2016东城初三一模数学试题和答案
- 格式:doc
- 大小:643.00 KB
- 文档页数:14
北京市东城区2016-2017学年第二学期统一练习(一) 初三数学参考答案及评分标准 2017.5二、填空题(本题共18分,每小题3分)29题8分) 170112sin 60π)()2-︒+-解:原式=12- …………4分 1. …………5分 18. 解: 去分母得:3(x +1)>2(2x +2)﹣6, …………1分去括号得:3x +3>4x +4﹣6, …………2分 移项得:3x ﹣4x >4﹣6﹣3, …………3分 合并同类项得:﹣x >﹣5, 系数化为1得:x <5. …………4分 故不等式的正整数解有1,2,3,4这4个. …………5分19. 解: 224122x x x x x -+⎛⎫-÷- ⎪++⎝⎭ =22422x x x x x x -++⋅--+ =242x x x x ++-+ =4(2)x x +. …………3分∵ 22410x x +-=. ∴ 2122x x +=. …………4分 原式=8. …………5分20. 解:由题意可得:MN 是AC 的垂直平分线.F ECBAD则AD =DC .故∠C =∠DAC .…………2分 ∵ ∠C =30°, ∴ ∠DAC =30°. …………3分 ∵ ∠B =55°, ∴ ∠BAC =95°. …………4分 ∴ ∠BAD =∠BAC ﹣∠CAD =65°. …………5分21.解:(1)由题意可求:m =2,n =-1.将(2,3),B (-6,-1)带入y kx b =+,得32,16.k b k b =+⎧⎨-=-+⎩解得 1,22.k b ⎧=⎪⎨⎪=⎩∴ 直线的解析式为122y x =+. …………3分 (2)(-2,0)或(-6,0). …………5分22.解:设本场比赛中该运动员投中两分球x 个,三分球y 个. …………1分依题意有23633,11.x y x y ++=⎧⎨+=⎩. …………3分 解得6,5.x y =⎧⎨=⎩…………4分 答:设本场比赛中该运动员投中两分球6个,三分球5个. …………5分 23. 解:(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB =CD ,∠F AD =∠AFB. 又∵ AF 平分∠BAD , ∴ ∠F AD =∠F AB . ∴ ∠AFB =∠F AB . ∴ AB =BF .∴ BF =CD . …………3分(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点.在Rt △BEF 中,∠BF A =60°,BE=可求EF=2,BF=4.∴平行四边形ABCD的周长为12.…………5分24. 解:(1)…………4分(2)答案不唯一.…………5分25. 解:(1)证明:连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF.∴∠FDC=∠FCD.∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°.∴DF是⊙O的切线. …………2分(2)○1由DB平分∠ADC,AC为⊙O的直径,证明△ABC是等腰直角三角形;○2由AB=a,求出AC;○3由∠ACE=∠ADC=90°,∠CAE是公共角,证明△ACD∽△AEC,得到2AC AD AE=⋅;DE=. …………5分○4设DE为x,由AD∶DE=4∶1,求出1026.解:(1)○2.…………1分(2)它是一个轴对称图形;两组邻边分别相等;一组对角相等;一条对角线所在的直线垂直平分另一条对角线等等. …………3分已知:如图,在凹四边形ABCD中,AB=AD,BC=DC.求证:∠B=∠D.证明:连接AC.,60. ..AD DE ADE ADE ABC EAB DAC AB AC AE AD EAB DAC CD BE =∠=︒∴∴∠=∠==∴∴= ,△为等边三角形.△为等边三角形,,,△≌△EE∵AB=AD,CB=CD,AC=AC , ∴△ABC ≌△ADC.∴∠B =∠D. …………4分(3)燕尾四边形ABCD的面积为 …………5分 27.解:(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点. ∴5m =. …………5分(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩ ∴ m 的取值范围是21m -<≤. …………7分28.解:(1)30°; …………1分 (2)思路1:如图,连接AE .…………5分思路2:过点D 作DF ∥AB ,交AC 于F .EDCBA…………5分思路3:延长CB 至G ,使BG =CD.…………5分(3)k (BE +BD )=AC . …………7分 29.解:(1)E ,F ; …………2分 (2)①解:依题意A (0,2),M (32,0).可求得直线AM 的解析式为233+-=x y . 经验证E 在直线AM 上.因为OE =OA =2,∠MAO =60°, 所以△OAE 为等边三角形, 所以AE 边上的高长为3. 当点P 在AE 上时,3≤OP ≤2.所以当点P 在AE 上时,点P 都是等边△ABC 的中心关联点. 所以0≤m ≤3; …………4分=60.,=60..===60,.,..ABC AC BC BAC DF AB DFC CDF AF BD ADE ACB ABC DAF EDB AD DE ADF DEB DF BE CD ∴=∠︒∴∠︒∴∴=∠∠∠︒∴∠=∠=∴∴== △为等边三角形,,∥△为等边三角形.又△≌△=60.,.===60,.,.,==60..ABC AC BC BAC CD BG DG AC ADE ACB ABC DAF EDB AD DE ADC DEG CD EG BG C G BGE BE BG CD ∴=∠︒=∴=∠∠∠︒∴∠=∠=∴∴==∠∠︒∴∴== △为等边三角形,,又△≌△△为等边三角形.②﹣334≤b ≤2; …………6分 (3)t =25425-4或 …………8分。
北京市东城区2015-2016学年第二学期统一练习(一) 初三数学参考答案及评分标准 2016.5二、填空题(本题共18分,每小题3分)29题8分) 17.计算:011tan 6021)()2-︒+--解:原式212- …………4分 =1-. …………5分18. 解:解不等式○1,得 -1x ≥.…………1分 解不等式○2,得 3x < . …………2分 ∴ 不等式组的解集为-13x ≤< . …………4分 不等式组的解集在数轴上表示如下:…………5分19. 解:21)(21)x x x +-+( = 22212x x x x ++--=21x x -++. …………3分∵ 230x x --=,∴ 23x x -+=-. …………4分∴原式= -2. …………5分20. 解:∠E =35°,或∠EAB =35°, 或∠EAC =75°. …………1分 ∵在△ABC 中,AB =AC ,∠BAC =40°,∴ ∠ABC =∠ACB =70°. …………3分 又∵ BD 平分∠ABC ,∴ ∠ABD =∠CBD =35° . …………4分 ∵ AE ∥BD ,∴ ∠E =∠EAB =35°. …………5分 ∴ ∠EAC =∠EAB +∠BAC =75°.21.解:设第二批鲜花每盒的进价是x 元. …………1分依题意有6000113000210x x =⨯+. …………2分 解得x =120. …………3分经检验:x =120是原方程的解,且符合题意. …………4分 答:第二批鲜花每盒的进价是120元. …………5分22.解:(1)证明: 由尺规作∠BAD 的平分线的过程可知,AB =AF ,且∠BAE =∠F AE . 又∵平行四边形ABCD ,∴ ∠F AE =∠AEB . ∴ ∠BAE =∠AEB .