第二章气体击穿理论
- 格式:ppt
- 大小:1.22 MB
- 文档页数:25
气体介质的击穿现象气体介质的击穿现象是指在一定电压条件下,气体中产生了电击穿现象。
电击穿是指在高电场强度作用下,气体中原本绝缘的状态被突破,导致气体成为导电状态。
本文将从气体击穿的定义、机理、影响因素和应用等方面进行详细论述,并探讨当前相关研究和趋势。
一、气体击穿的定义气体击穿是指当电压达到一定临界值时,气体中的原子或分子被电场加速并与其他粒子碰撞,导致气体发生电离现象,产生局部的导电通道。
这个电离过程可以是从阴极向阳极的电子流(电子击穿)或者从阳极向阴极的离子流(离子击穿)。
二、气体击穿的机理气体击穿是由复杂的物理和化学过程导致的,其机理主要包括以下几个方面:1. 离子化机制:电场加速下,气体中的原子或分子产生离子化,形成自由电子和离子。
2. 碰撞机制:离子与原子、分子碰撞后产生电离级联形成更多的离子和自由电子。
3. 电子减速机制:自由电子与气体分子碰撞后产生电子减速,使其能量转移给其他分子。
4. 穿透机制:产生的离子和自由电子在电场作用下穿越气体并形成导电通道。
三、气体击穿的影响因素气体击穿现象受到多种因素的影响,主要包括以下几个方面:1. 电场强度:电场强度越高,气体击穿越早。
2. 气体性质:不同气体具有不同的击穿电压和击穿场强度。
例如,质子型气体(氢气、氦气)的击穿电压要比电子型气体(氮气、氧气)低。
3. 气体压力:气体的击穿电压随着压力的增加而降低。
当气体压力较低时,击穿电压较高。
4. 温度:温度对气体击穿电压的影响与气体性质有关。
一般情况下,温度越高,击穿电压越低。
四、气体击穿的应用气体击穿现象在科学研究和工程应用中具有重要作用,主要应用于以下领域:1. 电力系统:用于判断电力设备(变压器、绝缘子、电缆等)的耐压性能,以保证电力系统的安全运行。
2. 气体放电灯:例如氖灯、气体放电显示器等,利用气体击穿的特性来产生光电效应。
3. 气体保护:在工业生产过程中,气体击穿可用于保护设备和人员的安全,如气体绝缘断路器等。
气体击穿理论影响气体击穿的主要因素:1、电场分布2、电压种类3、气体状态气体放电形式根据气体压力、电源功率、电极形状等因素的不同,击穿后气体放电可具有多种不同形式:1、辉光放电2、电弧放电3、火花放电4、电晕放电1、辉光放电辉光放电的特点:电流密度较小,放电区域通常占据整个空间;管端电压较高,不具有短路的特性。
2、电弧放电电弧放电的特点:电流密度很大,管端电压很低,具有短路的特性。
3、火花放电气体击穿后总是形成收细的发光放电通道,而不再扩散于间隙中的整个空间,称为火花放电。
4、电晕放电电极附近电场最强处出现放电现象称为电晕放电。
发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小,间隙仍能耐受电压的作用。
气体中带电质点的产生气体分子的电离:碰撞电离;光电离;热电离碰撞电离:在电场作用下,电子被加速而获得动能,当电子从电场获得的动能等于或大于气体分子的电离能时,就有可能因碰撞而使气体分子发生电离,分裂为电子和正离子。
光电离:光辐射引起的气体分子的电离过程称为光电离热电离:由分子热运动引起的气体分子的电离。
负离子的形成和电负性气体负离子的形成:电子和气体分子碰撞非但没有电离出新电子,反而是碰撞电子附着于分子,形成了负离子。
电负性气体:能够在电子碰撞过程中形成负离子气体,称为电负性气体。
金属的表面电离金属表面电离:电子从金属表面逸出的过程。
金属表面电离的主要形式:1、正离子碰撞阴极;2、光电效应;3、场致发射;4、热电子放射。
带电质点的消失1、带电质点在电场作用下作定向运动,从而消失于电极(造成电流);2、带电质点的扩散;3、带电质点的复合气体击穿的发展过程(汤逊气体放电理论)图2-5 气体放电试验电路示意图图2-6 气体放电过程中电流与电压的关系为了比较各种结构的电场的不均匀程度,引入电场不均匀系数f,它是最大场强Emax 和平均场强Eav的比值。
根据放电的特征,大致可以做如下区分:不均匀系数f<2 时,属于稍不均匀电场;不均匀系数f>4 后,属于极不均匀电场;不均匀系数2<f<4 时,稍不均匀到极不均匀的过渡区域,属于不均匀电场。
