知函数y(t)的拉普拉斯变换,y(0),y'(0),...,y^(n-1)(0)为初始值条件,F(s)为激励函数f(t)的拉普拉斯变换。