MATLAB电磁场实验指导书
- 格式:pdf
- 大小:261.09 KB
- 文档页数:26
电磁场与电磁波实验报告实验项目:_______有限差分法__ ____ 班级:_____ __12电子2 ____ __ 实验日期:__2014年12月23日姓名:___ _ __陈奋裕 __ __ 学号:___ ___1215106003 _____ 组员姓名:___ _ __ __ __ 组员学号:___ ___ _____ 指导教师:_ ____张海 ______一、实验目的及要求1、学习有限差分法的原理与计算步骤;2、学习用有限差分法解静电场中简单的二维静电场边值问题;3、学习用Matlab 语言描述电磁场与电磁波中内容,用matlab 求解问题并用图形表示出了,学习matlab 语言在电磁波与电磁场中的编程思路。
二、实验内容理论学习:学习静电场中边值问题的数值法中的优先差分法的求解知识; 实践学习:学习用matlab 语言编写有限差分法计算二维静电场边值问题;三、实验仪器或软件电脑(WIN7)、Matlab7.11四、实验原理 基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
简单迭代法: 这一方法的求解过程是,先对场域内的节点赋予迭代初值(0),i j ϕ,这里上标(0)表示0次(初始)近似值。
然后按Laplace 方程(k 1)(k)(k)(k)(k),1,,11,,11[]4i j i j i j i j i j ϕϕϕϕϕ+--++=+++(i,j=1,2,…) 进行反复迭代(k=0,1,2,…)。
若当第N 次迭代以后,所有的内节点的相邻两次迭代值之间的最大误差不超过允许范围,即(N)(N-1),,max|-|<W i j i j ϕϕ这里的W 是预设的允许误差,此时即可终止迭代,并将第N 次迭代结果作为内节点上电位的最终数值解。
电磁场与电磁波实验指导书信息科学与工程学院杨光杰2013.3实验1:熟悉Matlab 、矢量运算要求: 学习矢量的定义方法(例A=[1,2,3]),加减运算,以及点积dot(A,B)、叉积cross(A,B)、求模运算norm(A)。
1) 通过调用函数,完成下面计算【p31,习题1.1】。
给定三个矢量A 、B 和C 如下:23452x y z y z x zA e e eB e eC e e =+-=-+=-求(1)A e ;(2)||A B -; (3)A B ⋅; (4)AB θ (5)A 在B 上的投影 (6)A C ⨯; (7)()A B C ⋅⨯和()C A B ⋅⨯; (8)()A B C ⨯⨯和()A B C ⨯⨯答案:(1)[0.2673,0.5345,0.8018]A e =-; (2)||7.2801A B -=; (3)11A B ⋅=-; (4) 2.3646(135.4815)AB θ=;(5) 2.6679-;(6)[4,13,10]A C ⨯=---; (7)()()42A B C C A B ⋅⨯=⋅⨯=-;(8)()[2,40,5]A B C ⨯⨯=-;()[55,44,11]A B C ⨯⨯=--2) 三角形的三个顶点位于A(6,-1,2), B(-2,3,-4), C(-3, 1,5)点,求(1)该三角形的面积;(2)与该三角形所在平面垂直的单位矢量。
(答案S=42.0119, [0.2856,0.9283,0.238]n =)3) 在直角坐标系中,在点P(3,4,2)处的电场强度为423x y z E e e e =++。
求E 在柱坐标下的表达式。
(答案423z E e e e ρφ=-+)实验2:静电场1)真空中四个点电荷分别位于点P1(1,1,0),P2(-1,1,0),P3(-1,-1,0),P4(1,-1,0),它们所带的电荷量都是3nC (纳库仑),求在点P(1,1,1)处产生的电场强度E 。
电磁场实验仿真指导书1、Matlab 基础2、实验内容2.1 预习点电荷电场分布2.2 实验一电偶极子电场分布仿真2.3 实验二特殊边界条件的电场分布2.4 实验三直导线的磁场分布2.5 实验四磁偶极子的磁场分布1 MATLAB 基础1.1 简介MATLAB是一门计算机程序语言,取名源于Matrix Laboratory,意在以矩阵方式处理数据。
一般认为MATLAB的典型应用包括:数值计算与分析、符号运算、建模与仿真、数据可视化、图形处理及可视化、基于图形用户界面的应用程序开发。
MATLAB7.3.0启动后界面如图1所示。
图1 MATLAB7.3.0启动后界面命令窗口(Command Window):(1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。