第一章电介质的极化、电导和损耗第二章气体放电理论1)流注理论未考虑的现象。
表面游离2)先导通道的形成是以的出现为特征。
C- C.热游离3)电晕放电是一种。
A--A.自持放电4)气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为C--C.热游离5)以下哪个不是发生污闪最危险的气象条件?D-D.大雨6)以下哪种材料具有憎水性?A--A.硅橡胶20)极性液体和极性固体电介质的相对介电常数与温度和电压频率的关系如何?为什么?极化液体相对介电常数在温度不变时,随电压频率的增大而减小,然后就见趋近于某一个值,当频率很低时,偶极分子来来得及跟随电场交变转向,介电常数较大,当频率接近于某一值时,极性分子的转向已经跟不上电场的变化,介电常数就开始减小。
在电压频率不变时,随温度的升高先增大后减小,因为分子间粘附力减小,转向极化对介电常数的贡献就较大,另一方面,温度升高时分子的热运动加强,对极性分子的定向排列的干扰也随之增强,阻碍转向极化的完成。
极性固体介质的相对介电常数与温度和频率的关系类似与极性液体所呈现的规律。
21)电介质电导与金属电导的本质区别为何?1)带电质点不同:电介质为带电离子(固有离子,杂质离子);金属为自由电子。
2)数量级不同:电介质的γ小,泄漏电流小;金属电导的电流很大。
3)电导电流的受影响因素不同:电介质中由离子数目决定,对所含杂质、温度很敏感;金属中主要由外加电压决定,杂质、温度不是主要因素。
22)简要论述汤逊放电理论。
设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至eαd 个。
假设每次电离撞出一个正离子,故电极空间共有(eαd -1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(eαd -1)个正离子在到达阴极表面时可撞出γ(eαd -1)个新电子,则( eαd -1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的αd电子,则放电达到自持放电。
2019年高电压绝缘复习一.题型1填空(30空30分)2简答(7题70分)二.题库第二章:气体击穿理论分析和气体间隙绝缘1.气体放电的五种形式及其特点:辉光放电:电弧放电:火花放电:电晕放电:刷状放电:注意:电晕放电、刷状放电时气隙未击穿,而辉光放电、火花放电、电弧放电均指击穿后的放电现象,且随条件不同,这些放电现象可相互转换。
2.质点产生四种形式:(1)气体分子本身发生电离①光电离:光辐射引起的气体分子的电离过程。
外光源(紫外线照射)/激励态原子回到基态/正负离子的复合。
②碰撞电离:由于质点碰撞所引起的电离过程。
(主要是电子碰撞电离)。
是气体中产生带电粒子的最重要的方式。
分级电离时能量小于上式。
分析气体放电发展过程时,往往只考虑电子所引起的碰撞电离。
③热电离:因气体热状态引起的电离过程。
热电离实质上是热状态下碰撞电离和光电离的综合。
(2)气体中的固体或液体金属发生表面电离④表面电离:金属表面电离比气体空间电离更易发生。
阴极表面电离在气体放电过程中起着相当重要的作用。
电极表面电离按外加能量形式的不同,可分为四种形式:①正离子撞击阴极表面②光电子发射(光电效应)③热电子发射④强场发射(冷发射)3.质点消失三种形式:①电场作用定向移动消失于电极形成电流。
②扩散:在热运动的过程中,粒子从浓度较大的区域运动到浓度较小的区域,从而使每种粒子的浓度分布均匀化的物理过程。
特点:气压越低,温度越高,扩散进行的越快。
电子的热运动速度大、自由行程长度大,其扩散速度也要比离子快得多。
③带电粒子的复合,气体中带异号电荷的粒子相遇而发生电荷的传递与中和,还原为分子的过程。
带电粒子的复合过程中会发生光辐射,这种光辐射在一定条件下又成为导致电离的因素参与复合的粒子的相对速度越大,复合概率越小。
通常放电过程中离子间的复合更为重要带电粒子浓度越大,复合速度越大,强烈的电离区也是强烈的复合区。
4.汤逊放电:特点:电子的碰撞电离(α过程)和正离子(γ过程)撞击阴极造成的表面电离起主要作用。