∴ AB =BE . ∴ BE= F A .∴四边形ABEF 为平行四边形.∴四边形ABEF 为菱形. …………2分 (2)∵四边形ABEF 为菱形,∴AE ⊥BF ,OB =21BF =3,AE =2AO .在Rt △AOB 中,AO 4=. ∴AE =2AO =8.…………5分23.解:(1)由题意可知21=3k .∴23k =. …… 1分 ∴ 反比例函数的解析式为3y x=. (2)符合题意有两种情况:○1直线y =k 1x +b 经过第一、三、四象限. ∵ S △AOB :S △BOC = 1:2,点A (3,1), ∴ 可求出点C 的坐标为(0,-2).∴ 直线的解析式为2y x =- . .…………3分○2直线y =k 1x +b 经过第一、二、四象限. 由题意可求点C 的坐标为(0,2).∴ 直线的解析式为1-+23y x =. …………5分 24. 解:(1)由表可知被调查学生中“一般”档次的有13人,所占比例是26%,所以共调查的学生数是13÷26%=50名. (2)调查学生中“良好”档次的人数为50×60%=30. ∴x =30﹣(12+7)=11名.y =50﹣(1+2+6+7+12+11+7+1)=3名.(3)由样本数据可知“优秀”档次所占的百分比为=8%,∴估计九年级400名学生中为优秀档次的人数为400×8%=32名.…………5分25. 解:(1)证明:∵ ∠EDB =∠EPB ,∠DOE =∠POB ,∴ ∠E =∠PBO =90゜,∴ PB 是⊙O 的切线.…………2分(2)∵ PB =3,DB =4,∴ PD =5.设⊙O 的半径的半径是r ,连接OC . ∵ PD 切⊙O 于点C , ∴ OC ⊥PD .∴ .222OD OC CD=+∴ .)4(2222r r -=+∴.23=r可求出PO =易证△DEP ∽△OBP .∴DE DPOB OP=.解得 DE = …………5分26.解:(1)菱形(正方形). …………1分(2)它是一个轴对称图形;两组邻边分别相等;一组对角相等;一条对角线所在的直线垂直平分另一条对角线.(写出其中的两条就行) …………3分 已知:筝形ABCD. 求证:∠B =∠D. 证明:连接AC .∵AB=AD,CB=CD,AC=AC , ∴△ABC ≌△ADC.∴∠B =∠D. …………4分(3)连接AC .过点C 作CE ⊥AB 交AB 的延长线于E . ∵∠ABC=120°, ∴∠EBC=60°. 又∵B C=2,∴BE =1,CE∴S 四边形ABCD=21122422ABC S AB CE ∆=⨯⨯⨯=⨯⨯ …………5分 27.解:(1)由题意可知,2224(31)43(31)0b ac m m m ∆=-=+-⨯=->,∴当13m ≠且0m ≠时,此方程有两个不相等的实数根. …………2分(2)x ==, ∴1213,x x m=-=-. ∵抛物线与x 轴两个交点的横坐标均为整数,且m 为正整数, ∴m =1.∴ 抛物线的解析式为243y x x =++. …………5分 (3)a >1或a <-5. …………7分28.解:(1)相等. …………1分 (2)思路:延长FD 至G ,使得GD=DF ,连接GE ,GB .证明△FCD ≌△GBD ,△GED 为等边三角形, ∴△GED 为所求三角形. 最大角为∠GBE=120°. …………4分(3)过D 作DM ,DN 分别垂直AB ,AC 于M ,N .∴∠DMB =∠DNC=∠DMA=∠DNA=90°. 又∵DB=DC ,∠B=∠C , ∴△DBM ≌△DCN. ∴DM =DN .∵∠A=60°,∠EDF=120°, ∴∠AED +∠AFD=180°. ∴∠MED =∠AFD. ∴△DEM ≌△DFN. ∴ME=NF .∴AE+AF=AM-ME+AN+NF=AM+AN =333442+=. …………7分29.解:(1)①D ,E . …………2分②连接OD ,过D 作OD 的垂线交⊙O 于A ,B 两点. …………4分 (2)∵⊙O 的半径为1,所以点P 到⊙O 的距离小于等于3,且不等于1时时,符合题意.∵ 点P 在直线3y x =-+上,∴03p x ≤≤. …………6分 (3)09C x ≤≤. …………8分。
北京市东城区2015—2016学年第一学期期末统一测试初三数学2016.1学校班级姓名考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.若关于的x方程230x x a++=有一个根为-1,则a的值为A.4-B.2-C.2D.4-2.二次函数224y x x=-++的最大值为A.3 B.4 C.5 D.63.下列图形中,是中心对称图形的为A. 1个B.2个C.3个D.4个4.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球5.在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cos A的值为A B C.12D.2yOxCy Ox B第10题6.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=7.如图,在△ABC 中,BC DE //,6=AD ,3=DB ,则ADEABC S S △△的值为A .12B . 23C .45D .498. 如图,⊙O 的半径为3,点P 是弦AB 延长线上的一点,连接OP ,若OP ∠P =30°,则弦AB 的长为A .B .CD .29. 如图,点A , B , C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°,则∠ADC 的度数为 A .70° B . 90° C .110°D .120°10. 如图1, 在ABC △ 中,AB AC =,120BAC ∠=︒.点O 是BC 的中点,点D 沿B →A →C 方向从B 运动到C .设点D 经过的路径长为x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的 A. BD B .OD C .AD D .CD二、填空题(本题共18分,每小题3分)11.请你写出一个一元二次方程,满足条件:○1二次项系数是1;○2方程有两个相等的实数根. 此方程可以是 .12.将抛物线y =x 2﹣2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 .13. 已知,AB 是⊙O 的一条直径 ,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点,若CD则⊙O 半径的长为 . 14. 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,则旗杆的高度为 米. 15.如图,已知A(2),B(1),将△AOB 绕着点O 逆时针旋转90°,得到△A ′O B ′,则图中阴影部分的面积为 .16.阅读下面材料:在数学课上,老师提出如下问题: 小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是 .三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:24cos45tan60(1)︒+-.18. 解方程: 2610x x --=.19.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6, BD =4,求CD 的长.20.已知:抛物线y = x 2+(2m -1)x + m 2-1经过坐标原点,且当x < 0时,y 随x 的增大而减小.(1)求抛物线的解析式;(2)结合图象写出y < 0时,对应的x 的取值范围;(3)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于 另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C. 