含硫含酸原油腐蚀问题和对策论文
- 格式:doc
- 大小:25.50 KB
- 文档页数:6
加工含硫原油的设备腐蚀问题与对策*摘要综述了加工含硫原油对设备的腐蚀问题和应采取的对策。
认为应提高原料油和产品的脱硫能力,和做好工艺防腐及设备的选材工作。
关键词含硫原油性质腐蚀与防护世界原油的硫含量在不断升高,目前硫含量在1%以上的原油占世界原油总产量的55%以上。
据预测原油平均相对密度将上升到 3 g/cm3,硫含量将上升到%。
2001年中国石油化工集团公司下发了《加工高含硫原油安全管理规定》,明确含硫量在1%以上的原油为高含硫原油。
随着我国沿海炼油厂加工含硫原油规模的不断扩大和我国环保要求的不断提高,加工含硫原油所面临的问题也越来越多。
含硫原油有两个比较突出的特点,一是硫含量高,如伊朗拉万原油的硫含量达%,其大于500℃的减压渣油硫含量高达%;二是轻馏分多,蜡油收率较高,如沙特拜里原油小于180℃轻馏分质量收率达%,而我国胜利原油小于180℃轻馏分质量收率只有%(几乎不含C3和C4)。
因此加工含硫原油带来了加工工艺的改动、设备的腐蚀与防护,以及环境保护等问题。
1 含硫原油的主要性质含硫原油主要来自中东,如沙特、伊朗、伊拉克、阿联酋、科威特、阿曼等国家,其主要性质见表1。
从中可见,含硫原油与中国胜利原油相比,轻馏分都较多,密度、粘度、酸值、胶质、凝点和闪点都较低,钒含量则普遍较高,各段馏分的硫含量都较高。
表1 含硫原油的主要性质原油种类伊朗拉万沙特轻质伊朗重质伊朗轻质沙特拜里加蓬曼吉美国北坡阿曼阿联酋穆尔班中国胜利评价日期1997-08-06 1995-03-061997-03-051995-08-271995-12-231997-06-231998-07-271997-07-171993-06-031998-05-20含量,% 0密度/()凝点/℃-22 <-30 <-30 -16 <-30 -15 <-30 <-30 -7 15 开口闪点<28 <21 <21 28 <18 <28 47 <25 <29 57●/℃50℃粘度/()酸值(KOH)/()残碳,%盐含量/()蜡含量,%硅胶胶4 质, %沥青质,%镍含量(×10-6)钒含量(×10-6)HK-180℃收率,%180~260℃收率,%260~360℃收率,%360~500℃收率,%>500℃收率,%汽油含硫,%煤油含硫,%柴油含硫,%蜡油含硫,%减渣含硫,%注:均油轮采样。
原油储罐的腐蚀机理分析及应对措施摘要:作为社会经济发展和综合国力衡量的重要因素,原油资源非常宝贵。
油罐是原油在油气采输系统中的主要容器,由于当前我国炼化企业加工的原油逐渐向重质化、劣质化、高含硫等不利方向发展,从而使原油油罐腐蚀问题进一步加重,造成石化安全生产隐患和石化企业经济损失。
本文通过分析原油油罐腐蚀形成的机理,探讨应采取的应对保护措施,以便提高原油储罐的防腐蚀水平。
关键词:原油储罐;腐蚀机理;应对措施由于原油内含有一些如硫化物、无机盐、有机酸、二氧化硫、氮化物、水分、氧等腐蚀性杂质,虽然这些杂质含量较少,但容易造成储罐腐蚀,目前绝大多数储罐损坏是由腐蚀引起的,如外腐蚀和内腐蚀。
随着我国原油消耗的日益加大,国产原油已不能满足自身市场的需要,需要进口外国原油。