(2) 在提示符后输入运算指令和函数调用等命令(不带“;”),MATLAB将迅速显示出结果并再次进入准备工作状态。
(3) 若命令后带有“;”,MATLAB执行命令后不显示结果。
(4) 在准备工作状态下,如果按上下键,MATLAB会按顺序依次显示以前输入的命令,若要执行它,则直接回车即可。
工作空间(Workspace):(1) 显示计算机内存中现有变量的名称、类型、结构及其占用子节数等。
(2) 如果直接双击某变量,则弹出Array Editor窗口供用户查看及修改变量内容。
(3) 该窗口上有工具条支持用户将某变量存储到文件中或者从文件中载入某变量。
命令历史记录(Command History):(1) 保存并显示用户在命令窗口中输入过的命令,以及每次启动MATLAB的时间等信息。
(2) 若双击某条命令记录,则MATLAB会再次执行该命令。
当前路径窗口(Current Directory):(1) 先是当前路径内的所有文件。
(2) 用户可以在这里新建或删除一个文件,也可以双击一个文件,在编辑/调试窗口中打开。
电磁场实验报告实验一 模拟电偶极子的电场和等位线学院:电气工程及其自动化 班级: 学号: 姓名:实验目的: 1、了解并掌握 MATLAB 软件,熟练运用 MATLAB 语言进行数值运算。
2、熟练掌握电偶极子所激发出的静电场的基本性质 3、掌握等位线与电力线的绘制方法实验要求: 1、通过编程,完成练习中的每个问题,熟练掌握 MATLAB 的基本操作。
2、请将原程序以及运行结果写成 word 文档以方便检查实验内容:一、相关概念回顾 对于下图两个点电荷形成的电场两个电荷共同产生的电位为: pq 4π 0(1 r11 r2)q 4π 0r2 r1 r1r2其中距离分别为 r1 (x q1x)2 ( y q1y)2 , r2 (x q2x)2 ( y q2 y)2 电场强度与电位的关系是 E p 等位线函数为: (x, y, z) C电力线函数为: Ex Ey dx dy二、实验步骤 1、打开 MATLAB 软件,新建命令文档并保存,并在文档中输入程序。
2、输入点电荷 q1 的坐标(q1x,q1y), 以及 q1 所带的电量。
调用 input 函数。
如果不知道该函数的使用方法可在 MATLAB 命令行处键入 doc input。
3、输入点电荷 q1 的坐标(q1x,q1y), 以及 q1 所带的电量。
4、定义比例常系数 1 9e9 , 命令为 k=9e9。
4π 05、定义研究的坐标系范围为 x 5,5, y 5,5,步长值为 0.1。
6、将x,y两组向量转化为二维坐标的网点结构,函数为meshgrid。
命令为 [X,Y]=meshgrid(x,y),如果不知道该函数的使用方法可在MATLAB命令行处键入 doc meshgrid。
7、计算任意一点与点电荷之间的距离 r,公式为 r1 (x q1x)2 ( y q1y)2 ,r2 (x q2x)2 ( y q2 y)2q 11 V ( ) 8、计算由 q1,q2 两个点电荷共同产生的电势 4π0 r1 r2 9、注意,由于在 q1 和 q2 位置处计算电势函数为无穷大或者无穷小,因此要把 这两点去掉掉,以方便下面绘制等势线。
实验六:使用偏微分方程工具箱对电磁场的仿真一、实验目的与要求1.掌握微分方程工具箱的使用方法;2.掌握使用偏微分方程工具箱分析电磁场。
二、实验类型设计三、实验原理及说明偏微分方程的工具箱(PDE toolbox)是求解二维偏微分方程的工具,MA TLAB专门设计了一个应用偏微分方程的工具箱的演示程序以帮助使用者快速地了解偏微分方程的工具箱的基本功能。
操作方法是在MA TLAB的指令窗口键入pdedemos,打开Command Line Demos窗口,如图所示。
只要单击任意键就会使程序继续运行,直至程序运行结束。
单击信息提示按钮(Info)是有关演示窗口的帮助说明信息。
8个偏微分方程的演示程序分别是泊松方程、亥姆霍兹方程、最小表面问题、区域分解方法、热传导方程、波动方程、椭圆型方程自适应解法和泊松方程快速解法。
(一)偏微分方程的工具箱的基本功能偏微分方程的工具箱可以求解一般常见的二维的偏微分方程,其基本功能是指它能解的偏微分方程的类型和边值条件。
用户可以不必学习编程方法仅仅在图形用户界面窗口进行操作,就能得到偏微分方程的数值解。