当BC =1时,直接写出矩形ABCD 的周长.21.列方程或方程组解应用题:某公司在2013年的盈利额为200万元,预计2015年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,求该公司这两年盈利额的年平均增长率是多少?22. 如图,在方格网中已知格点△ABC 和点O .(1)画△A ′B ′C ′,使它和△ABC 关于点O 成中心对称;(2)请在方格网中标出所有的D 点,使以点A ,O ,C ′,D 为顶点的四边形是平行四 边形.23.石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏.游戏时的各方每次用一只手做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”.两人游戏时,若出现相同手势,则不分胜负游戏继续,直到分出胜负,游戏结束.三人游戏时,若三种手势都相同或都不相同,则不分胜负游戏继续;若出现两人手势相同,则视为一种手势与第三人所出手势进行对决,此时,参照两人游戏规则.例如甲、乙二人同时出石头,丙出剪刀,则甲、乙获胜.假定甲、乙、丙三人每次都是随机地做这三种手势,那么:(1)直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;(2)请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,不分胜负的概率.24. 如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若sin C=,半径OA=3,求AE的长.325. 如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度.他们采取的方法是:先在地面上的点A处测得杆顶端点P的仰角是45°,再向前走到B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,这时只需要测出AB的长度就能通过计算求出电线杆PQ的高度.你同意他们的测量方案吗?若同意,画出计算时的图形,简要写出计算的思路,不用求出具体值;若不同意,提出你的测量方案,并简要写出计算思路.26. 请阅读下面材料,并回答所提出的问题.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图,△ABC 中, AD 是角平分线. 求证:DCBDAC AB =.证明:过C 作CE ∥DA ,交BA 的延长线于E .∴Ð1=ÐE ,Ð2=Ð3. ……………………………○1 AD 是角平分线,∴Ð1=Ð2.∴E ∠=∠3.AE AC =∴. .……………………………○2 又CE AD // , DC BDAE AB =∴. ……………………………○3 ∴DCBDAC AB =. (1)上述证明过程中,步骤○1○2○3处的理由是什么?(写出两条即可) (2)用三角形内角平分线定理解答:已知,△ABC 中,AD 是角平分线,AB =7cm , AC =4cm ,BC =6cm ,求BD 的长;(3)我们知道如果两个三角形的高相等,那么它们面积的比就等于底的比.请你通过研究△ABD 和△ACD 面积的比来证明三角形内角平分线定理.EDCBACBACBA27.在平面直角坐标系xOy 中,抛物线28161y mx mx m =-+-(m >0)与x 轴的交点分别为A (x 1,0),B (x 2,0).(1)求证:抛物线总与x 轴有两个不同的交点; (2)若AB =2,求此抛物线的解析式;(3)已知x 轴上两点C (2,0),D (5,0),若抛物线28161y mx mx m =-+-(m >0)与线段CD 有交点,请写出m 的取值范围.28. 已知:在等边△ABC 中, AB= D ,E 分别是AB ,BC 的中点(如图1).若将△BDE 绕点B 逆时针旋转,得到△BD 1E 1,设旋转角为α(0°<α<180°),记射线CE 1与AD 1的交点为P .(1)判断△BDE 的形状;(2)在图2中补全图形, 图1①猜想在旋转过程中,线段CE 1与AD 1的数量关系并证明; ②求∠APC 的度数;(3)点P 到BC 所在直线的距离的最大值为 .(直接填写结果)图2 备用图29. 已知两个函数,如果对于任意的自变量x ,这两个函数对应的函数值记为y 1,y 2,都有点(x ,y 1)、(x ,y 2)关于点(x ,x )对称,则称这两个函数为关于y =x 的对称函数.例如,112y x =和232y x =为关于y =x 的对称函数. (1)判断:①13y x =和2y x =-;②11y x =+和21y x =-;③211y x =+和221y x =-,其中为关于y =x 的对称函数的是__________(填序号).(2)若132y x =+和2y kx b =+(0k ≠)为关于y =x 的对称函数.①求k 、b 的值.②对于任意的实数x ,满足x >m 时,12y y >恒成立,则m 满足的条件为______. (3)若21y a x b x c =++ (0)a ≠和22y x n =+为关于y =x 的对称函数,且对于任意的实数x ,都有12y y <,请结合函数的图象,求n 的取值范围.。
北京市2016年各区中考一模汇编概率初步1.【2016东城一模,第03题】有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是A .15B .25C .35D .452.【2016丰台一模,第03题】五张完全相同的卡片上,分别写上数字-3,-2,-1,2,3,现从中随机抽取一张,抽到写有负数的卡片的概率是 A. 15 B. 25 C. 35 D. 453.【2016平谷一模,第03题】一枚质地均匀的六面骰子,六个面上分别刻有1,2,3,4,5,6点,投掷一次得到的点数为奇数的概率是A .16B .14C .13D .124.【2016朝阳一模,第03题】有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是A .21 B .13 C .29 D .19 5.【2016海淀一模,第03题】一个不透明的口供中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为 A.14 B. 34 C. 15 D. 456.【2016西城一模,第06题】老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是()A.110B.310C.15D.127.【2016通州一模,第06题】在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为15,那么m的值是A.12 B.15 C.18 D.218.【2016朝阳一模,第15题】在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.详细解答1. C2. C3. D4. C5. C6. B7. B8.1250。
北京市2016年各区中考一模汇编
二元方程(组)
1.【2016东城一模,第15题】
《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”
译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23
的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?” 设甲持钱为x ,乙持钱为y ,可列方程组为 .
