离散数学习题课图论
- 格式:pptx
- 大小:139.69 KB
- 文档页数:14
习 题 六1.设G 是一个无回路的图, 求证:若G 中任意两个顶点间有惟一的通路, 则G 是树. 证明:由假设知,G 是一个无回路的连通图,故G 是树。
2.证明:非平凡树的最长通路的起点和终点均为悬挂点. 分析:利用最长通路的性质可证。
证明:设P 是树T 中的极长通路。
若P 的起点v 满足1)(>v d ,则P 不是T 中极长的通路。
对终点u 也可同理讨论。
故结论成立。
3.证明:恰有两个悬挂点的树是一条通路.分析:因为树是连通没有回路的,所以树中至少存在一条通路P 。
因此只需证明恰有两个悬挂点的树中的所有的点都在这条通路P 中即可。
证明:设v u ,是树T 中的两个悬挂点,即1)()(==v d u d 。
因T 是树,所以存在),(v u -通路P :0,1≥k v w uw k 。
显然,2)(≥i w d 。
若2)(>i w d ,则由T 恰有两个悬挂点的假设,可知T 中有回路;若T 中还有顶点x 不在P 中,则存在),(x u -通路,显然u 与x 不邻接,且2)(≥x d 。
于是,可推得T 中有回路,矛盾。
故结论成立。
4.设G 是树, ()k G ≥∆, 求证:G 中至少有k 个悬挂点.分析:由于()k G ≥∆,所以G 中至少存在一个顶点v 的度≥k ,于是至少有k 个顶点与邻接,又G 是树,所以G 中没有回路,因此与v 邻接的点往外延伸出去的分支中,每个分支的最后一个顶点必定是一个悬挂点,因此G 中至少有k 个悬挂点。
证明:设)(G V u ∈,且k m u d ≥≥)(。
于是,存在)(,,1G V v v m ∈ ,使m i G E uv i ,,1),( =∈。
若i v 不是悬挂点,则有),(G V v i ∈'使。
如此下去,有)()(G V v l i ∈,满足,,)(j i v v j l i≠≠且1)()(=l i v d , m i ,,1 =。
故G 中至少有k 个悬挂点。
作业答案:图论部分P165:习题九1、 给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。
(1)111,G V E =<>,112345{,,,,}V v v v v v =,11223343345{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (2)222,G V E =<>,21V V =,11223344551{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,}E v v v v v v v v v v =<><><><><> (4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,}E v v v v v v v v v v =<><><><><> 解答: (1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。
(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。
14、设G 是(2)n n ≥阶无向简单图,G 是它的补图,已知12(),()G k G k δ∆==,求()G ∆,()G δ。
解答:2()1G n k ∆=--;1()1G n k δ=--。
15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。
解答:(c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d )同构,同构函数为12()345x a x bf x x c x d x e=⎧⎪=⎪⎪==⎨⎪=⎪=⎪⎩ 16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
离散数学习题解答 习题六 (第六章 图论)1.从日常生活中列举出三个例子,并由这些例子自然地导出两个无向图及一个向图。
[解] ①用V 代表全国城市的集合,E 代表各城市间的铁路线的集合,则所成之图G=(V ,E )是全国铁路交通图。
是一个无向图。
②V 用代表中国象棋盘中的格子点集,E 代表任两个相邻小方格的对角线的集合,则所成之图G=(V ,E )是中国象棋中“马”所能走的路线图。
是一个无向图。