1.工具箱可解方程的类型定义在二维有界区域Ω上的下列形式的偏微分方程,可以用偏微分方程工具箱求解:椭圆型()f au u c =+∇∙∇- 抛物型()f au u c tu d =+∇∙∇-∂∂ 双曲型()f au u c tu d =+∇∙∇-∂∂22 本征值方程()du au u c λ=+∇∙∇-式中,u 是偏微分方程的解;c 、a 、d 、f 是标量复函数形式的系数,在抛物型和双曲型方程中,它们也可以是t 的函数,λ是待求的本征值。
当c 、a 、f 是u 的函数时,称之为非线性方程,形式为()()()()u f u u a u u c =+∇∙∇-也可以用偏微分方程工具箱求解。
2.工具箱可解方程的边值条件解偏微分方程需要的边值条件一般为下面两种之一:狄里赫利(Diriclet)边值条件 hu=r广义诺曼(Generalized Neumann)边值条件 ()g qu u c n =+∇∙式中,n为边界外法向单位向量;h 、q 、r 、g 是在边界上定义的复函数。
实验四 电磁实验仿真 —点电荷电场分布的模拟一. 实验目的电磁场是一种看不见摸不着但又客观存在的物质,通过使用Matlab 仿真电磁场的空间分布可以帮助我们建立场的图景,加深对电磁理论的理解和掌握。
按照矢量分析,一个矢量场的空间分布可由其矢量线(也称力线)来形象表示。
点电荷的电场就是一个矢量场,模拟其电力线的分布可以得到电场的空间分布。
通过本次上机实验希望达到以下目的:1. 学会使用MATLAB 绘制电磁场力线图和矢量图的方法;2. 熟悉二维绘图函数contour 、quiver 的使用方法。
二. 实验原理根据库仑定律,真空中的一个点电荷q 激发的电场3r E q r=v v (高斯制) (1) 其中r 是观察点相对电荷的位置矢量。
考虑相距为d 的两个点电荷q 1和q 2,以它们的中点建立坐标(如图),根据叠加原理,q 1和q 2激发的电场为:12123312r r E q q r r =+v v v (2) 由于对称性,所有包含电荷的平面上,电场的分布一样,所以只需要考虑xy 平面上的电场分布,故121233331212(/2)(/2)ˆˆˆˆ()[]x y E E q x q x q y d q y d E j j r r r r i i -+==++++v (3)其中12 r r ==。
根据电动力学知识(参见谢处方,《电磁场与电磁波》,1.4.1节),电场矢量线(或电力线)满足微分方程: yx E dydx E = (4) 代入(3)式解得电力线满足的方程 1212(/2)(/2)q y d q y d r r C -++= (5) 其中C 是积分常数。
每一个C 值对应一根电力线。
电场的分布也可以由电势U 的梯度(gradient ,为矢量)的负值计算,根据电磁学知识,易知两点电荷q 1和q 2的电势1212q q U r r =+(6)那么电场为 E gradU U =-=-∇v (7)或者 ()(),x y x y E U E U =-∇=-∇ (8)在Matlab 中,提供了计算梯度的函数gradient()。
MATLAB实验指导书(共5篇)第一篇:MATLAB实验指导书MATLAB 实验指导书皖西学院信息工程学院实验一 MATLAB编程环境及简单命令的执行一、实验目的1.熟悉MATLAB编程环境二、实验环境1.计算机2.MATLAB7.0集成环境三、实验说明1.首先应熟悉MATLAB7.0运行环境,正确操作2.实验学时:2学时四、实验内容和步骤1.实验内容(1)命令窗口的使用。
(2)工作空间窗口的使用。
(3)工作目录、搜索路径的设置。
(4)命令历史记录窗口的使用。
(5)帮助系统的使用。
(6)了解各菜单的功能。
2.实验步骤(1)启动MATLAB,熟悉MATLAB的桌面。
(2)进入MATLAB7.0集成环境。
(3)在命令窗口执行命令完成以下运算,观察workspace的变化,记录运算结果。
1)(365-52⨯2-70)÷3 2)>>area=pi*2.5^2 3)已知x=3,y=4,在MATLAB中求z:x2y3 z=2(x-y)4)将下面的矩阵赋值给变量m1,在workspace中察看m1在内存中占用的字节数。
⎡162313⎤⎢511108⎥⎥m1=⎢⎢97612⎥⎢⎥414151⎣⎦执行以下命令>>m1(2 , 3)>>m1(11)>>m1(: , 3)>>m1(2 : 3 , 1 : 3)>>m1(1 ,4)+ m1(2 ,3)+ m1(3 ,2)+ m1(4 ,1)5)执行命令>>helpabs 查看函数abs的用法及用途,计算abs(3 + 4i)6)执行命令>>x=0:0.1:6*pi;>>y=5*sin(x);>>plot(x,y)7)运行MATLAB的演示程序,>>demo,以便对MATLAB有一个总体了解。