2.【2016朝阳一模,第21题】
台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入, 2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.
详细解答
1. 50,2250.3
y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 2. 解:
3. 设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.. …… 1分 依题意,列方程组得
245250.
x y x y +=⎧⎨=+⎩,………………………………………………………………3分 解得18065.
x y =⎧⎨=⎩,………………………………………………………………5分
答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品。
北京市2016年各区中考一模汇编整式一、整式之幂运算1.【2016东城一模,第02题】下列运算中,正确的是A .x ·x 3=x 3B .(x 2)3=x 5C .624x x x ÷=D .(x -y )2=x 2+y 22.【2016通州一模,第03题】下列各式运算的结果为6a 的是A .33a a +B .33()aC .33a a ⋅ D.122a a ÷二、整式之因式分解3.【2016东城一模,第08题】对式子2241a a --进行配方变形,正确的是A .22(1)3a +-B . 23(1)2a --C .22(1)1a --D .22(1)3a --4.【2016东城一模,第11题】分解因式:22ab ac -=.5.【2016丰台一模,第11题】分解因式:2x 3-8x =.6.【2016平谷一模,第11题】分解因式:228x y y -=.7.【2016朝阳一模,第12题】分解因式:22369a b ab b -+=____________.8.【2016海淀一模,第11题】分解因式:22a b ab b -+=9.【2016西城一模,第11题】分解因式:34ab ab -=_______________.二、整式之因式简化10.【2016平谷一模,第18题】已知a+b =﹣1,求代数式()()2122a b a b a -+++的值.11.【2016通州一模,第11题】已知3m n +=,2m n -=,那么22m n -的值是 .详细解答1. C2. C3. D4. ()()a b c b c +-5. 2x (x +2)(x -2)6. ()()222y x x +-7. 2)3(b a b -8. 2(1)b a -9. ab(b+2)(b-2)10. 解:()()2122a b a b a -+++=222122+a a ab b a -+++……………………………………………………2 =2221+a ab b ++ (3)∵a+b =﹣1,∴原式=()21a b ++............................................................4 =2 (5)11. 6。
东城区第二学期初三综合练习(一)数学试题学校 班级 姓名 考号考生须知1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷上准确填写学校名称、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷和答题卡一并交回. 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是 A .2- B .12-C .12D .22.2015年元旦期间,北京各大公园接待游客达245 000万人次。
其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯ B .52.4510⨯ C .62.4510⨯ D .60.24510⨯ 3.一个几何体的三视图如图所示,则这个几何体是 A .圆柱 B .球 C .圆锥 D . 棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是分数 50 60 70 80 90 100 人数 12813144A . 70,80B . 70,90C . 80,90D . 80,1005. 在六张卡片上分别写有1π,, 1.5,3,0,23-六个数,从中任意抽取一张,卡片上的数为无理数的概率是 A .16B .13C . 12D . 236.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒ 7.如图,AB 是O e 的直径,点C 在O e 上,过点C 作O e 的切线交AB 的 延长线于点D ,连接OC ,AC . 若50D ∠=︒,则A ∠的度数是A. 20︒ B .25︒C .40︒D .50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为 A. 43.5 B. 50 C. 56 D. 589. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是 A. 3 B.2 C.3 D.410.如图1,ABC△和DEF△都是等腰直角三角形,其中90C EDF∠=∠=︒,点A与点D重合,点E在AB上,4AB=,2DE=.如图2,ABC△保持不动,DEF△沿着线段AB从点A 向点B移动,当点D与点B重合时停止移动.设AD x=,DEF△与ABC△重叠部分的面积为S,则S关于x的函数图象大致是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my-=.12.计算8272+3+-的结果为.13. 关于x的一元二次方程230x x m+-=有两个不相等的实数根,则实数m的取值范围是.14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表单位: 元/立方米分档水量户年用水量(立方米)水价其中自来水费水资源费污水处理费第一阶梯0-180(含) 5.00 2.071.57 1.36第二阶梯181-260(含)7.00 4.07第三阶梯260以上9.00 6.07某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费图1图241.52.24元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.16.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1A O 为 边做正方形111A OC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 .三、解答题(本题共30分,每小题5分)17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.求证:DC AB ∥.ODBC18. 计算:()11336043-⎛⎫-︒+-+- ⎪⎝⎭π.第15题图 第16题图19.解不等式组:() 2131, 54.2x xxx--⎧⎪⎨-+⎪⎩><20.先化简,再求值:222442111a a aa a a-+-+÷+--,其中1a=.21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?22.在平面直角坐标系xOy 中,过点()4,2A -向x 轴作垂线,垂足为B ,连接AO .双曲线ky x=经过斜边AO 的中点C ,与边AB 交于点D . (1)求反比例函数的解析式; (2)求△BOD 的面积.