第七章 化学动力学 yf
- 格式:ppt
- 大小:2.87 MB
- 文档页数:129
化学动力学化学动力学(chemical kinetics)是研究化学反映过程的速率和反应机理的物理化学分支学科,它的研究对象是物质性质随时间变化的非平衡的动态体系。
化学动力学也称反应动力学、化学反应动力学,是物理化学的一个分支,是研究化学过程进行的速率和反应机理的物理化学分支学科。
它的研究对象是性质随时间而变化的非平衡的动态体系。
它的主要研究领域包括:分子反应动力学、催化动力学、基元反应动力学、宏观动力学、微观动力学等,也可依不同化学分支分类为有机反应动力学及无机反应动力学。
化学动力学往往是化工生产过程中的决定性因素。
时间是化学动力学的一个重要变量。
经典的化学动力学实验方法不能制备单一量子态的反应物,也不能检测由单次反应碰撞所产生的初生态产物。
体系的热力学平衡性质不能给出化学动力学的信息,全面认识一个化学反应过程并付诸实现,不能缺少化学动力学研究。
原则上,如果能从量子化学理论计算出反应体系的正确的势能面,并应用力学定律计算具有代表性的点在其上的运动轨迹,就能计算反应速率和化学动力学的参数。
但是,除了少数很简单的化学反应以外,量子化学的计算至今还不能得到反应体系的可靠的、完整的势能面。
因此,现行的反应速率理论仍不得不借用经典统计力学的处理方法。
这样的处理必须作出某种形式的平衡假设,因而使这些速率理论不适用于非常快的反应。
尽管对于衡假设的适用性研究已经很多,但完全用非平衡态理论处理反应速率问题尚不成熟。
经典的化学动力学实验方法不能制备单一量子态的反应物,也不能检测由单次反应碰撞所产生的初生态产物。
分子束(即分子散射),特别是交叉分子束方法对研究化学元反应动力学的应用,使在实验上研究单次反应碰撞成为可能。
分子束实验已经获得了许多经典化学动力学无法取得的关于化学元反应的微观信息,分子反应动力学是现代化学动力学的一个前沿阵地。
体系的热力学平衡性质不能给出化学动力学的信息。
例如,对以下反应:2H2(气)+O2(气)─→2H2O(气)尽管H2、O2和H2O的所有热力学性质都已准确知道,但只能预言H2和O2生成H2O的可能性,而不能预言H2和O2在给定的条件下能以什么样的反应速率生成H2O,也不能提供H2分子和O2分子是通过哪些步骤结合为H2O分子的信息。
化学动力学化学动力学的概述化学反应动力学主要研究两方面的内容,一是化学反应进行的快慢即反应速率的研究,包括反应快慢的描述,影响反应速率的各种因素。
二是对反应机理的阐述,确定反应的历程,用所建立起来的理论来解释实验得到的结论。
化学反应进行的动力学描述 一、反应速率我们如何对一个反应进行的快慢进行描述呢,注意到反应进度ξ是描述一个反应进行程度的物理量,如果建立起来ξ与时间t 的关系,我们就可以确定出一个反应进行的快慢。
那么t∂∂ξ就可以用来衡量一个反应的快慢,称之为化学反应的转化速率。
我们常用的描述反应快慢的物理量是化学反应速率r=tV ∂∂ξ1,即单位体积内反应进度随时间的变化率。
对于上式,若V 不是t 的函,那么则可以放入微分号内,写成r=tc t V n t V BB B B ∂∂=∂∂=∂∂ννξ1)()(其中νB 表示化学计量数。
对于不同的物质来说νB 是不同的,若有反应αA →βB+γC ,我们定义r A = -tc A∂∂α1为A 的消耗速率,或r B = t c B ∂∂β1的生成速率。
需要注意的是,对于一个反应来说不同物质的化学反应速率是相同的,但是各自的生成(消耗)速率是不同的,与化学计量数成正比。
对于气相反应,我们还可以通过理想气体状态方程来写出它的用压力表示的速率表达式,以及换算关系。
二、速率方程我们确定了描述反应快慢的物理量——化学反应速率,那么这个速率与什么有关,具体的关系又是什么呢?这个关系就是速率方程。
对于反应αA+βB=γC+…来说,其速率方程为,r=k[c A ]a [c B ]b ,其中的r 为整个反应的化学反应速率,若针对某一具体的物质应为r A =k A [c A ]a [c B ]b ,其他物质的表达形式与之类似。
其中,k 称为速率常数,只与温度有关,a 和b 为对应浓度的指数,与α和β一般不等。
只有在基元反应中,才相等。
a+b 称为反应级数,对于任何一个能写成上述简单速率方程的表达式,都是成立的,无论基元反应还是非基元反应。
第七章化学反应动力学一.基本要求1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律和反应机理等。
2.掌握具有简单级数反应的共同特点,特别是一级反应和a = b的二级反应的特点。
学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数和半衰期等。
3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。
4.掌握典型的对峙、平行、连续和链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似和平衡假设),从反应机理推导速率方程。
