第二章红外光谱习题
- 格式:docx
- 大小:15.81 KB
- 文档页数:3
红外分光光光度法1.CO 的红外光谱在2 170cm -1处有一振动吸收峰.问(1)CO 键的力常数是多少?(2)14CO 的对应峰应在多少波数处发生吸收? 解:碳原子的质量2323100.210022.612--⨯=⨯=C m g 氧原子的质量2323106.210022.616--⨯=⨯=O m g (1) σ =2071cm -1O C O C m m m m k c ⋅+=)(21πσ 2346210210)6.22(106.22)217010314.32()2(--⨯+⨯⨯⨯⨯⨯⨯⨯=+=O C O C m m m m c k σπ=18.6×105 dyn·cm -1=18.6N·cm -1(厘米克秒制)(2)14CO 2323103.210022.614-⨯=⨯=C m g2071106.23.210)6.23.2(106.1810314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -1或O C O C O C O C m m m m m m m m +⋅⨯⋅+=1212141412σσ σ =2080cm -12.已知C―H 键的力常数为5N/cm ,试计算C―H 键伸展振动的吸收峰在何波数?若将氘(D )置换H ,C―D 键的振动吸收峰为多少波数.解:C-H 键:k =5N·cm -1=5.0×105dyn·cm -1碳原子的质量:m C =2.0×10-23g, 氢原子的质量:23231017.010022.61--⨯=⨯=H m g氘原子的质量: 23231034.010022.62--⨯=⨯=D m g 依2121)(21m m m m k c ⋅+=πσ得29961017.00.210)17.00.2(10510314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -121991034.00.210)34.00.2(10510314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -13.指出以下振动在红外光谱中是活性的还是非活性的分 子 振 动(1)CH 3一CH 3 C―C 伸缩振动(2)CH 3一CC13 C―C 伸缩振动(3)SO 2 对称伸缩振动(4)CH 2=CH 2 C―H 伸缩振动C CH H(5)CH 2=CH 2 C―H 伸缩振动C CH H(6)CH 2=CH 2 CH 2摆动 C C HHH H (7)CH 2=CH 2 CH 2扭曲振动 C CH H H H解:非红外活性:(1), (5), (7)红外活性:(2), (4), (6), (8)4.下面三个图形(图4-20)分别为二甲苯的三种异构体的红外光谱图。
红外光谱练习题红外光谱作为一种非常重要的分析方法,在化学、材料科学等领域中得到广泛应用。
本文将针对红外光谱进行一系列练习题,旨在帮助读者加深对该分析方法的理解和应用。
一、选择题1. 关于红外光谱,下面说法中正确的是:A. 红外辐射的波长范围在380-780 nm之间B. 红外光谱主要研究紫外线的吸收特征C. 红外光谱是利用物质的红外辐射进行分析的方法D. 红外光谱只适用于溶液状样品的分析2. 下列哪个峰位代表了化学键中C-H键的伸展振动?A. 1600 cm-1B. 2900 cm-1C. 3400 cm-1D. 4000 cm-13. 对于一份有机物样品的红外光谱图谱,下列哪种波带最常见?A. 单峰B. 双峰C. 三峰D. 多峰4. 在红外光谱分析中,通过观察哪些特征可以判断化合物是否含有酰基?A. 1650 cm-1和1720 cm-1之间的伸缩振动B. 900 cm-1和1000 cm-1之间的振动C. 3300 cm-1附近的振动D. 2800 cm-1附近的振动二、判断题1. 在红外光谱图谱中,波数越大代表分子中的原子或基团振动频率越低。
