第05章__刚体力学基础补充
- 格式:doc
- 大小:752.50 KB
- 文档页数:21
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
刚体动力学的基本概念第二篇动力学第五章刚体动力学的基本概念一、目的要求 1.深入地理解力、刚体、平衡和约束等重要概念。
2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。
3. 能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解。
4. 理解力对点之矩的概念,并能熟练地计算。
5.深入理解力偶和力偶矩的概念,明确力偶的性质和力偶的等效条件。
6.明确和掌握约束的基本特征及约束反力的画法。
7.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。
二、基本内容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。
在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。
2)刚体:在力作用下不变形的物体。
刚体是静力学中的理想化力学模型。
3)约束:1/ 11对非自由体的运动所加的限制条件。
在刚体静力学中指限制研究对象运动的物体。
约束对非自由体施加的力称为约束反力。
约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。
4)力:物体之间的相互机械作用。
其作用效果可使物体的运动状态发生改变和使物体产生变形。
前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。
力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。
5)力的分类:集中力、分布力;主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。
按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。
7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。
8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。
9)力的合成与分解:若力系与一个力FR等效,则力FR称为力系的合力,而力系中的各力称为合力FR的分力。
第五章 刚体力学基础一、选择题1、一刚体以每分钟60转绕z 轴做匀速转动(ω沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为:(A) k j i157.0 125.6 94.2++=v(B) j i8.18 1.25+-=v(C) j i8.18 1.25--=v(D) k4.31=v [ B ]2、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .<βB . (D) 开始时βA =βB ,以后βA <βB . [ C ]3、几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 转速必然改变. (B) 转速必然不变.(C)必然不会转动. (D) 转速可能不变,也可能改变. [ D ] 4、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω(A) 增大. (B) 减少.(C) 不会改变.(D) 如何变化,不能确定. [ A ] 5、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大. [ A ]6、关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ C ]7、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ C ]8、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ C ]9、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为41mg cos θ. (B) 为21mg tg θ(C) 为mg sin θ. (D) 不能唯一确定. [ B ]10、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ B ]11、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ C ] 12、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 在上述说法中, (A) 只有(1)是正确的. (B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ B ]13、将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ C ]14、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0. [ D ]15、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A) L 32v . (B) L 712v(C) L 76v . (D) L98v.[ C ]16、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v. (B)ML m 23v. (C) MLm 35v. (D)MLm 47v . [ B ]17、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A)12v l . (B) l 32v . (C) l 43v . (D) lv3. [ C ]18、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都不守恒.