学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。
5.了解碰撞理论和过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。
了解碰撞理论和过渡态理论的优缺点。
6.了解催化反应中的一些基本概念,了解酶催化反应的特点和催化剂之所以能改变反应速率的本质。
7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率和化学发光等光化反应的一些基本概念。
二.把握学习要点的建议化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而是表现为一种经验规律,反应的速率方程要靠实验来测定。
又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。
反应级数是用幂函数型的动力学方程的指数和来表示的。
由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数和零)、分数(包括正分数和负分数)或小数之分。
对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。
对于初学者,要求能掌握具有简单级数的反应,主要是一级反应、a = b的二级反应和零级反应的动力学处理方法及其特点。
第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应速率的定义3.化学反应的速率方程4.具有简单级数的反应5.几种典型的复杂反应6.温度对反应速率的影响7.链反应 重点1.重点掌握化学反应速率、反应速率常数及反应级数的概念2.重点掌握一级和二级反应的速率方程及其应用3.重点掌握复杂反应的特征,了解处理对行反应、平行反应和连串反应的动力学方法。
4.重点理解阿罗尼乌斯方程的意义并会应用。
明确活化能及指前因子的定义 难点1.通过实验建立速率方程的方法2.稳态近似法、平衡近似法及控制步骤的概念及其运用3.复杂反应的特征及其有关计算 教学方式1.采用CAI 课件与黑板讲授相结合的教学方式。
2.合理运用问题教学或项目教学的教学方法。
教学过程第7.1节化学动力学研究的内容和方法热力学讨论了化学反应的方向和限度,从而解决了化学反应的可能性问题,但实践经验告诉我们,在热力学上判断极有可能发生的化学反应,实际上却不一定发生。
例如合成氨的反应,223()3()2()N g H g NH g ,在298.15K 时,按热力学的结论,在标准状态下此反应是可以自发进行的,然而人们却无法在常温常压下合成氨。
但这并不说明热力学的讨论是错误泊,实际上豆科植物就能在常温常压下合成氨,只是目前还不能按工业化的方式实现,这说明化学反应还存在一个可行性的问题。
因此,要全面了解化学反应的问题,就必须了解化学变化的反应途径----反应机理,必须引入时间变量。
研究化学反应的速率和各种影响反应速率的因素,这就是化学动力学要讨论的主要内容。
一、化学热力学的研究对象和局限性:研究化学变化的方向、能达到的最大限度以及外界条件对平衡的影响。
化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?例如:热力学只能判断这两个反应都能发生,但如何使它发生,热力学无法回答。
二、化学动力学的研究对象 化学动力学研究化学反应的速率和反应的机理以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的影响,把热力学的反应可能性变为现实性。
第七章7-1、证明对于二级反应,当反应物的原始浓度相同时,作用掉3/4原始反应物所需时间等于此反应半衰期的三倍. 证明:对于二级反应000][3)14311(][1)111(][1A k A k A k t ααθαθ=--=--= 02/1][1A k t α=2/13t t =∴θ7-2、反应A 2+B 2→2AB 若为基元反应,速率方程应当怎样?只根据速率方程能否确定是否基元反应? 解:速率方程为]][[22B A k r =只根据速率方程不能确定是基元反应。
例如: H 2+I 2=2HI 的速率方程为 ]][[22I H k r =,但H 2+I 2=2HI 的反应并不是基元反应。
所以只跟据速率 方程不能确定是基元反应。
7-3、试证明一级反应在其原始反应物的转化率从0→50%,50→75%及75→87.5%所需的每段反应时间都等于ln2/k 。
解:对于一级反应:0→50%的时间: k t 2ln 1=50→75%的时间:k k k t 2ln 2ln 4311ln 1=--= 75→87.5%的时间:k k k t 2ln 4311ln 18711ln 1=---= 7-4、反应(CH 3)2CHN=NCH(CH 3)2(g) →N 2(g)+C 6H 12(g)为一级反应。