正确 / 错误2. 红外光谱图谱中出现强吸收峰,代表该波数处的化学键伸缩振动很强。
正确 / 错误3. 红外光谱可以用于定性分析,但不能用于定量分析。
正确 / 错误4. 在红外光谱分析中,鉴别化学键主要依靠峰位的位置而非峰的强度。
正确 / 错误三、解答题1. 简述红外光谱分析的原理和在化学领域中的应用。
2. 通过红外光谱图谱,如何判断有机物中是否存在羧基?3. 举例说明红外光谱在材料科学上的应用,并对其优劣进行评价。
4. 解释红外光谱图谱中碳氢不饱和基团所产生的吸收峰特征。
四、应用题请参阅附图中给出的红外光谱图谱,并回答以下问题。
1. 该有机化合物中可能含有哪些具有特定红外光谱特征的基团?2. 根据图谱,推测该有机化合物的化学式。
3. 该有机化合物的主要官能团是什么?4. 进一步应用红外光谱,你觉得可以对该有机化合物进行怎样的性质、结构等方面的分析?附图:(插入红外光谱图谱)结语通过此系列红外光谱练习题,相信读者对红外光谱的理论知识和实际应用有了更深入的了解。
第一章紫外光谱一、单项选择题1、共轭体系对λmax的影响( A)A共轭多烯的双键数目越多,HOMO与LUMO之间能量差越小,吸收峰红移B共轭多烯的双键数目越多,HOMO与LUMO之间能量差越小,吸收峰蓝移C共轭多烯的双键数目越多,HOMO与LUMO之间能量差越大,吸收峰红移D共轭多烯的双键数目越多,HOMO与LUMO之间能量差越大,吸收峰蓝移2、溶剂对λmax的影响(B)A溶剂的极性增大,π→π*跃迁所产生的吸收峰紫移B溶剂的极性增大,n →π*跃迁所产生的吸收峰紫移C溶剂的极性减小,n →π*跃迁所产生的吸收峰紫移D溶剂的极性减小,π→π*跃迁所产生的吸收峰红移3. 苯环引入甲氧基后,使λmax(C)A没有影响B向短波方向移动C向长波方向移动D引起精细结构的变化4、以下化合物可以通过紫外光谱鉴别的是:(C)OCH3与与与与A BC D二、简答题1)举例说明苯环取代基对λmax的影响答:烷基(甲基、乙基)对λmax影响较小,约5-10nm;带有孤对电子基团(烷氧基、烷氨基)为助色基,使λmax红移;与苯环共轭的不饱和基团,如CH=CH,C=O等,由于共轭产生新的分子轨道,使λmax显著红移。
2)举例说明溶剂效应对λmax的影响答:溶剂的极性越大,n → π*跃迁的能量增加,λmax 向短波方向移动;溶剂的极性越大,π→ π*跃迁的能量降低,λmax 向长波方向移动。
三、计算下列化合物的λmax1)2)CH 33)OOHO4)1)λmax = 217(基本值)+30(共轭双键)+15(环外双键3×5)+35烷基(7×5)= 357nm2)λmax = 217(基本值)+30(共轭双键)+10(环外双键2×5)+25烷基(5×5)= 342nm3)λmax = 215(基本值)+30(共轭双键)+5(环外双键1×5)+ 30烷基(1×12+1×18)= 280nm4)λmax = 215(基本值)+ 59羟基(1×35+2×12)= 274nm第二章 红外光谱一、 单项选择题1、双原子分子中,折合质量、键的力常数与波数(ν)之间的关系为(C )A 折合质量与波数成正比B 折合质量与键的力常数成正比C 键的力常数与波数成正比D 键的力常数与波数无关2、诱导效应对红外吸收峰峰位、峰强的影响 (B )A 基团的给电子诱导效应越强,吸收峰向高波数移动B基团的给电子诱导效应越强,吸收峰向低波数移动C基团的吸电子诱导效应越强,吸收峰越强D基团的吸电子诱导效应越强,吸收峰越弱3、游离酚羟基伸缩振动频率为3650cm-1~3590cm-1,缔合后移向3550cm-1~3200cm-1,缔合的样品溶液不断稀释,νOH峰(D)A逐渐移向低波数区B转化为δOHC 