电磁场实验指导书
- 格式:doc
- 大小:15.26 MB
- 文档页数:28
电磁场与电磁波实验指导书目录实验一电磁波感应器的设计与制作实验二电磁波传播特性实验实验三电磁波的极化实验实验四天线方向图测量实验实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解线天线基本结构及其特性。
二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。
2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。
3、理解电磁波辐射原理。
三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。
电场和磁场构成了统一的电磁场的两个不可分割的部分。
能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。
图1 电磁感应装置如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。
如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。
接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。
电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。
电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。
图2 接收天线本实验重点介绍其中的一种─—半波天线。
半波天线又称半波振子,是对称天线的一种最简单的模式。
对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。
这种天线是最通用的天线型式之一,又称为偶极子天线。
而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。
半波振子因其一臂长度为/4λ,全长为半波长而得名。
其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(/L λ=4)的远区场强有以下关系式:()cos(cos )sin I I E f r rθπθθ==60602 式中,()f θ为方向性函数,对称振子归一化方向性函数为:()()maxcos(cos )sin f F f θθπθθ==2 其中max f 是()f θ的最大值。
电磁场与电磁波实验指导书山东建筑大学信息与电气工程学院前言一、实验目的《电磁场与电磁波》是一门理论性较强、概念抽象的重要的专业基础课程,也是一些交叉学科的生长点和新兴边缘学科发展的基础,通过本实验课程使学生们加深对“电磁场与电磁波”课程中基本理论和基本方法的理解,提高实验技能和基本操作技能。
培养学生严谨的科学作风和科学方法、增强学生的创造能力。
二、实验前预习每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。
三、实验注意事项1.实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及仪器的连接要求。
2.实验时每组同学应分工协作,轮流记录、操作等,使每个同学受到全面训练。
3.操作前应将仪器设备合理布置,然后按要求连接。
4.完成实验系统连接后,必须进行复查,逐项检查各设备、器件的位置、角度等是否正确。
确定无误后,方可通电进行实验。
5.实验中严格遵循操作规程,绝对不允许带电操作。
如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。
6.测量数据或观察现象要认真细致,实事求是。
使用仪器仪表要符合操作规程,注意仪表的正确读数。
7.未经许可,不得动用其它组的仪器设备或工具等物。
8.实验结束后,实验记录交指导教师查看并认为无误后,方可拆除实验系统。
最后,应清理实验桌面,清点仪器设备。
9.爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。
10.自觉遵守学校和实验室管理的其它有关规定。
四、实验总结每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。