随着中东原油质量的不断下降,高硫化、高酸、高含水量趋势越发严重,也加剧了原油储罐的腐蚀。
腐蚀容易使原油油罐使用寿命大打折扣,且腐蚀物质进入原油后容易在炼化后污染环境,降低成品油质量。
而一旦储油罐因腐蚀穿孔出现原油泄漏事件,不仅容易污染环境,还容易引起重大火灾或爆炸事故,造成严重的安全生产事件并影响人身财产安全。
1原油储罐腐蚀机理分析原油储罐一般使用寿命设计为20年,但因为各种原因加上防腐意识不强,原油储罐的使用寿命一般都达不到20年这个期限,研究表明在投入使用2-3年后,罐体都会出现不同程度的腐蚀,其中以油罐底部和顶部腐蚀最为严重,特别是油罐底板及底圈壁板的腐蚀速度是最快的,可以>0.15mm/年的速度发展,并出现大面积腐蚀麻坑,深度可达1-3mm。
1.1气相部位腐蚀机理油罐气相部位的腐蚀主要是电化学腐蚀,主要是该部位的原油挥发出H2S、HCI等酸性气体,或罐中原有或后期进入的水分、CO2、SO2等气体可凝结成酸性溶液凝聚在罐壁,从而发生化学腐蚀。
其中CO2可造成片状腐蚀、坑点腐蚀等局部腐蚀。
而硫腐蚀主要是以s元素、H2S为主,在无水状态下,原油的硫化氢对金属无腐蚀作用,但在有水气的情况下,H2S或S元素容易产生固态形式腐蚀产物,且腐蚀速度变快。
含硫原油对炼油设备的腐蚀与对策摘要:在实际的炼油中,经常会有含硫原油和高含硫原油需要加工,这种原油对炼油设备的腐蚀是剧烈的,生产中需要提出有效可行的办法来减少腐蚀保证生产。
关键词:腐蚀硫化物对策目前含硫原油尤其是高含硫原油大大的超过了设备要求含硫量的设计值。
在加工这些原油的过程中就会产生大量的硫化氢,对炼油设备、管路等都带来了极大的腐蚀,严重的甚至会造成安全事故。
因此,如何做好含硫原油加工的防腐工作就成为了眼前必要的课题。
本文主要是从腐蚀的情况、腐蚀机理出发来讨论相关的应对策略。
一、腐蚀情况原油中的硫包括了多种形式:元素硫、硫化氢、硫醇、硫醚、二硫化物、咪吩类化合物,以及分子量大、结构复杂的含硫化合物。
根据原油中硫含量的不同可以分为超低硫原油(S2 ),一般将原油中存在的硫分为活性硫和非活性硫,,元素硫、硫化氢和低分子硫醇等能直接与金属作用而引起设备的腐蚀,统称为活性硫,其余不能直接与金属作用的硫化物统称为非活性硫。
在实际的加工过程中,非活性硫还有可能转变成为活性硫,,使得硫腐蚀会从一次加工装置转移到二次加工装置,甚至逐渐延伸到下游的化工装置。
加上硫腐蚀与氧化物、氯化物、氮化物、氰化物等腐蚀介质的共同作用,形成了错综复杂的腐蚀体系,炼厂装置设备管线因此而发生腐蚀,造成泄漏而停工检修,甚至导致发生安全事故,严重影响生产的稳定运行。
另外腐蚀也是造成企业运营成本的一个重要因素,出现的腐蚀导致了设备的使用寿命减少,维修次数和费用增加,从经济方面考虑也急需控制好设备的腐蚀情况。
二、腐蚀机理在炼油过程中,存在于原油中的各种硫化物会在加工过程分解成硫化氢,从而对设备进行腐蚀,腐蚀的形式也是具有多样性,包括全面腐蚀、坑蚀、氢鼓泡、氢诱发阶梯裂纹、氢脆及硫化物应力腐蚀破裂等。
1.HCI-H2S-H2OS腐蚀此类腐蚀主要是由于无机盐与原油中的硫反应而造成的。
无机盐包括NaCl、MgCI2、CaCI2等盐类,经加热水解后与硫生成氯化氢,而硫化物就会分解生成硫化氢。
炼油厂加工高硫高酸值原油遇到的问题及对策炼制高酸值原油时,除了三顶冷凝系统的腐蚀之外,设备腐蚀问题主要是由于环烷酸引起的高温腐蚀。