位置不变A D 逐渐移向高波数区4、孤立甲基的弯曲振动一般为1380cm-1,异丙基中的甲基分裂分为1385cm-1和1375cm-1,叔丁基中的甲基为1395cm-1和1370cm-1,造成的原因是(B)A分子的对称性B振动耦合C费米共振D诱导效应5、酸酐、酯、醛、酮和酰胺五类化合物的νC=O出现在1870cm-1至1540m-1之间,它们νC=O的排列顺序是(B)A酸酐<酯<醛<酮<酰胺B酸酐>酯>醛>酮>酰胺C酸酐>酯>酰胺>醛>酮D醛>酮>酯>酸酐>酰胺A③>②>①>④6、红外光谱用于鉴别同源化合物有独特的好处,仅需要根据结构差异部分的基团振动就可以作出合理裁决。
“材料研究方法与测试技术”课程练习题第二章红外光谱法1.为什么说红外光谱是分子振动光谱?分子吸收红外光的条件是什么?双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与哪些因素有关?答案:这是由于红外光谱是由样品分子振动吸收特定频率红外光发生能级跃迁而形成的。
分子吸收红外光的条件是:(1)分子或分子中基团振动引起分子偶极矩发生变化;(2)红外光的频率与分子或分子中基团的振动频率相等或成整数倍关系。
双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与双原子的折合质量(或质量)和双原子之间化学键的力常数(或键的强度;或键的离解能)有关。
2.用诱导效应、共轭效应和键应力解释以下酯类有机化合物的酯羰基吸收峰所处位置的范围与饱和脂肪酸酯的酯羰基吸收峰所处位置范围(1735~1750cm-1)之间存在的差异。
芳香酸酯:1715~1730cm-1α酮酯:1740~1755cm-1丁内酯:~1820cm-1答案:芳香酸酯:苯环与酯羰基的共轭效应使其吸收峰波数降低;α酮酯:酯羰基与其相连的酮羰基之间既存在共轭效应,也存在吸电子的诱导效应,由于诱导效应更强一些,导致酯羰基吸收峰的波数上升;丁内酯:四元环的环张力使酯羰基吸收峰的波数增大。
3.从以下FTIR谱图中的主要吸收峰分析被测样品的化学结构中可能存在哪些基团?分别对应哪些吸收峰?答案:3486cm-1吸收峰:羟基(-OH);3335cm-1吸收峰:胺基(-NH2或-NH-);2971cm-1吸收峰和2870cm-1吸收峰:甲基(-C H3)或亚甲基(-CH2-);2115cm-1吸收峰:炔基或累积双键基团(-N=C=N-);1728cm-1吸收峰:羰基;1604cm-1吸收峰、1526cm-1吸收峰和1458cm-1吸收峰:苯环;1108cm-1吸收峰和1148cm-1吸收峰:醚基(C-O-C)。
1232cm-1吸收峰和1247cm-1吸收峰:C-N。
第三章拉曼光谱法1. 影响拉曼谱峰位置(拉曼位移)和强度的因素有哪些?如果分子的同一种振动既有红外活性又有拉曼活性,为什么该振动产生的红外光谱吸收峰的波数和它产生的拉曼光谱峰的拉曼位移相等?答案:影响拉曼谱峰位置的因素主要有:样品分子的化学结构和样品的聚集态结构。
波谱分析-习题集参考答案-1002第一章紫外光谱一、单项选择题1. 比较下列类型电子跃迁的能量大小( A)Aσ→σ* > n→σ* > π→π* > n →π*Bπ→π* > n →π* >σ→σ* > n→σ*Cσ→σ* > n→σ* > > n →π*> π→π*Dπ→π* > n→π* > > n→σ*σ→σ*2、共轭体系对λmax的影响( A)A共轭多烯的双键数目越多,HOMO与LUMO之间能量差越小,吸收峰红移B共轭多烯的双键数目越多,HOMO与LUMO之间能量差越小,吸收峰蓝移C共轭多烯的双键数目越多,HOMO与LUMO之间能量差越大,吸收峰红移D共轭多烯的双键数目越多,HOMO与LUMO之间能量差越大,吸收峰蓝移3、溶剂对λmax的影响(B)A溶剂的极性增大,π→π*跃迁所产生的吸收峰紫移B溶剂的极性增大,n →π*跃迁所产生的吸收峰紫移C溶剂的极性减小,n →π*跃迁所产生的吸收峰紫移D溶剂的极性减小,π→π*跃迁所产生的吸收峰红移4、苯及其衍生物的紫外光谱有:(B)A二个吸收带B三个吸收带C一个吸收带D没有吸收带5. 