概率论与数理统计3-2随机变量函数的数学期望
- 格式:pdf
- 大小:400.51 KB
- 文档页数:15
随机变量的数学期望例题和知识点总结在概率论与数理统计中,随机变量的数学期望是一个非常重要的概念。
它反映了随机变量取值的平均水平,具有十分广泛的应用。
接下来,让我们通过一些具体的例题来深入理解随机变量的数学期望,并对相关知识点进行总结。
一、知识点回顾数学期望,简称期望,记作 E(X)。
对于离散型随机变量 X,其概率分布为 P(X = xᵢ) = pᵢ(i = 1, 2, 3,),则数学期望 E(X) =Σxᵢpᵢ。
对于连续型随机变量 X,其概率密度函数为 f(x),则数学期望 E(X) =∫xf(x)dx(积分区间为整个定义域)。
数学期望具有以下几个重要性质:1、设 C 为常数,则 E(C) = C。
2、设 X 为随机变量,C 为常数,则 E(CX) = CE(X)。
3、设 X、Y 为两个随机变量,则 E(X + Y) = E(X) + E(Y)。
二、例题解析例 1:掷一枚均匀的骰子,设随机变量 X 表示掷出的点数,求 E(X)。
解:骰子的点数分别为 1, 2, 3, 4, 5, 6,且每个点数出现的概率均为1/6。
则 E(X) = 1×(1/6) + 2×(1/6) + 3×(1/6) + 4×(1/6) + 5×(1/6) + 6×(1/6) = 35例 2:已知离散型随机变量 X 的概率分布如下:| X | 0 | 1 | 2 ||||||| P | 02 | 05 | 03 |求 E(X)。
解:E(X) = 0×02 + 1×05 + 2×03 = 11例 3:设连续型随机变量 X 的概率密度函数为 f(x) = 2x,0 < x <1,求 E(X)。
解:E(X) =∫0,1 x×2x dx = 2/3例 4:已知随机变量 X 服从参数为λ 的泊松分布,求 E(X)。
解:泊松分布的概率质量函数为 P(X = k) =(e^(λ)λ^k) / k!E(X) =Σk×(e^(λ)λ^k) / k! (k 从 0 到正无穷)通过计算可得 E(X) =λ三、应用场景数学期望在实际生活中有很多应用。
《概率论与数理统计》第四章随机变量的数字特征数学期望:1.随机变量数学期望的定义—连续型E(ξ)=⎰-∞+∞xp(x)dx E(g(ξ))=⎰-∞+∞g(x)p(x)dx 2.二维随机变量(X,Y)的数学期望:连续型E(X)=⎰-∞+∞xf X (x)dx=⎰-∞+∞⎰-∞+∞xf(x,y)dxdy E(Y)=⎰-∞+∞yf Y (y)dy=⎰-∞+∞⎰-∞+∞yf(x,y)dxdy 3.二维随机变量X 的函数Y=g(X)的数学期望:E[g(X,Y)]=⎰-∞+∞⎰-∞+∞g(x,y)f(x,y)dxdy 4.数学期望的性质E(c)=c ,E(a ξ)=a ξ,E(ξ±η)=E ξ±E η若ξ与η相互独立,则E(ξη)=E ξE η方差:1.随机变量方差的定义−−-D(X)=E[X-E(X)]2=EX 2–(EX)2D(X)=⎰-∞+∞[x-E(X)]2f(x)dx 2.方差性质:D(c)=0,D(a ξ)=a 2ξ,D(a ξ+b)=a 2D ξ,D(ξ±η)=D ξ+D η±2cov(ξ,η)若ξ与η相互独立,则D(ξ±η)=D ξ+D η协方差:1.ξ与η的协方差cov(ξ,η)=E[(ξ-E ξ)(η-E η)](或为σξη)2.协方差的性质:cov(ξ,ξ)=D ξcov(ξ,η)=cov(η,ξ),cov(ξ,c)=0cov(a ξ,b η)=ab cov(ξ,η),cov(ξ,η±ζ)=cov(ξ,η)±cov(ξ,ζ)3.协方差矩阵:设n 维随机变量X 1,X 2,…,X n ,记c ij =cov(X i ,X j ),则称阶矩阵C=(c ij )n ⨯n 为X 1,X 2,…,X n 的协方差矩阵例1:设ξ的密度函数p(x)=2x ∈[1,3]其它求:E ξ[解]∵1=⎰-∞+∞p(x)dx ∴c=3/2;E ξ=⎰-∞+∞xp(x)dx=⎰13x 32x 2dx=32lnx=32ln3.例2设x 1,x 2是随机变量ξ的两个任意取值,证明:E[(ξ-x 1+x 22)2]≥D ξ。
概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。
两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。
2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。