五、思考题1、以下变量名是否合法?为什么?(1)x2(2)3col(3)_row (4)for2、求以下变量的值,并在MATLAB中验证。
《电磁场与电磁波》实验指导书李路编沈阳大学信息工程学院目录实验一熟悉MA TLAB仿真软件实验二等量同号点电荷电场实验三等量异号点电荷的电势分布实验四带电粒子在均匀电磁场中运动实验五使用m语言对电磁场的仿真实验六使用偏微分方程工具箱对电磁场的仿真课程编号:11211041 课程类别:学科必修课程适用层次:本科适用专业:通信工程课程总学时:48 适用学期:第4学期实验学时:12 开设实验项目数:6撰写人:李路审核人:周昕教学院长:范立南实验一:熟悉MATLAB仿真软件一、实验目的与要求1.了解MATLAB应用开发环境2.了解MATLAB的使用方法二、实验类型验证三、实验原理及说明掌握MATLAB的基本功能。
序号名称主要用途1 一台安装Windows2000的pc机。
计算机的具体要求:⒈Pentium3以上的CPU;⒉建议至少256MB的内存;⒊建议硬盘至少20GB4.安装MATLAB仿真软件。
运行MATLAB仿真软件。
五、实验内容和步骤在Windows窗口中用鼠标双击MA TLAB图标即可进入MA TLAB的工作窗口(Command Window),如图1所示。
没有图标可利用MA TLAB\bin目录下的MATLAB.exe文件在桌面上建立一个快捷方式。
图1 MA TLAB工作窗口退出MATLAB的方法有三种:单击工作窗口右上角的关闭按钮;用菜单File→Exit MATLAB命令;或者直接在工作窗口中输入quit后回车。
工作窗口是标准的Windows窗口形式,用户在命令窗口中输入各种指令,进行运算;在左侧的变量窗口中监控当前所创立的所有变量。
Current Directory是系统的当前工作路径,MA TLAB对函数或文件等进行搜索,用户每次文件的创建、保存都在这个路径下进行。
初次启动MA TLAB时系统的默认工作路径是MA TLAB目录下的Work子目录,如果要改变当前的工作路径,可以单击如图2所示的路径栏右侧的,在弹出的路径选择对话框内选择想要设置的路径。
Matlab在电磁场仿真中的应用指南引言:随着科技的不断进步,电磁场仿真逐渐成为理解和设计电磁系统的重要工具。
然而,对于初学者来说,电磁场仿真可能会显得有些困难。
幸运的是,Matlab提供了强大的仿真工具箱,可以简化这一过程并提供准确的结果。
本文将深入探讨Matlab在电磁场仿真中的应用,并提供一些实用的指南。
1. 电磁场建模在进行电磁场仿真前,需要对电磁场进行建模。
建模的目的是确定物理模型和相关参数,以便计算和分析电磁现象。
Matlab提供了各种建模工具,如有限元法、边界元法和有限差分法等。
根据不同的情况,选择适合的建模方法非常重要。
2. 材料属性的处理在电磁场仿真中,物体的材料属性对电磁现象起着重要作用。
Matlab提供了各种处理材料属性的函数和工具箱。
例如,可以使用Matlab的材料库来获取不同材料的电磁参数。
此外,Matlab还提供了处理非均匀材料和各向异性材料的功能。
正确理解和使用这些函数和工具箱可以提高仿真的准确性和效率。
3. 边界条件的设定在电磁场仿真中,边界条件的设定对结果的准确性至关重要。
Matlab提供了多种处理边界条件的方法。
例如,可以使用无限远场边界条件来模拟开放区域,或者使用周期性边界条件来模拟周期性结构。
Matlab还支持自定义边界条件,使用户能够根据实际需求进行设置。
4. 电磁场分析在电磁场仿真中,对电磁场进行分析是重要的一步。
Matlab提供了多种电磁场分析的函数和工具箱。
例如,可以使用电场和磁场分布函数来可视化电磁场的分布情况。
此外,还可以使用功率流密度函数来分析电磁场中的能量传输情况。
通过深入理解这些函数和工具箱,可以获得更详细的电磁场分析结果。
5. 结果验证与优化在进行电磁场仿真后,需要对结果进行验证和优化。
Matlab提供了多种验证结果的方法。
例如,可以与已知的解析解进行比较,或者与实验数据进行对比。
通过检验仿真结果的准确性,可以确保模型的可信度。
此外,Matlab还提供了多个优化函数和工具箱,可以用于对电磁系统进行优化,以达到更好的设计效果。
电磁场与电磁波实验实验二静电场边值问题研究实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。
实验二静电场边值问题研究实验一、实验目的:1.通过虚拟仿真,观察平行板电容器与加盖导体槽内部的电场分布。
2.学习用模拟法测量静电场的方法。
3.了解影响实验精度的因素。