苯环引入甲氧基后,使λmax(C)A没有影响B向短波方向移动C向长波方向移动D引起精细结构的变化6、以下化合物可以通过紫外光谱鉴别的是:(C)OCH3与与与与A BC D二、简答题1)发色团答:分子中能吸收紫外光或可见光的结构2)助色团本身不能吸收紫外光或可见光,但是与发色团相连时,可以使发色团的吸收峰向长波答:方向移动,吸收强度增加。
3)红移答:向长波方向移动4)蓝移答:向短波方向移动5)举例说明苯环取代基对λmax的影响答:烷基(甲基、乙基)对λmax影响较小,约5-10nm;带有孤对电子基团(烷氧基、烷氨基)为助色基,使λmax红移;与苯环共轭的不饱和基团,如CH=CH,C=O 等,由于共轭产生新的分子轨道,使λmax显著红移。
红外吸收光谱法习题一、填空题1、一般将多原子分子的振动类型分为振动和振动,前者又可分为振动和反对称伸缩振动,后者可分为和。
2、红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 、和 ,其中的应用最广。
3、红外光谱法主要研究振动中有变化的化合物,因此和等外,几乎所有的化合物在红外光区均有吸收。
4、在红外光谱中,将基团在振动过程中有变化的称为 ,相反则称为。
一般来说,前者在红外光谱图上。
5、红外分光光度计的光源主要有和。
6、基团一OH、一NH;==CH;一CH的伸缩振动频率范围分别出现在cm-1, cm-1, cm-1。
7、基团一C≡C、一C≡N ;—C=O;一C=N 一C=C—的伸缩振动频率范围分别出现在 cm-1, cm-1, cm-1。
8、区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为区;区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的一样,故称为。
二、选择题1、二氧化碳分子的平动、转动和振动自由度的数目分别()A. 3,2,4B. 2,3,4C. 3,4,2D. 4,2,32.乙炔分子的平动、转动和振动自由度的数目分别为()A. 2,3,3B. 3,2,8C. 3,2,7D. 2,3,73、二氧化碳的基频振动形式如下()(1)对称伸缩 O==C==O (2)反对称伸缩 O==C==O←→←←(3)x,y平面弯曲↑O==C==O ↑(4)x,z平面弯曲↑O==C==O ↑→→指出哪几个振动形式是非红外活性的?A .(1),(3) B.(2) C.(3) D. (1)4、下列数据中,哪一组数据所涉及的红外光谱区能够包括CH3CH2COH的吸收带?()A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。
B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。
C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。