环烷酸腐蚀是在炼制高酸值原油时主要出现在常减压装置高温部位一种常见的腐蚀形态。
在低流速区域,环烷酸腐蚀一般为均匀腐蚀,也呈现边缘锐利的凹坑状;但在高流速区域,多表现为沿顺流方向产生的沟槽状局部腐蚀。
这种腐蚀是化学反应过程,环烷酸与铁生成油溶性环烷酸铁,故通常腐蚀表面无垢,呈现出有光泽的金属表面。
当环烷酸浓度高时,腐蚀速度就加快。
另外,环烷酸及生成的环烷酸盐还可破坏硫化亚铁保护膜,加速设备的腐蚀。
应采取以下措施预防:1、加强重点装置关键设备的腐蚀监测以及防腐管理为了应对加工高硫高酸原油对设备造成的腐蚀问题,增加了重点装置关键设备的腐蚀监测部位和监测频率,对重点装置关键设备监测部位的腐蚀控制指标重新进行了修订,加强三套常减压装置常减顶系统冷凝系统、两套催化分馏塔顶冷凝系统、六套加氢装置冷高分系统、球罐下切水硫化氢含量以及五套脱硫装置再生塔顶冷却系统的腐蚀监测。
在全厂建立防腐网络,厂主管领导直接负责,各车间由一名设备员和一名工艺员作为专职防腐人员,完善各车间的工艺防腐台账和设备防腐台账,定期召开全厂的防腐例会,在每期例会上安排一个防腐专题讲座,提高了防腐人员的专业水平,对全厂的防腐工作起到了积极的促进作用。
2、加强原油电脱盐的改造和管理工作。
在陆上混合原油的脱前盐含量相对较高的恶劣条件下,通过新上的超声波破乳及电脱盐工艺优化等工作,使原油的脱后含盐大幅下降,电脱盐的脱盐效果达到先进水平,进一步降低了对常减压及后续加工装置的腐蚀。
3、加强设备、管线的在线定点测厚工作。
加工高硫高酸原油后全厂的定点测厚数量已经由1923点增加到8000个点左右,目前增点的工作仍在继续。
同时要求检测中心,每年对所有定点测厚部位至少检测一遍,对已经加工高硫高酸原油的联合装置车间的高温部位实行重点检测,根据检测结果来确定检测的周期。
浅谈含硫原油的腐蚀及保护措施摘要:炼油设备的腐蚀不但给炼油厂造成经济损失,而且对环境也会产生污染。
设备腐蚀带来的资源消耗是一种巨大的浪费。
本文将就炼油厂设备腐蚀的原因以及解决方法展开讨论。
关键词:炼油厂;炼油设备;腐蚀原因;防护措施随着从中东、西北地区从中亚进口含硫原油数量的大幅度增加,以及国内含硫油田的开发,原油平均含硫量逐年增高。
原油硫含量的增加,使加工高硫原油的设备,包括进口的不锈钢设备和管道,发生严重的硫腐蚀。
正常生产中由于硫腐蚀时常引发破裂、燃烧、爆炸等恶性事故,同时还导致严重的环境污染。
原油中所含硫和硫化物的总量称之为原油的硫含量,其中的硫化物主要是有机硫化物,也有少量的单质硫和硫化氢,其主要类型有:单质硫S,硫化氢H2S,硫醇RSH,硫醚RSR,二硫化物RSSR。
可以和金属直接反应生成硫化物叫做活性硫,如单质硫、硫化氢和硫醇:S+Fe→FeS H2S+Fe→FeS+H2RCH2CH2SH+Fe →FeS+RCH=CH2+H2一.低温湿硫化氢腐蚀在低温下H2S只有溶解水中才具有腐蚀性。
通常低温下由于金属表面存在着水或水膜,而铁发生腐蚀反应: H2S+Fe→FeS+H2在搅动H2O中的悬浮S时可使pH值下降到1.8,认为这是S在H2O中的歧化反应引起的:4S+4H2O →3H2S+H2SO4硫与钢的直接接触,起到有效阴极的作用而加速腐蚀。