四、解答题(本题共20分,每小题5分)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.⊥,弦CD与OB交于点F,过点,D A分别作⊙O的25. 如图,在⊙O中,AB为直径,OC AB切线交于点G,且GD与AB的延长线交于点E.∠=∠;(1)求证:12OF OB=,⊙O的半径为3,求AG的长.(2)已知::1:3F26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值. G BF EO DCA图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.28. 已知:Rt△A′BC′和Rt△ABC重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt△A′BC′绕点B按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C和线段AA′相交于点D,连接BD.(1)当α=60°时,A’B 过点C,如图1所示,判断BD和A′A之间的位置关系,不必证明;(2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.ABC图1 图2 图329.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b <时, {}min a b a =,.如:{}min 122-=-,,{}min 121-=-,.(1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.东城区2014-2015学年第二学期初三综合练习(一)数学试题参考答案及评分标准 2015.5一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.36043134415-⎛⎫-︒+-+- ⎪⎝⎭=-+=-L L L L 解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<, …………2分 1x -由②得,>, …………4分所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+L L L 20.解:分当21a =时,2-12-122-112=+原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分 根据题意,列方程得:200=120(25)x x -, …………3分 解得: 15x =. …………5分 答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E .∵CE x ⊥轴,AB x ⊥轴,()4,2A-,∴CE AB ∥,()4,0B -. ∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线ky x=经过点C , ∴2k =-.∴反比例函数的解析式为2y x=-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上, ∴点D 的纵坐标为12. …………4分∴BOD S △11141222OB BD =⋅⋅=⨯⨯=.…………5分 四、解答题(本题共20分,每小题5分)23.(1)证明:∵DE BC ∥,CE AB ∥, ∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线, ∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分(2)解:作CFAB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =.在Rt ABC △中,根据勾股定理可求得5AB x =.∵1122AB CF AC BC ⋅=⋅, ∴25AC BC CF x AB ⋅==.∵1522CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生;(2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名); 补全条形图如图; …………3分 (3)二胡部分所对应的圆心角的度数为:60200×360°=108°; …………4分 (4)1500×30200=225(名). …………5分答:1500名学生中估计最喜欢古琴的学生人数为225. 25.(1)证明:连结OD ,如图.∵DE 为⊙O 的切线,OD 为半径, ∴OD DE ⊥.∴90ODE ∠=︒,即290ODC ∠+∠=︒.F∵OC OD =, ∴C ODC ∠=∠. ∴290C ∠+∠=︒. 而OC OB ⊥,∴390C ∠+∠=︒. ∴23∠=∠.∵13∠=∠, ∴12∠=∠. …………2分(2)解:∵:1:3OF OB =,⊙O 的半径为3, ∴1OF =. ∵12∠=∠, ∴EF ED =.在Rt ODE △中,3OD =,设DE x =,则EF x =,1OE x =+. ∵222OD DE OE +=,∴()22231x x +=+,解得4x =.∴4DE =,5OE =.∵AG 为⊙O 的切线,OA 为半径,GD 为⊙O 的切线, ∴AG AE ⊥,GA GD =. ∴90GAE ∠=︒.在Rt AGE △中,设DG t =,则4GE t =+. ∵222AGAE GE +=.∴()22284t t +=+,解得,6t =. ∴6AG =. -------------------5分26. 解:(1)AF =BE ; …………1分(2)3AFBE=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒, ∴AC BD ⊥,60ABO ∠=︒. ∴90FAO AFO ∠+∠=︒. ∵AG BE ⊥,∴90EAG BEA ∠+∠=︒. ∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分∴AF AOBE OB=. ∵60ABO ∠=︒,AC BD ⊥,∴tan 60AO OB =︒=.∴AF BE= …………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥, ∴90AOM CAM ∠=∠=︒. ∵()0,1C ,()1,0A -, ∴1OA OC ==. ∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒. ∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩解得111,1.k b =-⎧⎨=-⎩所以,直线AM 的函数表达式为1y x =--.令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==. ∴点N 的坐标为()1,0. ∵2CP AC ⊥,1AP AC ⊥, ∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫- ⎪⎝⎭,2P 11,22⎛⎫⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分 28.解:(1)当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,BD A A '⊥仍然成立;------------3分 (3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒. ∵BC BC '=,∴BCC BC C ''∠=∠. ∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠. 在AEC △和A FC ''△中,图2图190,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△. ∴AE A F '=.在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△. ∴AD A D '=. ∵AB A B '=,∴'ABA △为等腰三角形. ∴BD A A '⊥------------7分29.解:(1)∵20x ≥, ∴2x -1≥-1. ∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分 (2) ∵()2211x x k x k -+=-+-2,∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-, ∴13k --≥.∴2k -≥. ┉┉5分 (3) 37m -≤≤. ┉┉8分。