红外光谱习题一.选择题1.红外光谱是(ACE )A :分子光谱B :原子光谱C :吸光光谱D :电子光谱E :振动光谱2.当用红外光激发分子振动能级跃迁时,化学键越强,则(ACE )A :吸收光子的能量越大B :吸收光子的波长越长C :吸收光子的频率越大D :吸收光子的数目越多E :吸收光子的波数越大3.在下面各种振动模式中,不产生红外吸收的是(AC )A :乙炔分子中对称伸缩振动B :乙醚分子中不对称伸缩振动C :CO 2分子中对称伸缩振动D :H 2O 分子中对称伸缩振动E :HCl 分子中H -Cl 键伸缩振动4.下面五种气体,不吸收红外光的是(D )A:OH 2B:2CO C:HClD:2N 5分子不具有红外活性的,必须是(D )A:分子的偶极矩为零B:分子没有振动C:非极性分子D:分子振动时没有偶极矩变化E:双原子分子6.预测以下各个键的振动频率所落的区域,正确的是(AD )A:O-H伸缩振动数在4000~25001-cmB:C-O 伸缩振动波数在2500~15001-cmC:N-H 弯曲振动波数在4000~25001-cmD:C-N 伸缩振动波数在1500~10001-cmE:C≡N 伸缩振动在1500~10001-cm7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是(B )A:乙烷中C-H 键,=k 5.1510⨯达因1-⋅cmB:乙炔中C-H 键,=k 5.9510⨯达因1-⋅cmC:乙烷中C-C 键,=k 4.5510⨯达因1-⋅cmD:CH 3C≡N 中C≡N 键,=k 17.5510⨯达因1-⋅cmE:蚁醛中C=O 键,=k 12.3510⨯达因1-⋅cm8.羰基化合物中,当C=O 的一端接上电负性大的基团则(ACE )A:羰基的双键性增强B:羰基的双键性减小C:羰基的共价键成分增加D:羰基的极性键成分减小E:使羰基的振动频率增大9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是(E )A:B:C:D:E:10.共轭效应使双键性质按下面哪一种形式改变(ABCD )A:使双键电子密度下降B:双键略有伸长C:使双键的力常数变小D.使振动频率减小E:使吸收光电子的波数增加11.下五个化合物羰基伸缩振动的红外吸收波数最小的是(E )A:B:C:D:E:12.下面四个化合物中的C=C 伸缩振动频率最小的是(D )A:B:C:D:13.两个化合物(1),(2)如用红外光谱鉴别,主要依据的谱带是(C )A(1)式在~33001-cm 有吸收而(2)式没有B:(1)式和(2)式在~33001-cm 都有吸收,后者为双峰C:(1)式在~22001-cm 有吸收D:(1)式和(2)式在~22001-cm 都有吸收E:(2)式在~16801-cm 有吸收14.合物在红外光谱的3040~30101-cm 及1680~16201-cm 区域有吸收,则下面五个化合物最可能的是(A )A:B:C:D:E:15.一种能作为色散型红外光谱仪色散元件的材料为(C )A 玻璃B 石英C 卤化物晶体D 有机玻璃16.预测H2S 分子的基频峰数为(B )(A)4(B)3(C)2(D)117.CH 3—CH 3的哪种振动形式是非红外活性的(A )(A)υC-C (B)υC-H (C)δasCH (D)δsCH18.化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰,这是因为(C )(A)诱导效应(B)共轭效应(C)费米共振(D)空间位阻19.Cl2分子在红外光谱图上基频吸收峰的数目(A)A0B1C2D320.红外光谱法,试样状态可以(D)A气体状态B固体,液体状态C固体状态D气体,液体,固体状态都可以21.红外吸收光谱的产生是由(C)A分子外层电子、振动、转动能级的跃迁B原子外层电子、振动、转动能级的跃迁C分子振动-转动能级的跃迁D分子外层电子的能级跃迁22.色散型红外分光光度计检测器多(C)A电子倍增器B光电倍增管C高真空热电偶D无线电线圈23.一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰,下列化合物最可能的(C)A CH3-CHOB CH3-CO-CH3C CH3-CHOH-CH3D CH3-O-CH2-CH324.