③用V 代表FORTRAN 程序的块集合,E 代表任两个程序块之间的调用关系,则所成之图G+(V ,E )是FORTRAN 程序的调用关系图。
是一个有向图。
2.画出下左图的补图。
[解] 左图的补图如右图所示。
3.证明下面两图同构。
a v 2 v 3 v 4图G图G ′[证] 存在双射函数ϕ:V →V ′及双射函数ψ : E →E ′ϕ (v 1)=v 1′ ϕ (v 1,v 2)=(v 1′,v 2′) ϕ (v 2)=v 2′ ϕ (v 2,v 3)=(v 2′,v 3′) ϕ (v 3)=v 3′ ϕ (v 3,v 4)=(v 3′,v 4′) ϕ (v 4)=v 4′ ϕ (v 4,v 5)=(v 4′,v 5) ϕ (v 5)=v 5′ ϕ (v 5,v 6)=(v 5′,v 6′) ϕ (v 6)=v 6′ϕ (v 6,v 1)=(v 6′,v 1′) ϕ (v 1,v 4)=(v 1′,v 4′) ϕ (v 2,v 5)=(v 2′,v 5′) ϕ (v 3,v 6)=(v 3′,v 6′)显然使下式成立:ψ (v i ,v j )=(v i ,v j ′)⇒ ϕ (v i )=v i ′∧ϕ (v j )=v j ′ (1≤i ·j ≤6) 于是图G 与图G ′同构。
4.证明(a ),(b )中的两个图都是不同构的。
图G 中有一个长度为4的圈v 1v 2v 6v 5v 1,其各顶点的度均为3点,而在图G ′中却没有这样的圈,因为它中的四个度为3的顶点v 1',v 5',v 7',v 3'不成长度的4的圈。
第4章图论综合练习一、单项选择题1.设L是n阶无向图G上的一条通路,则下面命题为假的是( ).(A) L可以不是简单路径,而是基本路径(B) L可以既是简单路径,又是基本路径(C) L可以既不是简单路径,又不是基本路径(D) L可以是简单路径,而不是基本路径答案:A2.下列定义正确的是( ).(A) 含平行边或环的图称为多重图 (B) 不含平行边或环的图称为简单图(C) 含平行边和环的图称为多重图 (D) 不含平行边和环的图称为简单图答案:D3.以下结论正确是 ( ).(A) 仅有一个孤立结点构成的图是零图(B) 无向完全图K n每个结点的度数是n(C) 有n(n>1)个孤立结点构成的图是平凡图(D) 图中的基本回路都是简单回路答案:D4.下列数组中,不能构成无向图的度数列的数组是( ).(A) (1,1,1,2,3) (B) (1,2,3,4,5) (C) (2,2,2,2,2) (D) (1,3,3,3)答案:B5.下列数组能构成简单图的是( ).(A) (0,1,2,3) (B) (2,3,3,3) (C) (3,3,3,3) (D) (4,2,3,3)答案:C6.无向完全图K3的不同构的生成子图的个数为().(A) 6 (B) 5 (C) 4 (D) 3答案:C7.n阶无向完全图K n中的边数为().(A)2)1(+nn(B)2)1(-nn(C) n (D)n(n+1)答案:B8.以下命题正确的是( ).(A) n (n1)阶完全图K n都是欧拉图(B) n(n 1)阶完全图K n都是哈密顿图(C) 连通且满足m=n-1的图<V,E>(V=n,E=m)是树(D) n(n5)阶完全图K n都是平面图答案:C10.下列结论不正确是( ).(A) 无向连通图G是欧拉图的充分必要条件是G不含奇数度结点(B) 无向连通图G有欧拉路的充分必要条件是G最多有两个奇数度结点(C) 有向连通图D是欧拉图的充分必要条件是D的每个结点的入度等于出度(D) 有向连通图D有有向欧拉路的充分必要条件是除两个结点外,每个结点的入度等于出度 答案:D11.无向完全图K 4是( ).(A )欧拉图 (B )哈密顿图 (C )树 答案:B12.有4个结点的非同构的无向树有 ( )个. (A) 2 (B) 3 (C) 4 (D) 5 答案:A13.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.(A) 1+-n m (B) m n - (C) 1++n m (D) 1+-m n 答案:A14.设G 是有6个结点的完全图,从G 中删去( )条边,则得到树. (A) 6 (B) 9 (C) 10 (D) 15 答案:C二、 填空题1.数组{1,2,3,4,4}是一个能构成无向简单图的度数序列, 此命题的真值是 . 答案:02.无向完全图K 3的所有非同构生成子图有 个. 答案:43.设图G V ,E ,其中V n ,E m .则图G 是树当且仅当G 是连通的,且m . 答案:n -14.连通图G 是欧拉图的充分必要条件是 . 