二、实验装置被测模型有两个:一个用来模拟无边缘效应的平行板电容器中的电位分布;另一个用来模拟有金属盖的无限长接地槽形导体内电位分布。
被模拟的平行板电容器,加盖槽形导体及它们对应的模型如图1所示。
图1被测模型是在碳素导电纸上按所需的几何形状,尺寸制成如图1所示的金属“电极”。
为保证各被测点位置,采用“网格板”来定位。
该“网格板”是用透明塑料薄板,板上沿X、Y坐标轴每一厘米打一个小孔,这样就形成了一个正方形网格阵。
三、实验原理:对于复杂边界的静电场边值问题,用解析法求解很困难,甚至是不可能的。
在实际求解过程中,直接求出静电场的分布或电位又很困难,其精度也难以保证。
本实验根据静电场与恒定电流场的相似性,用碳素导电纸中形成的恒定电流场来模拟无源区域的二维静电场,从而测出边界比较复杂的无源区域静电场分布。
在静电场的无源区域中,电场强度'E 电位移矢量'D 及电位ϕ满足下列方程:'''''00E D D E E εϕ∇⨯=∇⋅===-∇ \*MERGEFORMAT (1)式中ε为静电场的介电常数。
在恒定电流场中,电场强度E 、电流密度J 及电位φ满足下列方程:00E J J E E σφ∇⨯=∇⋅===-∇ \*MERGEFORMAT (2)式中σ为恒定电流场中导电媒质的电导率。
因为方程组(1)与方程组(2)在形式上完全相似,所以ϕ(静电场中的电位分布函数)与φ(恒定电流场中的电位分布函数)应满足同样形式的微分方程。
由方程组(1)和方程组(2)很容易求得:()0εϕ∇⋅∇=\*MERGEFORMAT (3)()0σφ∇⋅∇=\*MERGEFORMAT (4)式中ε与σ处于相应的位置,它们为对偶量。
电磁场matlab 仿真实验一实验一:[例7-5]试分析一对等量异号的电荷周围空间上的电位和电场分布情况。
分析:将等量异号的电荷的几何中心放置于坐标原点位置,则它们在空间某点p 处产生的点位为:()G q g g q r r q r q r q02102102010*******πξπξπξπξπξϕ=-=⎪⎪⎭⎫ ⎝⎛-=-=其中G 为格林函数()()22222cos 2/cos 2/1r dr d r r dr d r +-=+-=θθ将G 用片面积坐标表示为⎪⎪⎭⎫⎝⎛=12ln g g G 在编程时,将G 当作点位函数处理,并利用梯度求出唱腔E=-▽φ。
用matlab 的m 语言编写的程序如下:[x,y]=meshgrid(-10:0.1:10);[Q,R]=cart2pol(x,y);R(R<=1)=NaN;q=input('请输入电偶极子的电量q =')%原程序有误,以此为准d=input('请输入电偶极子的间距d =')%原程序有误,以此为准E0=8.85*1e-12;K0=q/4/pi/E0;g1=sqrt((d./2).^2-d.*R.*cos(Q)+R.^2);%原程序有误,以此为准g2=sqrt((d./2).^2+d.*R.*cos(Q)+R.^2);%原程序有误,以此为准G=log(K0*g2./g1);contour(x,y,G,17,'g');hold on[ex,ey]=gradient(-G);tt=0:pi/10:2*pi;%原程序未定义tt ,以此为准sx=5*sin(tt);sy=5*cos(tt);streamline(x,y,ex,ey,sx,sy);xlabel('x');ylabel('y');hold off;当运行此程序后,按提示输入电偶极子电量和嗲耨集子间距如下:请输入电偶极子的电量q =0.5*1e-10请输入电偶极子的间距d =0.01即可汇出入图说使得嗲耨集资周围的长的分布图。
电磁场与电磁波实验实验三平面电磁波的反射和干涉实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。
实验三平面电磁波的反射和干涉实验一、实验目的:1.通过虚拟仿真观察并理解平面电磁波的传输特性。
2.利用平面线极化电磁波投射到介质板上产生反射波和透射波的干涉现象来了解平面电磁波传播的一些基本特性。
3.利用干涉条纹(即空间驻波)的分布学习一种测量微波波长的方法,观察在介质中电磁波的传播从而测量其相对介电常数。
二、实验装置:实验装置如图1所示,微波源与各透射板、反射板有足够的距离以保证近似为平面波。
分束板应与入射电磁波成45°,与两反射板也成45°,A、B两反射板互相垂直。
图1微波干涉仪三、实验原理:1.平面电磁波的传播、反射及透射电磁波在传播过程中遇到两种不同波阻抗的介质分界面时,在介质分界面上将有一部分电磁能量被反射回来,形成反射波;另一部分电磁能量可能透过分界面继续传播,形成透射波。