若反应在恒容反应器中进行,则体系的压力逐渐增大。
假设t =0时,(CH 3)2CHN=NCH(CH 3)2(g)的压力为P i ,此时没有产物。
在t =t 时,反应体系的压力为P 。
证明k =1/t ln[P i /(2P i –P )]解:设(CH 3)2CHN=NCH(CH 3)2(g) , N 2(g), C 6H 12(g)分别为A, B, C A → B + Ct=0 P A,0 0 0 t=t P A,0-P B P B P c =P B 系统总压力 P= P A,0-P B +(P B+ P B )= P A,0+P B 反应物A 的分压P A = P A,0-P B = P A,0-(P- P A,0)=2P A,0-P一级反应⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=P P P t P P t k i i A A 2ln 110, 7-5、温度升高,反应速率为什么增大?从阿仑尼乌斯公式和碰撞理论来解释。
第七章 化学动力学一、 基本内容化学动力学的基本任务是研究化学反应的速率和机理,以及各种因素对反应速率的影响,同时研究反应速率方程等化学动力学普遍规律。
通过本章的学习,读者应掌握浓度、温度、催化剂、光照、溶剂等因素对化学反应速率的影响规律;掌握如反应级数、速率系数、活化能、指前参量等反应系统的特性;了解研究化学动力学的理论方法,即从宏观层次上了解由基元反应构成的总反应过程的机理;以及从更深层次了解基元反应的速率理论。
(一)反应速率设化学反应的计量方程为0=B BB ν∑(B v 为物质B 的化学计量数)对于体积恒定的反应系统,反应速率定义为1d d r V tξ=式中V 为体积,ξ为反应进度,t 为时间。
由于d ξ=B Bd n v , 上式也可以写为B B B B d d 11d d n c r V v tv t==设定容条件下,反应 a A+ b B −−→ d D + e E 则反应物消耗速率为 A A d d c r t=- BB d d c r t =-产物生成速率为 D D d d c r t=E E d d c r t=反应物消耗速率、产物生成速率与反应速率之间的关系为A B D E d d d d 1111d d d d c c c c r a t b td te t=-=-==即A B D E 1111r r r r r ab d e====(二)基元反应的质量作用定律对于基元反应 a A+ b B P其质量作用定律表示为 A B a br kc c =该式表示基元反应的速率与所有反应物浓度项的幂乘积成正比,其中浓度指数恰是反应式中各相应物质化学计量数的绝对值。
其中,比例系数k 为基元反应的速率系数。
质量作用定律只适用于基元反应。
基元反应中反应物分子数的总和称为―反应分子数‖。
(三)反应速率方程(反应动力学方程)一定温度下,表示化学反应系统中反应速率与反应物的浓度间函数关系的方程式称为反应速率方程(有时也与产物浓度有关)。
1.在同一反应中各物质的变化速率相同。
解:错,同一化学反应各物质变化速率比等于计量系数比。
2.若化学反应由一系列基元反应组成,则该反应的速率是各基元反应速率的代数和。
解:错,总反应速率与其他反应速率的关系与反应机理有关。
3.单分子反应一定是基元反应。
解:对,只有基元反应才有反应分子数。
4.双分子反应一定是基元反应。
解:对,只有基元反应才有反应分子数。
5.零级反应的反应速率不随反应物浓度变化而变化。
解:对。
6.若一个化学反应是一级反应,则该反应的速率与反应物浓度的一次方成正比。
解:对。
7.一个化学反应进行完全所需的时间是半衰期的2倍。
解:错。
8.一个化学反应的级数越大,其反应速率也越大。
解:错。
9.若反应A + B→Y + Z的速率方程为:r=kc A c B,则该反应是二级反应,且肯定不是双分子反应。
解:错,不一定是双分子反应。
10. 下列说法是否正确:(1) H2+I2=2HI 是2 分子反应;(2) 单分子反应都是一级反应,双分子反应都是二级反应。
;(3) 反应级数是整数的为简单反应(4) 反应级数是分数的为复杂反应。
解:(1) 错。
(2) 错。
(3) 错。
(4) 对。
11.对于一般服从阿累尼乌斯方程的化学反应,温度越高,反应速率越快,因此升高温度有利于生成更多的产物。
解:错,若为可逆反应,温度升高则逆反应速率常数也增加。
12.若反应(1)的活化能为E1,反应(2)的活化能为E2,且E1 > E2,则在同一温度下k1一定小于k2。
解:错,A与E a和k o都有关。
13.若某化学反应的Δr U m < 0,则该化学反应的活化能小于零。
解:错,E a > 0。
14.对平衡反应A←→Y,在一定温度下反应达平衡时,正逆反应速率常数相等。
解:错,对行反应达平衡时,正、逆反应速率相等。
15.复杂反应的速率取决于其中最慢的一步。
解:错,复杂反应中只有连续反应的速率决定于其中最慢的一步。
16.反应物分子的能量高于产物分子的能量,则此反应就不需要活化能。