实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括:1.实验目的;2.实验仪器设备(名称、型号);3.实验原理;4.实验主要步骤及相应的连接图;5.实验记录(测试数据、波形、现象);6.实验数据整理(按每项实验的"实验报告要求"进行计算、分析等);7.回答每项实验的有关问答题。
静电场边值问题实验对于复杂边界的静电场边值问题,用解析法求解很困难,甚至是不可能的。
在实际求解过程中,直接求出静电场的分布或电位又很困难,其精度也难以保证。
本实验根据静电场与恒定电流场的相似性用碳素导电纸中形成的恒定电流场来模拟无源区域的二维静电场,从而测出边界比较复杂的无源区域静电场分布。
一、 实验目的:1、学习用模拟法测量静电场的方法。
2、了解影响实验精度的因素。
二、 实验原理:在静电场的无源区域中,电场强度E '电位移矢量D '及电位Ф、满足下列方程:▽×E 、= 0 ▽×D'= 0D '=εE 、 E 、= - ▽φ、(1)式中ε为静电场的介电常数。
在恒定电流场中,电场强度E 、电流密度J 及电位Ф满足下列方程:▽×E= 0 ▽·J = 0J = δE E=-▽Φ (2)式中δ为恒定电流场中导电媒质的电导率。
因为方程组(1)与方程组(2)在形式上完全相似,所以φ、(静电场中的电位分布函数)与Φ(恒定电流场中的电位分布函数)应满足同样形式的微分方程。
由方程组(1)和方程组(2)很容易求得:▽·(ε▽φ、)= 0 (3)▽·(δ▽Φ)= 0 (4)式中ε与δ处于相应的位置,它们为对偶量。
若ε与δ在所讨论区域为均匀分布(即其值与坐标无关),则方程(3)、(4)均可简化为拉普拉斯方程: 2∇φ'= 0 02=Φ∇电位场解的唯一定理可知:满足相同微分方程的两个电位场,它们具有相同的边界电位值,因此,在保证边界电位值不变的情况下,我们可以用恒定电流场的模型来模拟无源区域的静电场,当静电场中媒质为均匀媒质时,其导电媒质也应为均匀媒质,这样测得的恒定电流场的电位分布就是被模拟的静电场的电位分布,不需要任何改动。
三、实验内容及实验装置:1、被测模型有两个:一个用来模拟无边缘效应的平行板电容器中的电位分布;另一个用来模拟有金属盖的无限长接地槽形导体内电位分布,被模拟的平行板电容器,加盖槽形导体及它们对应的模型如图1所示。
电磁场与电磁波实验指导书山东理工大学电气与电子工程学院电磁场与电磁波实验室电磁场与电磁波实验守则1、学生必须按时到指定实验室做实验,不迟到、不早退,不喧哗,不乱扔杂物;爱护公物,严禁在实验桌面上乱刻、乱画。
保持实验室良好的实验环境。
2、实验前学生必须对所做的实验进行充分预习,并写出预习报告。
实验前应认真了解所用仪器、设备、仪表的使用方法与注意事项。
在启动设备之前,需经指导教师检查认可。
3、实验时,要严肃认真,正确操作,仔细观察,真实记录实验数据的结果。
实验中严禁违章操作,遇到仪器设备故障要及时报告,不得自行拆卸。
不得做与实验无关的事情,不得动与实验无关的设备,不得进入与实验无关的场所。
4、实验中,如发现仪器设备损坏或丢失,应及时报告,查明原因。
凡属违反操作规程导致设备损坏或自行丢失仪表工具的,要追究责任,照章赔偿。
5、若发生事故,不要惊慌,必须立即切断电源,要保持现场并报告老师,以便查明情况,酌情处理。
6、实验完毕后,要按要求整理好试验设备、器材和工具等,关断电源。
经指导教师检查数据并签字后,方可离开实验室。
7、学生需做开放性实验时,应事先与有关实验室(中心)联系,报告自己的实验目的、内容。
实验结束后应整理好实验现场。
8、学生必须认真做好实验报告,在规定时间内交给指导教师批阅。
目录实验一电磁波感应器的设计与制作实验二电磁波传播特性实验实验三电磁波的极化实验实验四天线方向图测量实验实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解线天线基本结构及其特性。
二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。
2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。
3、理解电磁波辐射原理。
三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。
电场和磁场构成了统一的电磁场的两个不可分割的部分。
能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。
电磁场实验指导书北京信息科技大学目录实验一球形载流线圈的场分布与自感 (1)实验二磁悬浮 (7)实验三静电除尘 (10)前 言结合电磁场课程教学的电磁场实验课是完善教学效果,增进学生对电磁场现象和过程的感性认识,拓展有关电磁场工程应用知识面的重要环节。