在水溶液中硫引起碳钢腐蚀的反应为:阳极过程: Fe→ Fe2++2e—Fe+H2O→ Fe(OH)++H++2e—阴极过程:Sn+2e →Sn2- Sn2-→S2-+S n-1二.高温硫化物腐蚀腹有诗书气自华高温下硫和硫化氢能直接与金属发生反应,生成金属的硫化物,其主要腐蚀反应过程为:S+Fe→FeS H2S+Fe→FeS+H2高温下H2S可发生分解,产生的元素硫具有很高的活性,与Fe发生反应极为强烈:H2S →H2+S S+Fe→ FeS原油中含的部分硫醇,在200℃以上也可以与铁直接发生反应产生硫化铁腐蚀产物:RCH2CH2SH+Fe→RCH2CH3+FeS+H2连多硫酸的形成及其腐蚀过程,如在催化裂化装置烟气管道中,高温部位(400~600℃)又有SO2和CO存在时:SO2+2CO →2CO2+S S+Fe→ FeS2SO2+O2→2SO3 SO3+H2O →H2SO4FeS+H2SO4→FeSO4+H2S H2S+H2SO4→4H2SxO6+S反应过程使在运行中形成的FeS膜破坏,腐蚀反应过程中形成的S和H2S又可参与金属的腐蚀过程,所以对材料的腐蚀具有自催化作用,过程中形成的亚硫酸,应力腐蚀开裂有诱发作用。
含硫原油储罐的腐蚀分析及防腐措施宋江峰【摘要】在现实生活中,硫原油储罐很容易就会发生被腐蚀现象,进而在运输过程中发生漏油现象,这样,既是对资源的浪费,又是对公司利益的破坏.因此,为了更好的提升硫原油储罐的抗腐蚀性,使硫原油储罐的实际使用时间得到很大的提升.因此,通过仔细研究和分析硫原油中的硫和硫化合物在原油中的存在方式,探索硫原油主要对硫原油储罐腐蚀的部位和腐蚀方式以及腐蚀程度和腐蚀机理.对此提出针对性的防腐措施和在硫原油储罐腐蚀的检测技术提出一点比较有针对性的建议,希望能对今后硫原油储罐的原理或者防腐设计和以后的日常工作中的维护做一点参考【期刊名称】《化工中间体》【年(卷),期】2017(000)009【总页数】2页(P3-4)【关键词】含硫原油储罐;腐蚀;防腐措施【作者】宋江峰【作者单位】辽河油田建设工程公司辽宁 124012【正文语种】中文【中图分类】T近年来,有许多传统的原油炼制企业在工作内容中加入了提炼劣质原油,他们引进新的炼油装置系统,使炼油企业有了更多赢得利益的方式。
目前我国原油企业的主要进口国家有俄罗斯、阿曼和中东等国家,但是从这些国家引进的原油相对于我国大庆油田、长庆油田和胜利油田所产的原油相比,进口的原油大部分都具有更高的酸性腐蚀性介质和硫化物。
虽然经过对这些进口的原油进行初步的提炼,但是经过二次加工的原油仍然含有较高的的酸性腐蚀性介质和硫化物等活性较高的物质,这样一来,二次加工后的原油在运输的过程中对储罐系统的腐蚀和损害还比较严重,在这些活跃的硫化物中有一些还具有一定程度的可燃性,在运输过程中一个不小心或者储罐系统的一点小故障可能会造成火灾或爆炸等严重性事故,不仅仅危害到运输工作人员的生命财产安全,还对炼油企业造成严重的损失。
所以,急需要了解清楚硫化物中最主要的腐蚀机理,对此就可以利用研究得到的数据信息对储罐系统进行有效的改进,采取一些更具效果的防硫原油腐蚀储罐的措施。
1.硫及硫化物的分布原油中的硫化物因为其性质上的差异,可以分为活性硫和非活性硫。