某化合物在紫外光区204nm处有一弱吸收,在红外光谱中有如下吸收峰:3300-2500cm-1(宽峰),1710cm-1,则该化合物可能是(C)A、醛B、酮C、羧酸D、烯烃二.填空1对于同一个化学键而言,C-H键,弯曲振动比伸缩振动的力常数__小__,所以前者的振动频率比后者__小___.2C-H,C-C,C-O,C-Cl,C-Br键的振动频率,最小的是C-Br_.3C-H,和C-D键的伸缩振动谱带,波数最小的是C-D_键.4在振动过程中,键或基团的_偶极矩_不发生变化,就不吸收红外光.5以下三个化合物的不饱和度各为多少?(1)188H C ,U =_0__.(2)N H C 74,U =2.(3),U =_5_.6C=O 和C=C 键的伸缩振动谱带,强度大的是_C=O_.7在中红外区(4000~6501-cm )中,人们经常把4000~13501-cm 区域称为_官能团区_,而把1350~6501-cm 区域称为_指纹区.8氢键效应使OH 伸缩振动频率向_长_波方向移动.9羧酸在稀溶液中C=O 吸收在~17601-cm ,在浓溶液,纯溶液或固体时,健的力常数会变小,使C=O 伸缩振动移向_长波_方向.10试比较与,在红外光谱中羰基伸缩振动的波数大的是__后者__,原因是_R’与羰基的超共轭__.11试比较与,在红外光谱中羰基伸缩振动的波数大的是_后者__,原因是__电负性大的原子使羰基的力常数增加_.12随着环张力增大,使环外双键的伸缩振动频率_增加__,而使环内双键的伸缩振动频率__减少_.三.问答题1.分子的每一个振动自由度是否都能产生一个红外吸收?为什么?2.如何用红外光谱区别下列各对化合物?a P-CH 3-Ph-COOH 和Ph-COOCH 3b苯酚和环己醇3.一个化合物的结构不是A 就是B,其部分光谱图如下,试确定其结构。
《红外光谱》课后习题1、CO 2分子的基本振动形式与其红外光谱CO 2为线性分子,振动自由度 = 3×3﹣5 = 4,其四种振动形式及其红外光谱见图1。
图1 CO 2分子的振动形式与其红外光谱CO 2有四种振动形式,但红外图上只出现了两个吸收峰,(2349㎝-1和666㎝-1),这是因为CO 2的对称伸缩振动,不引起瞬间偶极矩变化,是非红外活性的振动,因而无红外吸收,CO 2面内弯曲振动(δ)和面外弯曲振动(γ)频率完全相同,谱带发生简并。
2、下列化合物的红外光谱有何不同?CH 3-CH==CH -CH 3 CH 3-CH==CH 2(A ) (B )解:(A )、(B )都在1680~1620㎝-1区间有νC=C 的吸收,但(A )分子对称性较高,对称伸缩振动时,引起瞬间偶极矩变化较小,吸收小、峰较弱。
另外,C -H 的面外弯曲振动(γCH )不同,(B )为RCH=CH 2单取代类型,在990㎝-1和910㎝-1处有两个强的吸收峰,而(A )为RCH=CR ′H 双取代类型,在970㎝-1(反式)或690㎝-1(顺式)处有一个中强或强的吸收峰。
3、下列化合物的红外光谱有何不同? CH 3CH 3CH 3CH 3(A )(B )解:(A )、(B )主要在1000~690㎝-1区间内的吸收不同,(A )有三个相邻的H 原子,通常情况下,这三个相邻的H 原子相互偶合,在900~690㎝-1区间内出现两个吸收峰,即在810~750㎝-1区间内有一强峰,在725~680㎝-1区间内出现一中等强度的吸收峰。
而(B )有两个相邻的H ,所以在860~800㎝-1区间内出现一中等强度的吸收峰。
4、下列化合物在3650~1650㎝-1区间内红外光谱有何不同?CH 3CH 2COOH CH 3CH 2C O H C O CH 3CH 3(A ) (B ) (C )解:(A )、(B )、(C )三者在1700~1650㎝-1区域内均有强的吸收。
第二章红外光谱