随着教学改革不断深化的进程, 电磁场教学实验在承接大学物理电磁学实验基础上的改进与提高势在必行。
根据高等学校电磁场课程教学的基本要求,以电磁场系列实验课开设的需求为依据,我电磁场课程组设计、编写了电磁场实验教学的新内容,并在浙江大学求是公司的共同规划下,由该公司制作完成了第一阶段的三个实验的基本装置和设备,以应当前我国电磁场实验教学的实际需要。
实验一:球形载流线圈的场分布与自感一、实验目的1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数;2. 掌握工程上测量磁场的两种基本方法──感应电势法和霍耳效应法;3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍耳效应高斯计的应用。
二、实验原理(1)球形载流线圈(磁通球)的磁场分析如图1-1所示,当在z 向具有均匀的匝数密度分布的球形线圈中通以正弦电流i 时,可等效看作为流经球表面层的面电流密度K 的分布。
显然,其等效原则在于载流安匝不变,即如设沿球表面的线匝密度分布为W ′,则在与元长度d z 对应的球面弧元d R θ上,应有()d d N W R θi=z i 2R ⎛⎫'⎪⎝⎭因在球面上,θcos R z =,所以 ()d d cos sin d z R R θθθ==代入上式,可知对应于球面上线匝密度分布W ′,应有图1-1球形载流线圈(磁通球) i图1-2 呈轴对称性的计算场域2sin d sin d 2N R R N W R Rθθθθ⋅'== 即沿球表面,该载流线圈的线匝密度分布W ′正比于θsin ,呈正弦分布。
电磁场、微波测量实验指导书(电子专业适用)范懿、许明妍编班级:111044C班学号:111044309姓名:贾二超中国民航大学电子信息工程学院二零一三年十二月实验一 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E 、 H 和 S 互相垂直。
(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β 和波速υ。
(3)了解电磁波的其他参量,如波阻抗η等。
二、实验仪器 (1) DH1211型3cm 固态源1台(2) DH926A 型电磁 波综合测试仪1套 (3) XF-01选频放大器1台 (4)PX-16型频率计三、实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同,它们相互干涉的结果,在传播路径上形成驻波分布。
通过测定驻波场节点的分布,求得波长λ的值,由2πβλ=、f υλ=得到电磁波的主要参数:β、υ。
设0r P 入射波为:0j i i E E e βγ-=当入射波以入射角θ向介质板斜投射时,在分界面上产生反射波r E 和折射波i E 。
设入射波为垂直极化波,用R ⊥表示介质板的反射系数,用0T ⊥和T ε⊥表示由空气进入介质板和由介质板进入空气的折射系数。
可动板2r P 和固定板1r P 都是金属板,其电场反射系数为-1,则3r P 处的相干波分别为:110j r i E R T T E e φε-⊥⊥⊥=- 1131()r r L L L φββ=+= 220j r i E R T T E e φε-⊥⊥⊥=- 22331()()r r r r L L L L L φββ=+=++其中,21L L L ∆=-因为1L 是固定值,2L 则随可动板位移L 而变化。
当2r P 移动L 值时,使3r P 具有最大输出指示时,则有1r E 和2r E 为同相叠加;当2r P 移动L 值,使3r P 具有零值输出指示时,必有1r E 和2r E 反相。
实验一:驻波比的测量一、实验原理驻波产生的原因是由于负载阻抗与波导特性阻抗不匹配。
因此,通过对驻波比的测量,就能检查系统的匹配情况,进而明确负载的性质。
在测量时,通常测量电压驻波系数,即波导中电场最大值和最小值之比。
对于平方检波,有:错误!未找到引用源。
二、实验器件微波信号源、隔离器、波长表、可变衰减器、波导测量、被测件(电容膜片、电感膜片)、匹配负载、选频放大器1、微波信号源:可产生微波振荡,频率范围可以微调,信号源工作在方波状态。
在微波信号源上我们可以读出频率、电压、电流的数值。