设分界面为无限大平面,位于z=0处。
入射波的电场和磁场分别依次为:10ˆjk z i x i E aE e -= 1011ˆjk z i y i H a E e η-= 其中,0i E 是z=0处入射波的振幅,k 1和η1为介质1的相位常数和波阻抗,且有:1k =,1η=(1)当平面电磁波向理想导体垂直入射时如图2所示,因为介质2为理想导体,其中的电场和磁场均为零,即:20E = ,20H = 。
因此,介质2中没有透射波,电磁波不能透过理想导体表面,而是被分界面全部反射,在介质1中形成反射波r E 和r H。
图2平面电磁波向理想导体垂直入射则反射波的电场和磁场为:0r x r 1011ˆjk z r y r H a E e η=- 其中,0r E 为z=0处反射波的振幅,负号表示磁场方向发生了变化。
在分界面两侧,电场强度E 的切向分量连续,即:001r i E E Γ==-在z<0区域,也就是区域I 中,复振幅表示的合成电场和磁场分别为:()111001ˆˆ()2sin jk z jk z x i x i E aE e e a jE k z -=-=- ()110101111ˆˆ()2cos jk z jk z i y i y E H a E e e a k z ηη-=+= (2)当平面电磁波向理想介质垂直入射时如图3所示,均匀平面电磁波向理想介质的垂直入射时,因介质参数不同,到达分界面上的一部分入射波被分界面反射,另一部分入射波透过分界面进入区域II 传播。
实验三:等量异号点电荷的电势分布一、实验目的与要求1.掌握命令窗口中直接输入语句,进行编程绘制等量异号点电荷的电势分布图;2.掌握二维网格和三维曲面绘图的语句。
二、实验类型设计三、实验原理及说明这里在命令窗口中直接输入简单的语句进行编程设计。
MATLAB有几千个通用和专用五、实验内容和步骤(一)建立等量异号点电荷的电势方程物理情景是oxy平面上在x=2,y=0处有一正电荷,x= -2,y=0处有一负电荷,根据计算两点电荷电场中电势的分布,由于(二)利用MA TLAB的函数, 绘制等量异号点电荷的电势分布图首先选定一系列的x和y后,组成了平面上的网络点,再计算对应每一点上的z值。
例如-5:0.2:5,-4:0.2:4分别是选取横坐标与纵坐标的一系列数值,meshgrid是生成数据网格的命令,[x,y]是xy平面上的坐标网格点。
z是场点(x ,y)的电势,要求写出z的表达式。
这里用到MA TLAB的函数mesh()描绘3D网格图,meshgrid()描绘在3D图形上加坐标网格,sqrt()求变量的平方根。
mesh()是三维网格作图命令,mesh(x,y,z)画出了每一个格点(x,y)上对应的z值(电势)。
在命令窗口中直接输入简单的语句,如下。
解1解2当场点即在电荷处时,会出现分母为零的情况,因此在r里加了一个小量0.01,这样既可以完成计算,又不会对结果的正确性造成太大影响。
另外需要注意的是表达式中的“./ ”、“.^ ”是对数组运算的算符,含义与数值运算中的“./ ”、“.^ ”相同,不同之处是后者只对单个数值变量进行运算,而前者对整个数组变量中的所有元素同时进行运算。
解2为了减少计算量,增加精确度,与先前的示例相比,计算范围由原先的-5<x<5 ,-4<y<4改为-2<x<2 ,-2<y<2 ;步长由0.5改为0.1,电荷位置也改在(-1,0)和(1,0)处。
电磁场与电磁波实验实验一带电粒子在电磁场中的受力与运动特性研究实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。
一带电粒子在电磁场中的受力与运动特性研究实验一、实验目的:1.通过虚拟仿真,观察带电粒子在电磁场中的运动行为。
2.学习运用Matlab 对电磁场进行数值模拟的方法。
二、实验原理带电粒子在磁场中运动会受到磁场力的作用,且随着初始运动方向和磁场分布的不同,其运动轨迹会发生不同的变化。
设带电粒子电量为q,以速度v 运动,则受到外磁场的作用力为:F qv B=⨯ 该公式表明:(1)磁场作用力同时垂直于磁感应强度和粒子运动速度;(2)磁场作用力只作用于运动的带电粒子,且永远不对带电粒子做功,只改变其运动方向。
若带电量为q 的运动电荷所在空间同时存在电场和磁场,则它所受的电场力和磁场力的综合即为洛伦兹力:()F q E v B =+⨯ 若不考虑粒子所受重力的作用,上式综合牛顿运动定律就可以精确确定带电粒子在电磁场中的运动轨迹。
设带电粒子质量为m,电量为q,进入电场E 与磁场B 方向正交的叠加电磁场中。