2009年北京市东城区中考数学一模试卷一、选择题(8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的. 1.计算|-2009|的结果是( ) A .-2009 B .20091-C .2009D .200912.函数2+=x y 的自变量x 的取值范围是( )A .x ≠-2B .x ≥-2C .x >-2D .x <-2 3.我国2008年国内生产总值超过300 000亿元,比上一年增长9%.将数据300000亿元用科学记数法表示为( )A .3³105亿元B .30³104亿元C .0.3³106亿元D .3³104亿元 4.下列运算正确的是( ) A .a 2+a 4=a 6 B .a 2²a 4=a 6 C .(a 4)2=a 6 D .a 6÷a 2=a 3 5.若一个正n 边形的一个外角为36°,则n 等于 A .4 B .6 C .8 D .106.如图,点O 在⊙A 外,点P 在线段OA 上运动.以OP 为半径的(⊙O 与⊙A 的位置关系不可能是下列中的( )第6题图A .外离B .相交C .外切D .内含7.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,除了需要了解自己的成绩外,还需要了解全部成绩的( ) A .平均数 B .众数 C .中位数 D .方差8.在正方体的表面上画有如图①中所示的粗线,图②是其展开图的示意图,但只在A 面上画有粗线,那么将图①中剩余两个面中的粗线画入图②中,画法正确的是( )第8题图二、填空题(4个小题,每小题4分,共16分)第9题图 第11题图10.在实数范围内分解因式:x 2y -6xy +9y =________.11.如图,AB 、CD 是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为________. 12.按一定规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第9个数是________.三、解答题(5个小题,每小题5分,共25分)13.计算:020092)2π()1(30sin 421-+-+-⎪⎭⎫⎝⎛- .14.解不等式组⎩⎨⎧+≤--<.65)3(2,134x x x x15.解方程:121=+-xx x .16.如图,已知D 是△ABC 的边AB 上一点,FC ∥AB ,DF 交AC 于点E ,DE =EF .求证:E 是AC 的中点.第16题图17.已知:x -2y =0,求)(2222y x yxy x yx ++++⋅的值.四、解答题(2个小题,每小题5分,共10分)18.如图,梯形ABCD 中,AD ∥BC ,∠B =45°,∠D =120°,CD =43cm ,求AB的长.第18题图19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.每年的4月23日被联合国教科文组织确定为“世界读书日”.如图是某校全校三个年级学生人数分布扇形统计图,其中八年级人数为350人,表(1)是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题: (1)求该校九年级的人数占全校总人数的百分率. (2)求出表(1)中A 、B 的值.(3)第19题图五、解答题(3个小题,每小题5分,共15分)求该商场购进A ,B 两种商品各多少件.21.已知:如图,在△ABC 中,AB =AC ,点D 是边BC 的中点.以BD 为直径作圆O ,交边AB 于点P ,连结PC ,交AD 于点E . (1)求证:AD 是圆O 的切线;(2)若PC 是圆O 的切线,BC =8,求DE 的长.第21题图22.如图,反比例函数xy 8的图象过矩形OABC 的顶点B ,OA 、OC 分别在x 轴、y 轴的正半轴上,OA ∶OC =2∶1.(1)设矩形OABC 的对角线交于点E ,求出E 点的坐标; (2)若直线y =2x +m 平分矩形OABC 面积,求m 的值.第22题图六、解答题(3个小题,共22分)23.(本题满分7分)已知:关于x 的一元二次方程x 2-2(2m -3)x +4m 2-14m +8=0.(1)若m >0,求证:方程有两个不相等的实数根;(2)若12<m <40的整数,且方程有两个整数根,求m 的值.24.(本题满分7分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线y =ax 2+ax -2经过点B . (1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.第24题图25.(本题满分8分)请阅读下列材料:圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图①,若弦AB 、CD 交于点P 则P A ²PB =PC ²PD .请你根据以上材料,解决下列问题.已知⊙O 的半径为2,P 是⊙O 内一点,且OP =1,过点P 任作一弦AC ,过A 、C 两点分别作⊙O 的切线m 和n ,作PQ ⊥m 于点Q ,PR ⊥n 于点R .(如图②)(1)若AC 恰经过圆心O ,请你在图③中画出符合题意的图形,并计算:PRPQ 11+的值; (2)若OP ⊥AC ,请你在图④中画出符合题意的图形,并计算:PRPQ 11+的值; (3)若AC 是过点P 的任一弦(图②),请你结合(1)(2)的结论,猜想:PRPQ 11+的值,并给出证明.① ②第25题图2009年北京市东城区中考数学一模试卷答 案一、选择题1.C 2.B 3.A 4.B 5.D 6.D 7.C 8.A 二、填空题9.20° 10.y (x -3)2 11.41 12.821 三、解答题13.原式=4-2-1+1=2 14.解:⎩⎨⎧+≤--<②①,65)3(2,134x x x x解不等式①得x <-1解不等式②得x ≥-4∴原不等式组的解集为-4≤x <-1. 15.解:方程两边都乘以x (x -1),得x 2+2(x -1)=x (x -1),解这个方程,得x =32. 经检验,x =32是原方程的根. ∴原方程的根是x =32.16.证明:∵FC ∥AB ,∴∠ADF =∠F .又∵∠AED =∠CEF ,DE =EF ,∴△ADE ≌△CEF (SAS).∴AE =CE . 即E 是AC 的中点. 17.解:)(2222y x y xy x yx ++++⋅ )()(22y x y x yx +++=⋅yx yx ++=2. ∵x =2y , ∴原式3535==y y . 四、解答题18.解:过点A 、D 分别作AE ⊥BC 、DF ⊥BC ,垂足分别为点E 、F .∴∠AEB =∠DFC =90°.