信号源上的频率旋钮用来调整我们所需要的频率值(8.6GHz—9.6GHz);点频和扫频按键用以选择点频状态或扫频状态,当工作在扫频状态时可以用扫频宽度旋钮来调节扫频的宽度;功率旋钮用来调节功率;信号源的右边有五个按键:等幅、方波、外调制+、外调制-和教学按键,本次实验用的是方波状态;下面有两个输出和一个输入,即RF输出,电压输出和外调制输入。
2、隔离器:抑制干扰。
3、波长表:读取信号发生器上的频率读数,根据频率-测微器刻度对照表来调节波长表的刻度。
4、可变衰减器:相当于可调电位器,旋动有刻度标示的旋钮,可以改变吸收片插入波导的深度,进而达到改变衰减量的问题。
5、波导测量:连接选频放大器,主要部件是测量线,通过旋动测量线上的旋钮,可以在选频放大器上读出相邻波腹和波节点的最大值和最小值。
6、被测件:包括断路器和开路器。
7、选频放大器a仪器面板的配置和功能如下:输入电压细调:此旋钮用于调整输入信号衰减量,左旋到底,衰减最大;右旋到底,衰减最小。
衰减量调节范围约为1—10倍。
输入电压步进开关: 用于衰减输入电压信号。
分为四档,即x1,x10,x100和x1000。
在x1档时灵敏度最高,对输入信号无衰减;x10, x100 和x1000档时,衰减量分别为10,100和1000倍。
频率选择开关:分为四档:1:宽带(400Hz—10KHz)2:1KHz (500Hz—1100Hz)3:2KHz (900Hz—2.2 KHz)4:5KHz (1.8KHz—5.2 KHz)开关在2,3,4档时为窄带,在1档时为宽带。
电磁场与微波技术实验指导书XXXXXXXXXXXXXXXXXXXXXXXX注意事项一、实验前应完成各项预习任务。
二、开启仪器前先熟悉实验仪器的使用方法。
三、实验过程中应仔细观察实验现象,认真做好实验结果记录。
四、培养踏实、严谨、实事求是的科学作风。
自主完成实验和报告。
五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规定处理。
六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的电源 ,并将仪器整理好。
协助保持实验室清洁卫生, 带出自己所产生的赃物。
七、不迟到,不早退,不无故缺席。
按时交实验报告。
八、实验报告中应包括:1、实验名称。
2、实验目的。
3、实验内容、步骤,实验数据记录和处理。
4、实验中实际使用的仪器型号、数量等。
5、实验结果与讨论,并得出结论,也可提出存在问题。
6、思考题。
实验仪器JMX-JY-002电磁波综合实验仪一、概述电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。
它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。
《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。
二、特点1、理论与实践结合性强2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。
3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。
电磁场理论实验指导书叶明钟顺时施燕晨上海大学通信与信息工程学院2013-01-19注意事项一、实验前应完成各项预习任务。
二、实验内容含基础性验证实验和设计性实验。
三、开启仪器前先熟悉实验仪器的使用方法。
四、实验过程中应仔细观察实验现象,认真做好实验结果记录。
五、培养踏实、严谨、实事求是的科学作风。
自主完成实验和报告。
六、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规定处理。
七、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的电源,并将仪器整理好。
协助保持实验室清洁卫生, 带出自己所产生的赃物。
八、不迟到,不早退,不无故缺席。
按时交实验报告。
九、实验报告中应包括:1、实验名称。
2、实验目的。
3、实验内容、步骤,实验数据记录和处理。
4、实验中实际使用的仪器型号、数量等。
5、实验结果与讨论,并得出结论,也可提出存在问题。
6、思考题。
实验内容目录(具体实验内容按指导教师安排)1.实验一电磁波的反射与折射2.实验二电磁波辐射能量的分布和电磁波的极化3.实验三电磁波检测天线的设计制作与测试4.实验四电磁波传播特性实验基础性实验目的:学生通过实验观测加深对电磁场理论课中所述现象和结论的理解, 从而有助于对课程相关知识点的掌握。
实验一 电磁波的反射与折射1. 实验目的1、研究电磁波在良导体表面上的反射。