原油储罐底板腐蚀原因分析及防护对策摘要:针对中国石化塔河炼化有限责任公司原油储罐底板腐蚀严重的问题,分析了产生腐蚀的原因,提出了罐底板采用涂料与牺牲阳极联合保护,支柱对应处底板增焊不锈钢板等防护措施。
关键词:原油;储罐;腐蚀;防护;涂料;牺牲阳极1前言中国石化塔河炼化有限责任公司(以下简称“塔河炼化公司”)现具有500万吨/年原油综合加工能力,加工塔河原油,该原油密度高、盐含量高、粘度大、沥青质含量高。
近年来,其性质进一步劣质化,密度接近0.96g/cm3、盐含量400-600mg/l、硫含量〉2%,由于原油性质属于高硫原油,使原油储罐等设备的腐蚀日趋严重,2016年10月1#装置大检修时已发生原油储罐底板因腐蚀导致开裂。
因此,搞清原油储罐底板的腐蚀机理,制订合理的防护措施,对于确保原油储罐安全长周期运行具有十分重要的意义。
2原油储罐底板腐蚀状况塔河炼化公司现有原油储罐7台,总容量18万立方米。
单台原油储罐的最大容量为50000m3,最小为10000m3,平均容量为25000m3。
在装置建成投产第一个运行周期内,塔河炼化公司原油储罐底板的腐蚀问题并不是很突出,防腐措施基本上采用单独涂料防腐,选用的涂料既有导静电的(如H99-1环氧导静电涂料),也有绝缘性的(如氰凝PA106涂料)。
随着含硫原油加工数量的不断增加,原油储罐底板的腐蚀呈现加剧趋势。
2016年10月1#装置大检修时已发生T106原油储罐底板因腐蚀导致开裂。
对于其它原油储罐,虽然没有因腐蚀穿孔而导致漏油的情况,但罐底板都存在较严重的腐蚀现象。
原油储罐底板的腐蚀特征基本一致,腐蚀最严重的部位集中在底板最外圈等沉积水较多的浮盘支柱下面,底板腐蚀穿孔基本发生在该部位(见图1),罐底板其它部位主要表现为坑蚀,钢板表面存在大小、深浅不一的腐蚀坑(见图2)。
图1 原油储罐底板腐蚀开裂图图2T106原油储罐底板表面坑蚀3腐蚀原因分析3.1罐底板坑蚀原因分析3.1.1原油沉积水的腐蚀。
浅谈原油加工中含硫酸性物质对设备的腐蚀与防护摘要:炼油厂进行原油加工,含硫酸性物质对于设备及管道的腐蚀不可避免。
通过讨论硫腐蚀的腐蚀机理,以及其对设备腐蚀所造成的危害,提出了设备防腐的工艺和措施。
关键词:炼油厂设备硫化氢腐蚀防腐Discussion on crude processing of sulfuric acid containing material corrosion and protection of equipmentAbstract:Refinery of crude oil processing,of sulfuric acid containing material for equipment and pipeline corrosion is inevitable.Through the discussion of sulfur corrosion corrosion mechanism,corrosion of equipment and its harm,put forward equipment Anti-corrosion Technology and measures.KeyWords:Oilrefinery;Equipment;Hydrogensulfide;Corrosion;Antic orrosive随着采油技术的不断进步,我国原油产量稳步增长,尤其是重质原油产量增长较快,使炼厂加工的原油种类日益复杂、性质变差、含硫量和酸值都有所提高。