以电磁场中某点为原点,以电场E 为OY 方向,以磁感应强度B 为OZ 方向建立直角坐标系O-XYZ,则电场E 只有Y 分量,磁感应强度B 只有Z 分量,带电粒子在该电磁场中的运动微分方程为:22()d r m q E v B dt=+⨯ 上式可以在直角坐标系中展开为如下形式:2222220d x qB dy dtm dt d y qE qB dx dtm m dt d z dt⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩令1w x =,2dx w dt =,3w y =,4dy w dt =,5w z =,6dz w dt =,则上式可以化简为如下一阶微分线性方程组:12243442566dw w dt dw qB w dt m dw w dt dw qE qB w dt m m dw w dt dw dt ⎧=⎪⎪⎪=⎪⎪⎪=⎪⎨⎪=-⎪⎪⎪=⎪⎪=⎪⎩通过Matlab 编写程序,即可求解上述微分方程组。
CENTRAL SOUTH UNIVERSITY题目利用Matlab模拟点电荷电场的分布姓名xxxx学号xxxxxxxxxx班级电气xxxx班任课老师xxxx实验日期2010-10电磁场理论 实验一——利用Matlab 模拟点电荷电场的分布一.实验目的:1.熟悉单个点电荷及一对点电荷的电场分布情况; 2.学会使用Matlab 进行数值计算,并绘出相应的图形;二.实验原理:根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足:R R Q Q k F ˆ212=(式1)由电场强度E 的定义可知:R R kQ E ˆ2= (式2)对于点电荷,根据场论基础中的定义,有势场E 的势函数为R kQU = (式3)而 U E -∇= (式4)在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab 自带的库函数绘出相应电荷的电场分布情况。
三.实验容:1. 单个点电荷点电荷的平面电力线和等势线真空中点电荷的场强大小是E=kq /r^2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P(x,y)的距离。
电场呈球对称分布, 取电量q> 0, 电力线是以电荷为起点的射线簇。
以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取常数时, 此式就是等势面方程.等势面是以电荷为中心以r 为半径的球面。
◆平面电力线的画法在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单。
取射线的半径为( 都取国际制单位) r0=0.12, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13)。
射线簇的终点的直角坐标为:[x,y]=pol2cart(th,r0)。
插入x 的起始坐标x=[x; 0.1*x].同样插入y 的起始坐标, y=[y; 0.1*y], x 和y 都是二维数组, 每一列是一条射线的起始和终止坐标。
电磁场_Matlab 实验设计1一、 实验目的1)熟悉matlab 在时变电磁场仿真中的运用;2)掌握matlab 动画功能来分析时变场的极化特性二、 实验原理1)原理:matlab 动画功能2)所选题目:参见汉版教材(P-323)7-21第.1.、.2.问.相关知识点:极化的概念概念:在垂直于传播方向的平面内,场的矢端在一个周期内所画出的轨迹。
在这里,我们仅以电场为例。
分类:根据场的矢端轨迹,分为线极化、圆极化、椭圆极化三类。
假设:,极化类型取决于、 及 、题目真空中一平面波得电磁场强度矢量为22()j z x y E a j a e π-=+1)此波属于何种极化?若是旋极化,属于指出旋向;2)写出对应磁场强度矢量;3)写出与此波旋向相反且传播方向相反的波的电场强度和磁场强度矢量。