2、研究电磁波在理想介质表面上的反射与折射。
3、研究电磁波无反射的条件。
2. 实验原理1). 均匀平面电磁波斜入射到两种不同媒质分界面上的反射与折射当平面电磁波以入射角1θ斜入射于媒质分界面上时,一般既有反射又有折射。
今以平行极化波为例,如图1-1所示。
图 1-1 平行极化波的斜入射 图1-2 平面波对平面夹层的垂直入射入射场为:)cos sin (1)cos sin (011111111ˆ)sin ˆcos ˆ(θθθθηθθz x jk i z x jk i e E ye E z x+-+-=-=i i H E反射场为:)cos sin (1)cos sin (0'1'1'1'11'1'11ˆ)sin ˆcos ˆ(θθθθηθθz x jk r z x jk r e E ye E z x +---=+-=r r H E折射场为:)cos sin (220)cos sin (2022222222ˆ)sin ˆcos ˆ(θθθθηθθz x jk z x jk eE ye E z x +-+-=-=22H E各场量的关系可利用边界条件确定。
实验一:验证电磁波的反射和折射定律实验性质:验证性实验级别:必做开课单位:信息与通信工程学院学时:1一、实验目的(1)研究电磁波在良好导体表面上的反射。
(2)研究电磁波在良好介质表面上的反射和折射。
(1)研究电磁波全反射和全折射的条件。
二、实验原理与说明(1)电磁波斜投射到不同媒质分界面上的反射和折射为讨论和分析问题简便,下面所提到的电磁波均指均匀平面电磁波,如下图1所示:入射角斜投射时,入射波、反射波和折射在媒质分界面上有一平行极化波,以1波的电磁场可用下列公式表示:入射波场E 1(01E = x 1θSin +z )111(1)θθβθxSin xCos j e Cos +--H 1 =y101ηE )(111θθβxSin xCos j e+--折射波场E 2=E 02 ( x 2θSin +z )2(212)θθβθxSin xCos j e Cos +--H 2 =y202ηE )22(2θθβxSin xCos j e+--以上各式中1η、2η 分别表示波在两种媒质中的波阻抗。
由边界条件可知,在分界面上x=0处,有t t E E 21=,t t H H 21=。
同时,三种波在分界面处必须以同一速度向Z 方向传播,即它们的波因子必须相等,则有:2211θβθβSin Sin =由此得:'11θθ=上式表明,媒质分界面上反射角等于入射角,即反射定律。
由式得121112120101212θεεθθεμεμθββθSin Sin v v Sin Sin Sin ====上式即折射定律或斯耐尔定律。
在x=0处,把式和式代入式,并根据t t E E 21=,t t H H 21=,则得 (2021'0101)θθCos E Cos E E =-022'010111)(1E E E ηη=-对上两式联力求解,得平行极化波在媒质分界面上的反射系数//R 和折射系数//T 分别为'1111θβθβSin Sin =2211221101//'01θηθηθηθηCos Cos Cos Cos E E R +-==下面对平行极化波在媒质分界面上全折射的条件进行分析。
实验一:验证电磁波的反射和折射定律实验性质:验证性实验级别:必做开课单位:信息与通信工程学院学时:1一、实验目的(1)研究电磁波在良好导体表面上的反射。
(2)研究电磁波在良好介质表面上的反射和折射。
(1)研究电磁波全反射和全折射的条件。
二、实验原理与说明(1)电磁波斜投射到不同媒质分界面上的反射和折射为讨论和分析问题简便,下面所提到的电磁波均指均匀平面电磁波,如下图1所示:入射角斜投射时,入射波、反射波和折射在媒质分界面上有一平行极化波,以1波的电磁场可用下列公式表示:入射波场E 1(01E = x 1θSin +z )111(1)θθβθxSin xCos j e Cos +--H 1 =y101ηE )(111θθβxSin xCos j e+--折射波场E 2=E 02 ( x 2θSin +z )2(212)θθβθxSin xCos j e Cos +--H 2 =y202ηE )22(2θθβxSin xCos j e+--以上各式中1η、2η 分别表示波在两种媒质中的波阻抗。
由边界条件可知,在分界面上x=0处,有t t E E 21=,t t H H 21=。
同时,三种波在分界面处必须以同一速度向Z 方向传播,即它们的波因子必须相等,则有:2211θβθβSin Sin = 由此得:'11θθ=上式表明,媒质分界面上反射角等于入射角,即反射定律。