[ C ]O v俯视图俯视图19、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ A ]20、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 减小.(C)不变. (D) 不能确定. [ B ]21、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 机械能守恒. (B) 动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ C ]22、刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]23、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ B ]24、如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑(A) 2ω 0. (B)ω 0. (C) 21 ω 0. (D)041ω. [ D ]m m25、一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大.[ D ]二、填空题1、一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s,再转60转后角速度为ω2=30π rad /s,则角加速度β=_____________ rad/s2.答案:6.542、一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s,再转60转后角速度为ω2=30π rad /s,则转过上述60转所需的时间Δt=_____________ s.答案:4.83、利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为0.1m的轮子,真空泵上装一半径为0.29m的轮子,如图所示.如果电动机的转速为1450 rev/min,则真空泵上的轮子的边缘上一点的线速度为v≈________ m/s .答案:15.24、利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为0.1m的轮子,真空泵上装一半径为0.29m的轮子,如图所示.如果电动机的转速为1450 rev/min,则真空泵的转速为n2=_________ rev /min.答案:5005、半径为r=1.5 m的飞轮,初角速度ω 0=10 rad·s-1,角加速度β=-5 rad·s-2,则在t=___________ s时角位移为零.答案:46、半径为r=1.5 m的飞轮,初角速度ω 0=10 rad·s-1,角加速度β=-5 rad·s-2,则此时边缘上点的线速度v=___________ m·s-1.答案:-157、可绕水平轴转动的飞轮,直径为1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s内绳被展开10 m,则飞轮的角加速度为__________ rad / s2.答案:2.58、绕定轴转动的飞轮均匀地减速,t=0时角速度为ω 0=5 rad / s,t=20 s时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________ rad·s-2.答案:-0.059、绕定轴转动的飞轮均匀地减速,t=0时角速度为ω 0=5 rad / s,t=20 s时角速度为ω = 0.8ω 0,则t=0到t=100 s时间内飞轮所转过的角度θ =______________ rad.答案:25010、一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止达到10 rev/s所需时间t= s.答案:9.6111、一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止到10 rev/s时圆盘所转的圈数N=________ rev.答案:4812、半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t=________ m·s-2.答案:0.1513、半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的法向加速度a n=_______________ m·s-2.答案:1.2614、半径为20 cm的主动轮,通过皮带拖动半径为50 cm的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s内被动轮的角速度达到8πrad·s-1,则主动轮在这段时间内转过了________圈.答案:2015、决定刚体转动惯量的因素是刚体的质量和质量分布以及____________________.答案:转轴的位置20、一飞轮以600 rev/min的转速旋转,转动惯量为2.5 kg·m2,现加一恒定的制动力矩使飞轮在1 s内停止转动,则该恒定制动力矩的大小M=_________ N·m.答案:15723、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r外,还受到恒定外力矩M 的作用.若M=20 N·m,轮子对固定轴的转动惯量为J=15 kg·m2.在t=10 s内,轮子的角速度由ω =0增大到ω=10 rad/s,则M r=__________ N·m。
05刚体的定轴转动习题解答05刚体的定轴转动习题解答第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有:()A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:JFra /21=(2) 受力分析得:===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为:()A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。