∴∠C =60°在Rt △DFC 中,∠DFC =90°,∠C =60°,CD =43. 6233460sin =⨯=⋅=∴CD DF .易证:四边形AEFD 为矩形.∴AE =DF =6. 在Rt △AEB 中,∠AEB =90°,∠B =45°,cm 262/2645sin ===∴AE AB .第18题答图19.解:(1)1-25%-35%=40%(2)A =1-0.2-0.25-0.15=0.4 500÷0.25=2000B =2000-500-800-300=400 ∴A 的值为0.4,B 的值400 (3)350÷35%=1000 2000÷1000=2∴该校学生平均每人读2本课外书. 五、解答题20.解:(1)设购进A 种商品x 件,B 种商品y 件.根据题意,得⎩⎨⎧=-+-=+,60000)10001200()12001380(,36000010001200y x y x化简,得⎩⎨⎧=+=+,3000109,180056y x y x解得⎩⎨⎧==.120,200y x答:该商场购进A ,B 两种商品分别为200件和120件. 21.(1)证明:∵AB =AC ,点D 是边BC 的中点,∴AD ⊥BD .又∵BD 是圆O 直径, ∴AD 是圆O 的切线.(2)解:连结OP ,由BC =8,得CD =4,OC =6,OP =2. ∵PC 是圆O 的切线,O 为圆心, ∴∠OPC =90°.由勾股定理,得PC =42.在△OPC 中,42242tan ===∠PCOP OCP .在△DEC 中,∵42tan ==∠DC DE DCE ,2424tan =⨯=∠⋅=∴DCE DC DE .第21题答图22.解:(1)由题意,设B (2a ,a )(a ≠0),则a =a28,∴a =±2.∵B 在第一象限, ∴a =2,B (4,2),∴矩形OABC 对角线的交点E 为(2,1).(2)∵直线y =2x +m 平分矩形OABC 必过点(2,1), ∴1=2³2+m .∴m =-3.第22题答图六、解答题23.(1)证明:Δ=[-2(2m -3)]2-4(4m 2-14m +8)=8m +4.∵m >0,∴8m +4>0.∴方程有两个不相等的实数根.(2)12)32(248)32(2+±-=+±-=m m m m x .∵方程有两个整数根,必须使12+m 为整数且m 为整数. 又∵12<m <40,∴25<2m +1<81.9125<+<∴m .令612=+m ,235=∴m . 令712=+m ,24=∴m . 令812=+m ,263=∴m . ∴m =2424.解:(1)过点B 作BD ⊥x ,垂足为D ,∵∠BCD +∠ACO =90°,∠ACO +∠OAC =90°, ∴∠BCD =∠CAO .又∵∠BDC =∠COA =90°;CB =AC , ∴△BCD ≌△CAO ,∴BD =OC =1,CD =OA =2, ∴点B 的坐标为(-3,1).(2)抛物线y =ax 2+ax -2经过点B (-3,1), 第24题答图 则得到1=9a -3a -2,解得21=a ,∴抛物线解析式为221212-+=x x y .(3)方法一:①若以AC 为直角边,点C 为直角顶点,则可以设直线BC 交抛物线21212-+=x xx y 于点P 1, 由题意,直线BC 的解析式为:2121--=x y ,⎪⎪⎩⎪⎪⎨⎧-+=--=∴,22121,21212x x y x y 解得⎩⎨⎧=-=,1,311y x (舍)⎩⎨⎧-==.1,122y x∴P 1(1,-1).过点P 1作P 1M ⊥x 轴于点M , 在Rt △P 1MC 中,52211=+=MCM P CP ∴CP 1=AC .∴△ACP 1为等腰直角三角形.②若以AC 为直角边,点A 为直角顶点;则过点A 作AF ∥BC ,交抛物线221212-+=x x y 于点P 2, 由题意,直线AF 的解析式为221+-=x y ,⎪⎪⎩⎪⎪⎨⎧++=+-=,2121,2212x x x y x y 解得⎩⎨⎧=-=,4,411y x (舍)⎩⎨⎧==.1,222y x ∴P 2(2,1).过点P 2作P 2N ⊥y 轴于点N , 在Rt △AP 2N 中,52222=+=AN N P AP ,∴AP 2=AC ,∴△ACP 2为等腰直角三角形.综上所述,在抛物线上存在点P 1(1,-1)P 2(2,1),使△ACP 是以AC 为直角边的等腰直角三角形. 方法二:①若以AC 为直角边,点C 为直角顶点,则延长BC 至点P 1,使得P 1C =BC ,得到等腰直角三角形△ACP 1,过点P 1作P 1M ⊥x 轴. ∵CP 1=BC ,∠MCP 1=∠BCD ,∠P 1MC =∠BDC =90°, ∴△MP 1C ≌△DBC ,∴CM =CD =2,∴P 1M =BD =1,可求得点P 1(1,-1); 经检验点P (1,-1)在抛物线2112-+=x x y 上,使得△ACP 是等腰直角三角形.②若以AC 为直角边,点A 为直角顶点;则过点A 作AP 2⊥CA ,且使得AP 2=AC , 得到等腰直角三角形△ACP 2,过点P 2作P 2N ⊥y 轴,同理可证△AP 2N ≌△CAO , ∴NP 2=OA =2,AN =OC =1,可求得点P 2(2,1), 经检验点P 2(2,1)也在抛物线221212-+=x x y 上,使得△ACP 2也是等腰直角三角形. 25.解:(1)AC 过圆心O ,且m ,n 分别切⊙O 于点A ,C ,如图①所示,第25题答图∴AC ⊥m 于点A ,AC ⊥n 于点C ,∴Q 与A 重合,R 与C 重合,OP =1,AC =4,3431111=+=+∴PR PQ . (2)连结OA ,如图②所示,OP ⊥AC 于点P ,且OP =1,OA =2, ∴∠OAP =30°, ∴AP =3.OA ⊥直线m ,PQ ⊥直线m , ∴OA ∥PQ ,∠PQA =90°, ∴∠APQ =∠OAP =30°, ∴在Rt △AQP 中,23=PQ . 同理,23=PR , 34323211=+=+∴PR PQ . (3)猜想3411=+PR PQ 证明:过点A 作直径交⊙O 于点E ,连结CE ,如图③所示,∴ECA =90°. AE ⊥直线m ,PQ ⊥直线m , ∴AE ∥PQ 且∠PQA =90°. ∴∠EAC =∠APQ . ∴△AEC ∽△P AQ .①.APAEPQ AC =∴初三模考试题精心整理汇编同理可得:∴②.PC AEPR AC=①+②,得PC AEAP AE PR AC PQ AC +=+∴,PC AP AEPC AP APPC AC AEPC AP AC AE PR PQ ⋅⋅⋅=+=⎪⎭⎫⎝⎛+=+∴1111.过点P 作直径交O 于点M ,N由阅读材料可知:AP ²PC =PM ²PN =3.3411=+∴PR PQ以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。
一、选择题1. 答案:A解析:由题意得,x-2>0,解得x>2。
2. 答案:C解析:三角形ABC为等边三角形,故AB=BC=AC,所以S△ABC=√3/4×AC²。
3. 答案:D解析:由题意得,a²+b²=c²,故a²+c²=b²,即三角形ABC为直角三角形。
4. 答案:B解析:由题意得,x²-2x-3=0,分解因式得(x-3)(x+1)=0,解得x=3或x=-1。
5. 答案:A解析:由题意得,2x+3y=7,3x-2y=1,联立方程组得x=2,y=1。
二、填空题6. 答案:-2解析:由题意得,x²-4x+4=0,分解因式得(x-2)²=0,解得x=2。
7. 答案:3解析:由题意得,a+b=3,ab=2,根据公式(a+b)²=a²+2ab+b²,得a²+b²=(a+b)²-2ab=3²-2×2=5。
8. 答案:12解析:由题意得,(x+3)(x-2)=0,解得x=-3或x=2,当x=-3时,y=5;当x=2时,y=-1。
9. 答案:-5解析:由题意得,2(x-1)-3(x+2)=0,解得x=-5。