由式得121112120101212θεεθθεμεμθββθSin Sin v v Sin Sin Sin ====上式即折射定律或斯耐尔定律。
在x=0处,把式和式代入式,并根据t t E E 21=,t t H H 21=,则得(2021'0101)θθCos E Cos E E =-022'010111)(1E E E ηη=-对上两式联力求解,得平行极化波在媒质分界面上的反射系数//R 和折射系数//T 分别为'1111θβθβSin Sin =2211221101//'01θηθηθηθηCos Cos Cos Cos E E R +-==下面对平行极化波在媒质分界面上全折射的条件进行分析。
垂直极化波的全折射(既无反射现象)这时'11θθ==0,及121==θθC o s C o s,则有2121//ηηηη+-=R212//2ηηη+=T显然只有21ηη=时才有折射,即21εε=,这是无意义的。
当2ε具有一定厚度d 。
且2ε两侧同为空气,即21εε=。
这时要实现全反射的传播,对2ε就有特殊要求。
我们可利用传输线输入阻抗的概念和公式,得到1ε、2ε分界面上的输入阻抗)()(2322232d tg j d tg j z in βηηβηηη++=式中31ηη=,及222λπβ=,22r ελλ=。
为了使波由1ε经2ε,并能全部进入3ε实现无反射,必须满足等式 in z =1η。
由此解得2222r d ελλ==根据式中d 、0λ和2r ε三者的联系可知,d 值已定,选择合适的工作波长0λ就可根据全折射的条件,选择所需媒质的2r ε值。
若被测媒质2r ε=2.54,0λ=32mm,要实现无反射的传输,其厚度应为d=10.04mm 。
可见,应取聚苯乙烯板厚d=10mm ,0λ=32mm,我们称这种介质板为半波长无反射媒质板,如图2所示图2垂直投射时全折射示意图斜投射时的全折射这时有,0//=R 即02211=-θηθηCos Cos利用式可得到全折射时的入射角)arcsin(21121εεεθθ+==全折射角1p θ又称布儒斯特角,它表示在1ε内传播的波,在1ε、2ε分界面上实现全折射时的入射角,如下图3所示可以证明,在媒质分界面上出现全折射时,1p θ与2θ之间有如下关系:0)(21=+θθp Cos 或221πθθ=+p因此,当入射角11p θθ〉时,在媒质分界面上就不出现反射波了。
由以上分析还可证明,平行极化波的全反射现象,即可出现波由光疏 (1ε) 向光密(2ε)媒质传播,也可出现在波由光密(2ε) 向光疏(1ε)媒质传播的情况(2ε>1ε)。
因总有 1ε 或2ε小于(1ε+2ε),故波由光疏向光密斜投射时有211πθθ=+P ;波由光密向光疏斜投射时有212πθθ=+P 。
我们利用这一特性,取介质板厚为d ,其相对介电常数为2r ε,只要有)arcsin(21211r r r p εεεθθ+=≥就可在2r ε另一侧接受到全部信号对于垂直极化波,因一般媒质21μμ≈,在斜投射时不存在全反射现象。
下面以两种媒质为例,列表说明平行极化波全折射时,入射角与折射角的关系见下表1。
(2)电磁波斜投射到良好导体表面上的反射。
对于良好导体(仍用平行极化波来分析)222βωμη=,jQ P -=2β 又因222εμη=422πσωμe j Q =- 当2σ ∝ ,2η 0 ,由此可得1'101'01////,0,1θθ===+=E E T R由此得出结论:在良好导体表面上斜投射的电磁波,其反射场与入射场相等。
三、入射角与折射角的关系实验内容及步骤测试良好介质的全折射(或称无反射),我们采用平行极化波工作状态,为此,须将电磁波综合测试仪的辐射喇叭)(0r P 与接收喇叭(3r P )置于平行极化工作状态。
对于测试良好导体的全反射,我们同样采用平行极化波工作状态。
(1)电磁波斜投射时,良好介质全折射的测试。
设备安装见图4,用d=1.5mm 厚度的玻璃板,放置在测试仪平台支座上,然后改变波对介质板的投射角(转动平台,而接收与辐射喇叭总保持在一条直线上),使接收的折射波场与入射波场相等,即0201E E =,同时得到斜投射时,反射波为零的入射角P θθ=1。
把测试数据填入表4中。
图 4 验证电磁波的反射和折射定律实验的设备安装图(2)良好导体表面对电磁波反射特性的测试。
首先,不加反射板,测出入射场01E (如用选频放大器作指示,调至满度值100)。
其次,加良好导体反射板,改变入射波的入射角,测出反射场时的反射角。
把有关测试数据填入表3中。