答案:图G 无奇数度结点5.连通无向图G 有6个顶点9条边,从G 中删去 条边才有可能得到G 的一棵生成树T . 答案:46.无向图G 为欧拉图,当且仅当G 是连通的,且G 中无 结点. 答案:奇数度7.设图>=<E V G ,是简单图,若图中每对结点的度数之和 ,则G 一定是哈密顿图.答案:V ≥8.如图1所示带权图中最小生成树的权是 .答案:12三、化简解答题1.设无向图G =<V ,E >,V ={v 1,v 2,v 3,v 4,v 5,v 6}, E ={( v 1,v 2), ( v 2,v 2), ( v 4,v 5), ( v 3,v 4), ( v 1,v 3),( v 3,v 1), ( v 2,v 4)}. 1 v 2 v 6 v 53 v 4图2•2 23 • 1 • 7 9 2• 8 • 6 图1(1) 画出图G 的图形;(2) 写出结点v 2, v 4,v 6的度数; (3) 判断图G 是简单图还是多重图. 解:(1) 图G 的图形如图5所示.(2) 0)deg(,3)deg(,4)deg(642===v v v .(3) 图G 是多重图.作图如图2. 2.设图G =<V ,E >,其中V ={a ,b ,c ,d ,e }, E ={(a ,b ),(b ,c ),(c ,d ), (a ,e )}试作出图G 的图形,并指出图G 是简单图还是多重图?是连通图吗?说明理由. 解:图G 如图8所示.. 图G 中既无环,也无平行边,是简单图. 图G 是连通图.G 中任意两点都连通.所以,图G 有9个结点.作图如图3.四、计算题1.设简单连通无向图G 有12条边,G 中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求G 中有多少个结点.试作一个满足该条件的简单无向图.解:设图G 有x 个结点,由握手定理21+22+34+3(x 223)=122 271821243=-+=x x =9 故图G 有9个结点.满足该条件的简单无向图如图4所示2.设图G (如图5表示)是6个结点a ,b ,c , d ,e ,f的图,试求,图G 的最小生成树,并计算它的权.解:构造连通无圈的图,即最小生成树,用克鲁斯克尔算法:第一步: 取ab =1;第二步: 取af =4 第三步: 取fe =3;第四步: 取ad =9 第五步: 取bc =23如图6.权为1+4+3+9+23=403.一棵树T 有两个2度顶点,1个3度顶点;3个4度顶点, 问它有几片树叶?解:设T 有n 顶点,则有n -1条边.T 中有2个 2度顶点,1个3度顶点,3个4度顶点, 其余n -2-1-3个1度顶点.由握手定理: 2·2+1·3+3·4+ (n -2-1-3)=2(n -1) 解得 n =15.于是T 有15-6=9片树叶五、证明题1.若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的.证:用反证法.设G 中的两个奇数度结点分别为u 和v .假若u 和v 不连通.即它们之间无任何通路,则G 至少有两个连通分支G 1,G 2,且u 和v 分别属于G 1和G 2,于是G 1和G 2各含有一个奇数度结点.这与握手定理的推论矛盾.因而u 和v 一定是连通的.a b ec d 图3图4b • 23 1c • • a 4 • f 9 3d • •e 图6b •23 1 15 c • 25 •a 4 • f 28 9 16 3 d • 15 • e 图5。
离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010*******11100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οο ο ο οca b edο f图一图二图三7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割ο οο οc a b f集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.v 123图六图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;(2)求出每个结点的度数; (4)画出图G 的补图的图形. 3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.5.用Dijkstra 算法求右图中A 点到其它各点的最短路径。