简要提示:由定轴转动定律:α221MR FR =,得:mRFt 4212==?αθ 所以:mFM W /42=?=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为:()A .0211ωJJ J+ B .0121ωJJJ + C .021ωJ JD .012ωJ J解:答案是A 。
第05章__刚体⼒学基础补充第五章刚体⼒学基础⼀、选择题1 甲⼄两⼈造卫星质量相同,分别沿着各⾃的圆形轨道绕地球运⾏,甲的轨道半径较⼩,则与⼄相⽐,甲的:(A)动能较⼤,势能较⼩,总能量较⼤; (B)动能较⼩,势能较⼤,总能量较⼤; (C)动能较⼤,势能较⼩,总能量较⼩;(D)动能较⼩,势能较⼩,总能量较⼩;[ C ]难度:易2 ⼀滑冰者,以某⼀⾓速度开始转动,当他向内收缩双臂时,则: (A)⾓速度增⼤,动能减⼩; (B)⾓速度增⼤,动能增⼤;(C)⾓速度增⼤,但动能不变;(D)⾓速度减⼩,动能减⼩。
[ B ]难度:易3 两⼈各持⼀均匀直棒的⼀端,棒重W ,⼀⼈突然放⼿,在此瞬间,另⼀个⼈感到⼿上承受的⼒变为:(A)3w ; (B) 2w (C) 43w ; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为⽔平光滑固定转轴,平衡时杆竖直下垂,⼀质量为m 的⼦弹以⽔平速度0v 击中杆的A端并嵌⼊其内。
那么碰撞后A 端的速度⼤⼩: (A)M m mv +12120; (B) Mm mv +330;(C) M m mv +0; (D) Mm mv +330。
[ B ]难度:中5 ⼀根质量为m 、长为l 的均匀直棒可绕过其⼀端且与棒垂直的⽔平光滑固定轴转动.抬起另⼀端使棒竖直地⽴起,如让它掉下来,则棒将以⾓速度ω撞击地板。
如图将同样的棒截成长为2l的⼀段,初始条件不变,则它撞击地板时的⾓速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的⼩球,A 球⽤⼀根不能伸长的绳⼦拴着,B 球⽤橡⽪拴着,把它们拉到⽔平位置,放⼿后两⼩球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)⽆法判断。
[ C ]难度:中7 ⽔平圆转台上距转轴R 处有⼀质量为m 的物体随转台作匀速圆周运动。
第五章刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大;(B)动能较小,势能较大,总能量较大;(C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则:(A)角速度增大,动能减小;(B)角速度增大,动能增大;(C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w ; (D)4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) M m mv +330;(C)Mm mv +0; (D) M m mv +330。
[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l 的一段,初始条件不变,则它撞击地板时的角速度最接近于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:L(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
已知物体与转台间的静摩擦因数为μ,若物体与转台间无相对滑动,则物体的转动动能为:(A)mgR E k μ41≤ (B) mgR E k μ21≤ (C) mgR E k μ≤ (D)mgR E k μ2≤[ B ]难度:中8 一匀质细杆长为l ,质量为m 。
杆两端用线吊起,保持水平,现有一条线突然断开,如图所示,则断开瞬间另一条绳的张力为:(A)mg 43 (B) mg 41 (C) mg 21 (D) mg [ B ]难度:难9 一根均匀棒AB ,长为l ,质量为m ,可绕通过A 端且与其垂直的固定轴在竖直面内自由摆动,已知转动惯量为231mgl .开始时棒静止在水平位置,当它自由下摆到θ角时,B 端速度的大小为: (A)θsin gl (B) θsin 6gl (C) θsin 3gl (D) θsin 2gl [ C ]难度:中10 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A) 02ωmRJ J+. (B) ()02ωR m J J +. (C)02ωmRJ. (D) 0ω. [ A ]难度:中11 一质量为M 、半径为r 的均匀圆环挂在一光滑得的钉子上,以钉子为轴在自身平面内作幅度很小的简谐振动.已知圆环对轴的转动惯量22Mr J =,若测得其振动周期为π21s ,则r 的值为 (A) g /32. (B)216g .(C) 16/2g . (D) g /4. [A ]难度:中12、质量和长度都相同的均匀铝细圆棒A 和铁细圆棒B ,它们对穿过各自中心且垂直于棒的轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ C ]难度:易13、两个质量和厚度相等的均匀木质圆盘A 和均匀铁质圆盘B ,设两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 (A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ A ]难度:易14、两根细棒的质量、长度均相同,且都半截木质、半截钢质,一根的转动轴木质端,另一根的转动轴在钢质端。
今在棒的另一端施相同的力F ,两细棒得到的角加速度满足:(A) βA >βB . (B) βB >βA .(C) βA =βB . (D) 无法确定. [B ]难度:易15、一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上,圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心的竖直固定光滑轴转动.开始时,圆盘的角速度为0ω,当圆盘角速度变为2ω所需时间为(SI 制):(A)gRμω0. (B) g R μω20.(C)gRμω830. (D) g R μω40.[C ]难度:中16、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,开始时自然悬挂于竖直位置若给棒一水平冲力,则棒在绕轴转动过程中:(A) 角速度逐渐增大,角加速度逐渐减小; (B) 角速度和角加速度都逐渐增大; (C) 角速度和角加速度都逐渐减小;(D) 角速度逐渐减小,角加速度逐渐增大。