解答:1)圆极化波,属于右旋2)22()120j z y x H a j a e ππ-=-瞬时表达式分别为:81.510/rad s ωπ=⨯2cos()2sin()22x y E a t z a t z ππωω=-+- 22cos()sin()12021202y x H a t z a t z ππωωππ=---三、 实验平台 Matlab四、 实验步骤程序代码:左旋圆极化clear;figure; %创建图形窗口grid on; %加网格box on; %加框架t=linspace(-4*pi,4*pi,101);z=linspace(-4*pi,4*pi,101);l=zeros(size(z));k=120*pi;for n=0:100;x1=sqrt(2)*sin(0.5*t-n/10*pi); %x=sqrt(2)*c os(0.5*t-n/10*pi)右旋y1=sqrt(2)*cos(0.5*t-n/10*pi); %y=sqrt(2)*s in(0.5*t-n/10*pi)右旋x2=sqrt(2)*cos(0.5*t-n/10*pi)/k*100;y2=-sqrt(2)*sin(0.5*t-n/10*pi)/k*100;quiver3(l,l,z,x1,y1,l,'b');hold onquiver3(l,l,z,x2,y2,l,'r');title('左旋圆极化波的传播');xlabel('x','fontsize',16) % 用16号字体标出X 轴ylabel('y','fontsize',16) % 用16号字体标出Y 轴zlabel('z','fontsize',16)view(20,30+2*n);hold offpause(0.1);end实验结果如图:图1图2图3将程序改成线极化波观察其空间分布,修改如下:x1=sin(0.5*t-n/10*pi); %x=cos(0.5*t-n/10*pi) 右旋y2=-sin(0.5*t-n/10*pi)/k*100;quiver3(l,l,z,x1,l,l,'b');hold onquiver3(l,l,z,l,y2,l,'r');title('线极化波的传播');实验图如下图1图2再将程序改成椭圆极化观察其空间分布,程序修改如下:x1=0.5*sin(0.5*t-n/10*pi);y1=cos(0.5*t-n/10*pi+pi/4);x2=0.5*sin(0.5*t-n/10*pi)/k*100; y2=-cos(0.5*t-n/10*pi+pi/4)/k*100;quiver3(l,l,z,x1,y1,l,'b');hold onquiver3(l,l,z,x2,y2,l,'r');实验结果如下:图1图2图3五、实验结果及分析1、圆极化波,从图1可以看出其按正弦波传播,从图2可以观察出其矢端在空间中的传播的轨迹为圆,图3中可以看出电场和磁场相差pi/的相位。
电磁场与电磁波实验实验四电磁波的极化实验成绩:请务必填写清楚姓名、学号、班级及理论课任课老师。
实验四电磁波的极化实验一、实验目的:1.通过虚拟仿真观察并理解电磁波极化的概念2.学习电磁波极化的测量方法3.学会判读线极化波,圆极化波的方法二、实验装置实验装置如图1所示。
图中:①为微波源;②为隔离器;③为负载;④为可变衰减器;⑤为T 型接头;⑥和⑦为发射天线;⑧为可变相移器;⑨为接收天线;⑩为检波器;⑪为指示电流表。
图1电磁波极化实验系统T 型接头用以将传来的微波功率分成等强度的两束波。
衰减器用于调节支路中的功率强弱。
相移器用以调节支路中的初相位φ,从而产生相位的变化。
三、实验原理:平面电磁波沿轴线前进没有z E 分量,一般情况下,存在x E 分量和y E 分量,如果y E 分量为零,只有x E 分量我们称其为X 方向线极化。
如果只有y E 分量而没有x E 分量我们称其为Y 方向线极化。
在一般情况下,x E 和y E 都存在,在接收此电磁波时,将得到包含水平与垂直两个分量的电磁波。
如果此两个分量的电磁波的振幅和相位不同时,可以得到各种不同极化形式的电磁波。
1.如果电磁波场强的X 和Y 分量为:()1cos x xm E E t kz ωϕ=+-\*MERGEFORMAT (1)()2cos y ym E E t kz ωϕ=+-\*MERGEFORMAT (2)其中1ϕ、2ϕ为初相位,2k πλ=。
若1ϕ等于2ϕ,或1ϕ与2ϕ相位差为2n π时,其合成电场为线极化波,其幅度为:()1E t kz ωϕ==-+\*MERGEFORMAT (3)电场分量与X 轴的夹角为:arctan arctan yym x xm E E E E α===常数\*MERGEFORMAT (4)2.如果1ϕ与2ϕ相位差90°或270°,则:()1cos x xm E E t kz ωϕ=-+\*MERGEFORMAT (5)()2cos y ym E E t kz ωϕ=-+\*MERGEFORMAT (6)合成电磁场为:E ==常数\*MERGEFORMAT (7)它的方向是:()1tan tan yx E t kz E αωϕ==-+\*MERGEFORMAT (8)1t kz αωϕ=-+\*MERGEFORMAT (9)表示合成场振幅不随时间变化,其方向是随时间而旋转的圆极化波。