二、奇函数定义:
一般地,设函数()的定义域为 ,如果∀ ∈ ,
都有− ∈ ,且(−) = −(),那么函数()就叫做
奇函数。
定义理解: 1.定义域关于原点对称。
2.图象关于原点对称。
例析
例.判断下列函数的奇偶性.
(1)() = 4 ;
(3)() = +
(2)() = 5 ;
(2)再判断f (-x)=-f (x)或f (-x)=f (x)是否恒成立;
(3)根据定义下结论.
三、达标检测
1.下列函数是偶函数的是(
A.f(x)=x
)
B.f(x)=2x2-3
C.f(x)= x
C
D.f(x)=x2,x∈(-1,1]
3. 若函数y = f x , x ∈ −1, a a > −1 是奇函数,则 = (
答:当自变量取一对相反数时,相应的两个函数值()也是一对相反数.
推理证明
例如,对于函数f(x) = x,有
(−3) = −(3)
(−2) = −(2)
(−1) = −(1)
实际上,∀x ∈ R, 都有 f −x = −x = −f(x)
这时称函数() = x为奇函数.
新课讲解——奇函数
3.2函数的基本性质
➢3.2.2 奇偶性
一、观察探究:
画出并观察函数f x = x 2 和g x = 2 − x 的图象,你能发现这两个函
数图象有什么共同特征吗?
两个函数图象都关于y轴对称
一、观察探究
不妨取自变量的一些特殊值,观察相应函数值的情况,如下表:
相反数
发现:当自变量取一对相反数时,相应的两个函数值相等。
. > −3 > (−2)