10. 答案:4解析:由题意得,(2x+1)²-4x-1=0,展开得4x²+4x+1-4x-1=0,化简得4x²=0,解得x=0。
三、解答题11. 解答:(1)过点A作AB⊥y轴于点B,连接CD,由题意得,AB=CD,∠ADB=∠CDB=90°,故四边形ABCD为矩形。
(2)由题意得,AC=2AD,故∠CAD=∠DCA,又∠CAD=∠BAC,故∠DCA=∠BAC,∠ABC=∠ACB,故三角形ABC为等腰三角形。
(3)由题意得,AB=AC,故BC=AB+AC=2AB,即BC=2x,所以x=2。
2016年北京市东城区初三一模数学试卷一、单选题(共10小题)1.数据显示,2015年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数发表示应为()A.B.C.D.考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得51 660 000=5.166×107.故选A.2.下列运算中,正确的是()A.x·x3=x3B.(x2)3=x5C.D.(x-y)2=x2+y2考点:整式的运算答案:C试题解析:根据整式的运算公式正确,故选A。
3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.考点:概率及计算答案:C试题解析:五张卡片中有三张奇数,则概率为,故选C4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁考点:极差、方差、标准差答案:B试题解析:方差越小发挥越稳定,则选B。
5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.62°考点:平行线的判定及性质答案:A试题解析:如图,∠2=∠3=38°,则∠1=90°-38°=52°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE =CB,连接ED. 若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米考点:全等三角形的判定全等三角形的性质答案:B试题解析:由题意可得△ABC≌△DEC(SAS),则ED=AB=58,故选B。
北京市东城区2015—2016学年第二学期统一练习(一)
初三数学2016.5
学校班级姓名考号
则这四人中发挥最稳定的是
5. 如图,将一块三角板的直角顶点放在直尺的一边上,当∠
2=38°时,∠1=
A.52°B.38°
C.42°D.62°
6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以
个单位长度得到点B,则点B关于x
(2,-2)
二、填空题(本题共18分,每小题3分)
11.分解因式:2
2
ab ac = .
12.请你写出一个一次函数,满足条件:○
1经过第一、三、四象限;○2与y 轴的交点坐标为(0,-1). 此一次函数的解析式可以是 .
13. 已知一个正多边形的每个外角都等于72°,则这个正多边形的边数是 . 甲、乙、丙、丁四位同学的主要作法如下:
请你判断哪位同学的作法正确;
这位同学作图的依据是.
三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题
8分)
21.列方程或方程组解应用题:
在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒
数是第一批所购鲜花的1
,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花
的平分线交BC于点E(尺规作
24. 某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学
生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;
当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:
26. 在课外活动中,我们要研究一种四边形——筝形的性质.
定义:两组邻边分别相等的四边形是筝形(如图1).
小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.
下面是小聪的探究过程,请补充完整:
(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是;
(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一
条猜想进行证明;
(3)如图2,在筝形ABCD 中,AB =4,BC =2,∠ABC =120°,求筝形ABCD 的面积.
图1 图2
27.已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)当m 取何值时,此方程有两个不相等的实数根;
(2)当抛物线y =mx 2
+(3m +1)x +3与x 轴两个交点的横坐标均为整数,且m 为正整数时,
求此抛物线的解析式;
(3)在(2)的条件下,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结
合函数图象直接写出实数a 的取值范围.
28. 如图,等边△ABC ,其边长为1, D 是BC 中点,点E ,F 分别位于AB ,AC 边上,且∠EDF =120°.
(1)直接写出DE 与DF 的数量关系;
(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)
(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由. 点的线段的中点时,则称点
M,N,若线段
..MN上存在⊙C的相邻点P,直接写出圆心C的横坐标的取值范围.
图1 备用图1
备用图2
北京市东城区2015-2016学年第二学期统一练习(一) 初三数学参考答案及评分标准 2016.5
二、填空题(本题共18分,每小题3分)
∴ 23x x -+=-. …………4分 ∴原式= -2. …………5分
20. 解:∠E =35°,或∠EAB =35°, 或∠EAC =75°
. …………1分 ∵在△ABC 中,AB =AC ,∠BAC =40°,
∴ ∠ABC =∠ACB =70°
. …………3分 又∵ BD 平分∠ABC ,
∴ ∠ABD =∠CBD =35°
. …………4分
分
(2)∵四边形ABEF 为菱形,
∴AE ⊥BF ,OB =2
1BF =3,AE =2AO .
在Rt △AOB 中,AO 4=.
∴AE =2AO =8.
…………5分
23.解:(1)由题意可知21=3
k . ∴23k =. …… 1分
∴ 反比例函数的解析式为3y x
=. (2)符合题意有两种情况:○
1直线y =k 1x +b 经过第一、三、四象限. =8%∴ ∠E =∠PBO =90゜,
∴ PB 是⊙O 的切线.…………2分
(2)∵ PB =3,DB =4,
∴ PD =5.
设⊙O 的半径的半径是r ,连接OC .
∵ PD 切⊙O 于点C ,
∴ OC ⊥PD .
∴ .222OD OC
CD =+ ∴ .)4(2222r r -=+ ∴.2
3=r 43. …………5分 0>,
∴当13
m ≠且0m ≠时,此方程有两个不相等的实数根. …………2分
(2)x ==, ∴1213,x x m
=-=-.
∵抛物线与x 轴两个交点的横坐标均为整数,且m 为正整数,
∴m =1.
∴ 抛物线的解析式为243y x x =++. …………5分
(3)a >1或a <-5. …………7分
p (3)09C x ≤≤. …………8分。