[ D ]难度:易17、一个转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),则圆盘的角速度从变为021ω时所需的时间(SI 制):(A)21. (B) kJ . (C)k J 2ln . (D) k 21. [C ]难度:中18、一个转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),则圆盘的角速度从0变为021ω时,阻力距所作的功(SI 制):(A) 420ωJ . (B) 8320ωJ -.(C) 420ωJ -. (D) 820ωJ .[B ]难度:中19、一花样滑冰运动员绕通过自身的竖直轴转动,开始时以转动动能220ωJ 旋转,当他向内收缩双臂时,他的转动惯量减少为31J .这时他转动动能变为:(A) 220ωJ . (B) 62ωJ .(C) 2320ωJ . (D) 2920ωJ .[ C ]难度:中20、一人双手握着重物伸开双臂站在可绕中心轴无摩擦转动的平台上,系统的转动惯量为J ,角速度为.当此人突然将两臂收回,使系统的转动惯量减少为31J 0.则该系统:(A) 机械能和角动量守恒,动量不守恒.(B) 机械能守恒,动量和角动量不守恒.(C) 动量和机械能不守恒.角动量守恒. (D) 机械能不守恒.动量和角动量守恒. [ C ]难度:易21、一质量为M 的水平匀质圆盘可绕通过其中心的固定竖直轴转动,圆盘边缘站着一个质量为m 的人.把人和圆盘取作系统,开始时,该系统的角速度为0,接着此人沿着半径走到圆盘中心,在走动过程中(忽略轴的摩擦),此系统的(A) 转动惯量不变; (B) 角速度减小; (C) 机械能不变; (D)角动量不变。
[ D ]难度:易22、一质量为M 的水平匀质圆盘可绕通过其中心的固定竖直轴转动,圆盘边缘站着一个质量为m 的人.把人和圆盘取作系统,开始时,该系统的角速度为0,接着此人沿着半径走到圆盘中心,此系统的角速度将为: (A)02ωMm; (B) 0)21(ωMm+; (C) 0)21(ωMm+; (D)02ωMm。
[ B ]难度:中23、一飞轮从静止开始作均加速转动,飞轮边上一点的法向加速度n a 和切向加速度t a 值的变化为:(A) n a 不变,t a 为零; (B) n a 不变,t a 不变; (C) n a 增大,t a 为零; (D) n a 增大,t a 不变;。
[ D ]难度:中24、一根均匀棒,长为l ,质量为m ,一端固定,由水平位置可绕通过其固定端且与其垂直的固定轴在竖直面内自由摆动.则在水平位置时其质心C 的加速度为(已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml ) :(A)g . (B)0.(C) g 43. (D) g 21. [C ]难度:中25、一根长为l 、质量为m 的均匀细直棒在地上竖立着,如果让其以下端与地的接触处为轴自由倒下,当上端到达地面时,上端的速率为(已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml ) :(A)gl 6. (B) gl 3.(C) gl 2. (D) 23gl. [B ]难度:中26、一根长为l 、质量为m 的的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 、速度为0v 的子弹从与水平方向成角处飞来,击中杆的中点且留在杆中,则杆的中点C 的速度为:(A)20v . (B) ϕcos 730v .(C) ϕcos 430v .(D) ϕsin 730v . [B ]难度:中 27、在经典力学中,下列哪个说法是错误的:(A) 质点的位置、速度、加速度都是矢量.(B) 刚体定轴转动的转动惯量是标量. (C) 质点运动的总机械能是标量. (D) 刚体转动的角速度是标量. [ D ]难度:易1 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度为,O M Cφ则ωω=__________________. 答案:31 难度:中2 一电唱机的转盘以n = 78 rev/min 的转速匀速转动,则转盘上与转轴相距r = 15 cm 的一点P 的线速度v =__________________. 答案:s rad 难度:中3 一电唱机的转盘以n = 78 rev/min 的转速匀速转动,则转盘上与转轴相距r = 15 cm 的一点P 的法向加速度a n =__________________. 答案:102s m难度:中4 一电唱机的转盘开始以n = 78 rev/min 的转速匀速转动,在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,则转盘在停止转动前的角加速度=__________________. 答案:2s rad难度:中5 一电唱机的转盘开始以n = 78 rev/min 的转速匀速转动,在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,则转盘在停止转动前转过的圈数N =__________________.难度:难6 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度 rad /s 2由静止起动,轮与皮带间无滑动发生.则A 轮达到转速3000 rev/min 所需要的时间t =__________________s . 答案:40 难度:中7、圆柱体以80s rad 的角速度绕中心轴转动,对该轴转动惯量为42m kg ⋅,由于恒力矩的作用,在10s 内其角速度变为40s rad ,则力矩的大小为__________________m N ⋅。