因而在原油的加工处理过程中,含硫酸性物质对于设备的腐蚀不可避免。
近年来国内炼油厂在正常生产中由于硫腐蚀而引起的破裂、燃烧、爆炸等恶性事故频繁发生,甚至造成多人死亡,同时还导致严重的环境污染。
以玉门油田分公司炼油化工总厂为例,该炼化厂一脱硫再生系统于2005年7月建成投产,但该系统通过近年来的运行发现,系统腐蚀情况复杂,腐蚀程度严重,造成管线减薄乃至泄露、阀门故障、仪表失灵等问题,严重影响了正常的工作和生产。
含硫含酸原油的腐蚀问题和对策
【摘要】随着近年来国内几大油田都进入了二次和三次采油期,原油酸值和腐蚀性都增加。
而进口原油特别是中东原油的增加,使得加工原油硫含量较高,这给石油的炼制和防腐提出了更高的要求。
【关键词】含硫含酸原油;腐蚀问题;对策
1.常减压装置的腐蚀
1.1装置的硫腐蚀和防护措施
该腐蚀主要位于“三顶”低温部位,包括挥发线等轻油部位的冷凝冷却系统。
如常减压装置三顶及其冷换系统,如常顶空冷、减顶空冷及后集合管、减顶增压器、减顶三级抽空器、减顶线膨胀节等受hc1-h2s-h2o的腐蚀较为严重。
腐蚀形态:对碳钢为均匀减薄,对cr13钢为点蚀,对1crni9ti钢为氯化物应力腐蚀开裂。
高温(240~480℃)硫的腐蚀主要为均匀减薄。
高温硫腐蚀出现在装置中与其接触的各个部位。
高温部位如常底、减底及其部件、减三四五底线出口弯头、常压转油线、减渣一次换热器、常压炉和减压炉辐射管等均有不同程度的高温硫及环烷酸均匀腐蚀。
抑制原油蒸馏装置中设备和管线腐蚀的主要办法有两种:
(1)工艺防护,即加强传统的“一脱三注”工艺。
对低温的塔顶及塔顶油气馏出线上的冷凝冷却系统采取化学防腐措施。
20世纪80年代后期,因催化裂化利用减压渣油,对钠离子含量要求苛刻,各厂已停止注碱,把“一脱四注”改为“一脱三注”,即脱盐、脱
水、注中和剂和水等。
提高深度电脱盐的合格率,对后续防腐的控制十分关键。
目前炼油厂常减压蒸馏装置“三顶”大部分采用注氨,但中和效果差,必须过量注入。
生成的nh4cl容易结垢,形成垢下腐蚀,并容易堵塞管道。
注入缓蚀剂是在金属表面形成保护膜,使金属不被腐蚀。
有炼厂注有机胺,中和效果好,但有机胺价格贵,因此,有炼厂采用胺和有机胺混注的方式,效果也很好。
国内有开发的中和缓释剂,一剂多用,应用效果也很好,但加入量较大,成本并不合算。
(2)对温度大于250℃的塔体和塔底出口系统的设备和管线等高温部位的防腐措施,主要是选用合适的耐蚀材料。
在常减压蒸馏装置塔顶冷凝冷却系统的选材中,国内炼油厂通常采用碳钢材质。
国外炼厂通常采用碳钢+monel合金。
90年代初期,有人发现,这种合金对硫化氢应力腐蚀开裂是敏感的,在120℃不推荐使用。
1.2装置环烷酸腐蚀和防护控制
环烷酸腐蚀主要发生在炼油装置的高温部位。
如常减压装置的常压转油线、减压转油线、常压炉及减压炉出口、常减压塔进料段塔壁、减三线等。
目前,工程设计依据的准则是,原料酸值>=0.5mgkoh/g原料、温度在240~400℃范围时,考虑环烷酸腐蚀。
耐蚀材料一般选择mo 含量大于2.3%的奥氏体不锈钢,如00cr19ni13mo3、317l等。
设备材质是影响环烷酸腐蚀的一个主要因素。