一、判断题
[1] 红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。
(√)
[2] 同核双原子分子N≡N、Cl-Cl、H-H等无红外活性。
(√)
[3] 由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动耦合谱带。
(√)
[4] 确定某一化合物骨架结构的合理方法是红外光谱分析法。
(×)
[5] 对称结构分子,如H2O分子,没有红外活性,水分子的H-O-H对称伸缩振动不产生吸收峰。
(×)
[6] 红外光谱图中,不同化合物中相同基因的特征频率峰总是在特定波长范围内出现,故可以根据红外光谱图中的特征频率峰来确定化合物中该基团的存在。
(√)
[7] 不考虑其他因素的影响,下列羰基化合物υc=0伸缩频率的大小顺序为:酰卤>酰胺>酸>醛>酯。
(×)
[8] 醛基中υC=H伸缩频率出现在2720cm-1。
(√)
[9] 红外光谱与紫外光谱仪在构造上的差别是检测器不同。
(×)
[10] 当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。
(×)
[11] 游离有机酸C=O伸缩振动υc=0频率一般出现在1760cm-1,但形成多聚体时,吸收频率会向高波数移动。
(×)
[12] 醛、酮、羧酸等的羰基的伸缩振动在红外光谱中的吸收峰频率相同。
(×)
[13] 红外吸收峰的数目一般比理论振动数目少,原因之一是有些振动是非红外活性的。
(√)
[14] 红外光谱的特点是一方面官能团的特征吸收频率的位置基本上是固定的,另一方面它们又不是绝对不变的,其频率位移可以反映分子的结构特点。
(√)
[15] Fermi共振是一个基频振动与倍频(泛频)或组频之间产生耦合作用。
(√)
二、选择题(单项选择)
[1] 红外光可引起物质的能级跃迁是(C)。
A. 分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁;
B. 分子内层电子能级的跃迁;
C. 分子振动能级及转动能级的跃迁;
D. 分子转动能级的跃迁。
[2] H2O在红外光谱中出现的吸收峰数目为(A)。
A. 3
B. 4
C. 5
D. 2
[3] 在红外光谱中,C=O的伸缩振动吸收峰出现的波数(cm-1) 范围(A )。
A. 1900~1650
B. 2400~2100
C. 1600~1500
D. 1000~650
[4] 在下列分子中,不能产生红外吸收的是(D )。
A. CO
B. H2O
C. SO2
D. H2
[5] 下列化学键的伸缩振动所产生的吸收峰波数最大的是(D)。
A. C=O
B. C-H
C. C=C
D. O-H
[6] 表示红外分光光度法通常是(C)。
A. HPLC
B. GC
C. IR
D. TLC
[7] 羰基化合物①RCOR、②RCOCl、③RCOH、④RCOF中,C=O伸缩振动频率最高的是(D )。
A. ①
B. ②
C. ③
D. ④
[8] 在醇类化合物中,O-H伸缩振动频率随溶液浓度增加而向低波数移动,原因是(B )。
A. 溶液极性变大;
B. 分子键氢键增强;
C. 诱导效应变大;
D. 易产生振动耦合。
[9] 某化合物在紫外光区270nm处有一弱吸收,在红外光谱中有如下吸收峰:2700~2900cm-1,1725 cm-1,则该化合物可能是(A)。
A. 醛
B. 酮
C. 羧酸
D. 酯
[10] 某化合物在紫外光区204nm处有一弱吸收,在红外光谱中有如下吸收峰:3300~2500cm-1,1710cm-1,则该化合物可能是(C)。
A. 醛
B. 酮
C. 羧酸
D. 酯
[11] CO2分子的平动、转动、振动自由度为(A)。
A. 3,2,4
B. 2,3,4