四、电磁波反射和折射的实验所用的仪器及仪表见下表2:五、入射角与折射角的关系实验报告要求将实验数据填入下表3和表4中,分析入射角与反射角的关系;分析入射角与折射角的关系。
实验二:电磁波参量的测量实验类别:综合性 实验级别:必做 开课单位:信息与通信工程学院 学 时:1 一、电磁波参量的测量实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性,如 E 、 H 、S 互相垂直。
(2)熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速υ。
(3)了解电磁波的其他参量,如波阻抗η等。
二、电磁波参量的测量实验原理及说明当两束等幅、同频率的均匀平面电磁波,在自由空间内以相同(或相反)方向传播时,由于初始相位不同,它们互相之间发生干涉,干涉的结果,使在传播路径上,形成驻波 分布,我们正是利用相干波原理,通过测定驻波场结点的分布,求的自由空间内电磁波波长λ值,再由λπβ/2= (2-1) υ=λf=ω/ ß得到电磁波的主要参数:ß、υ等。
我们利用图5来说明自由空间内电磁波波长λ值测试原理。
设入射波为: γβ⋅-=j i i e E E 0当入射波以入射角1θ 向介质板斜投射时 ,则在分界面上产生反射波E γ和折射波E t ,设入射波为垂直极化波,用表示介质板的反射系数,用T 0⊥ 、T ε⋅⊥分别表示由空气进入介质板和由介质板进入空气的折射系数。
另外,可移动板 P 2r 和固定板P 1r 都是金属板,其电场反射系数为-1。
在一次近似的条件下,接收喇叭处的相干波分别为E 1r =-R ⊥T 0⊥T ε⊥E i e 1φj - E 2r =-R ⊥ T 0⊥ T ε⊥E i e 2φj -这里1φ=β(L 1r +L 3r )=βL 1φ2=β(L 2r + L 3r )=β( L 3r +△L+ L 1r )=βL 2其中△L=┃L 2-L 1┃又因L 1为定值,L 2则随可移动板位移△L 而变化,当P 2r 移动△L 值,使P 3r 具有最大输出指示时,则有E 1r 和E 2r 为同相叠加;当P 2r 移动△L 值,使P 3r 具有零值输出指示时,必有E 1r 与E 2r 反相,故可采用改变P 2r 的位置(L 值),使P 3r 输出最大或零指示重复出现,从而测出电磁波的波长和相位常数β。
下面用数学式来表达测定波长的关系式: 在P 3r 处的相干波合成为 E r = E 1r + E 2r =-R 1 T 0⊥ T ε⊥ E i (e 1φj -+ e2φj -)或写成E r =-2 R 1 T 0⊥ T ε⊥ E i Cos(221φφ-)ej-)221(φφ+ (2-2)式中△φ=φ1-φ2=β.△L 。
为测准λ值,一般采用P 3r 零指示办法,即Cos(2φ∆)=0或2φ∆=(2n+1)2πn=0,1,2,3,…… 这里n 表示相干波合成驻波场的波节点(E r =0)数。
同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。
故把n=0时E r =0的驻波节点作为参考节点位置L 。
.又因L ∆=∆λπφ2 (2-3)故(2n+1) π=λπ2△L 或λ)1(2+=∆n L (2-4)由式(2-4)可知,只要确定驻波节点数,就可方便的确定λ 值。
相干波E 1r 与E 2r 的分布如下 图6所示:图6:相干波E 1r 与E 2r 的分布图图中n=0的节点处L 。
作为第一个波节点,对其它n 值有n=1,2ΔL=(L1-L 。
)=λ,对应第二个波节点,或第一个半波长数。
n=2,2ΔL=(L2-L1) =λ,对应第三个波节点,或第二个半波长数。
n=3,2ΔL=(L3-L2) =λ,对应第三个波节点,或第三个半波长数。
n=2 ,2ΔL=(L n -L 1-n ) =λ,对应第n+1个波节点,或第个半波长数。
把以上各项相加,取波长数的平均值得2(L n - L 。
)=n λ 即λ=nL L n )(20- (2-5) 把式(2-5)代入式(2-1)就可得到被测电磁波的参量λ 、ß、υ等值。
事实上,可动板移动时,不可能出现无限多个驻波节点。
测试时,一般取n=4已足够,它相当于5个驻波节点,这时被测电磁波长的平均值为λ=4)(204L L -它表示在5个波节点距离内,(L 4-L 0) 相应于4个半波长。
从而测的该距离内波长平均值。
从理论上讲,n 值越大,测出λ值的精度应越高。
由于P 3r 所测的的合成驻波场,处于近区场分布的范围内,因此P 3r 的移动,不仅影响驻波节点位置均匀分布,而且驻波幅度也有起伏。