C. 3,4,2
D. 4,2,3
[12] 某化合物在紫外光区未见吸收,在红外光谱上3400~3200cm-1有强烈吸收,该化合物可能是(C )。
A. 羧酸
B. 酚
C. 醇
D. 醚
[13] 某化合物,其红外光谱上3000~2800cm-1、1450cm-1、1375cm-1和720cm-1等处有主要吸收带,该化合物可能是(A )。
A. 烷烃
B. 烯烃
C. 炔烃
D. 芳烃
[14] 红外光谱分析分子结构的主要参数是(B)。
A. 质荷比
B. 波数
C. 耦合常数
D. 保留值
[15] 应用红外光谱法进行定量分析优于紫外光谱法的一点的是(B )。
A. 灵敏度高;
B. 可测定的范围广;
C. 可以测定低含量组分;
D. 测量误差小。
[16] 时间域函数与频率域函数采用什么方法进行转换?(B)
A. 测量峰面积;
B. 傅立叶变换;
C. 使用Michelson干涉仪;
D. 强度信号由吸光度改为透光率。
[17] 测定有机化合物的相对分子质量,应采用何法?(C)
A. 气相色谱法;
B. 红外光谱;
C. 质谱分析法;
D. 核磁共振法。
[18] 下列气体中,不能吸收红外光的是(D )。
A. H2O
B. CO2
C. HCl
D. N2
[19] 某化合物在紫外光区未见吸收,在红外光谱的官能团区有如下吸收峰:3000cm-1 左右,1650cm-1。
该化合物可能是(B)。
A. 芳香族化合物
B. 烯烃
C. 醇
D. 酮
[20] 乙酰乙酸乙酯有酮式和烯醇式两种互变异构体,与烯醇式结构相对应的一组特征红外吸收峰是(B)。
A. 1738cm-1,1717 cm-1
B. 3000cm-1,1650cm-1
C. 3000cm-1,1738cm-1
D. 1717cm-1,1650cm-1
[21] 红外吸收光谱是(A )。
A. 吸收光谱;
B. 发射光谱;
C. 电子光谱;
D. 线光谱。
[22] 某化合物在1500~2800cm-1无吸收,该化合物可能是(A )。
A. 烷烃
B. 烯烃
C. 芳烃
D. 炔烃
[23] 芳香酮类化合物C=O伸缩振动频率向低波数位移的原因为(A )。
A. 共轭效应;
B. 氢键效应;
C. 诱导效应;
D. 空间效应。
[24] 红外光谱给出分子结构的信息是(C)。
A. 相对分子量;
B. 骨架结构;
C. 官能团;
D. 连接方式。
[25] 下列化合物υC=O频率最大的是(D )
[26] 酰胺类化合物C=O振动频率多出现在1680~1650cm-1范围内,比醛酮C=O伸缩振动频率低的原因为(B )。
A. 共轭效应和形成分子间氢键;
B. 中介效应和形成分子间氢键;
C. 诱导效应和形成分子内氢键;
D. 中介效应和形成分子内氢键。
[27] 酯类化合物的两个特征谱带是(A )。
A. 1760~1700cm-1和1300~1000cm-1
B. 1760~1700cm-1和900~650cm-1
C. 3300~2500cm-1和1760~1700cm-1
D. 3000~2700cm-1和1760~1700cm-1
[28] 确定烯烃类型的两个特征谱带是(B)。
A. 1680~1630cm-1和1300~1000cm-1
B. 1680~1630cm-1和1000~700cm-1
C. 2300~2100cm-1和1000~700cm-1
D. 3000~2700cm-1和1680~1630cm-1
[29] 在透射法红外光谱中,固体样品一般采用的制样方法是(B )。
A. 直接研磨压片测定
B. 与KBr混合研磨压片测定
C. 配成有机液测定
D. 配成水溶液测定
[30] 在CO2的四种振动自由度中,属于红外非活性振动而非拉曼活性振动的是(B)。
A. 不对称伸缩振动
B. 对称伸缩振动
C. 面内变形振动
D. 面外变形振动。