环烷酸腐蚀可通过选择适当的材料来控制,碳钢在低于230℃时不受环烷酸侵蚀,
如果介质流速低时在较高温度下也能使用;5cr-0.5mo钢对环烷酸腐蚀有更好的抵抗力,能在较高流速下使用;铁素体和马氏体不锈钢、aisi405钢和aisi410不锈钢在一些条件下对环烷酸有更高的抗蚀性,但有时可能造成灾难性的侵蚀;含钼的奥氏体不锈钢被认为是最好的耐环烷酸腐蚀材料。
2.催化裂化装置的腐蚀和防护
随着催化裂化原料变重变差及渣油催化裂化的发展,催化裂化装置的低温系统腐蚀问题逐渐暴露出来。
虽然催化裂化上游的常减压蒸馏装置应用“一脱三注”工艺基本解决了“hcl-h2s-h2o”体系的腐蚀,管道、换热器、塔器等所用钢材质量的升级也基本解决了腐蚀问题,但腐蚀介质仍然存在,腐蚀向下游发生了转移,按低硫原油设计的催化裂化装置腐蚀非常严重。
重油催化裂化装置低温系统腐蚀较为明显的部位为分馏塔的顶部及油气管道,吸收塔的塔顶、内构件和冷凝系统,稳定塔的塔顶和塔壁等。
就腐蚀原因而言,主要是原油中的许多硫化物在催化裂化过程中被分解产生硫化氢,氮化物在催化裂化过程中被转化生成氰化物。
从而在催化裂化装置吸收解吸系统形成h2s-hcn-h2o腐蚀环境。
该部位的温度为40~50℃,压力为1.6mpa,hcn的存在对
h2s-h2o的腐蚀起了促进作用。
铁与此体系反应,在阳极生成硫化亚铁,在阴极生成氢,氢能向钢中渗入并扩散,引起钢的氢脆和氢鼓泡。
由于氰化氢的存在,体系中的氰根离子能溶解流化亚铁,产生络合离子[fe(cn)6]4-,加速腐蚀,并且氰根离子的存在促进了
氢的渗透作用。
此腐蚀体系腐蚀形态对碳钢为均匀减薄和氢鼓泡,对奥氏体不锈钢为硫化物应力腐蚀开裂。
在吸收稳定的大多数部位腐蚀都很严重,特别是在吸收塔、压缩机冷却器和分液罐。
国内不少炼厂都有此类腐蚀问题的介绍,其中以吸收塔的塔顶、塔壁、塔顶换热器和解吸塔的答底腐蚀较严重。
从腐蚀部位来看,塔壁比塔内构件要严重的多。
从更换下来的塔体和换热器来看,塔壁均匀减薄以硫化氢的化学腐蚀为主。
对于解决该类腐蚀问题,可考虑更换材质但代价太高,而且只能解决局部的腐蚀问题。
但也有部分厂家采用此措施的,如筒体采用碳钢+3mm0cr13al钢复合板或0cr13钢,也可采用铬钼钢。
吸收塔的塔内构件材质改为不锈钢,换热器材质采用不锈钢和双相钢,均能收到部分效果。
国内有炼油厂采用注过多硫化物缓蚀剂、水稀释等措施,有一定的效果,但加工含硫原油时,这些措施不很理想。
总体来看,工艺防腐蚀成本较低,容易实施。
在适当的部位注入复合腐蚀抑制剂等能更好的防止吸收稳定系统乃至整个催化裂化低
温系统腐蚀的发生。
3.催化加氢装置的腐蚀
催化加氢装置存在着热氢腐蚀和高温h2s+h2腐蚀环境。
3.1热氢腐蚀
催化加氢装置中存在热氢腐蚀。
所谓热氢腐蚀环境是指温度在204℃以上,氢分压>0.5mpa的腐蚀环境。
亦即溶解在钢材中的氢气
在高温高压下和钢材中不稳定碳化物分解出来的碳进行化学反应,形成甲烷的现象称为氢蚀。
氢蚀的结果导致钢材脱碳(表面和内部)造成钢材强度和塑性降低。
氢蚀现象是不可逆的过程,因而决定了钢材的最高安全操作温度。
另外,溶解在钢材中的氢会导致钢材的断裂韧性变差、延性降低,成为氢脆,氢脆是可逆过程,在高温下,降低容器内的压力,钢中溶解氢会释放出来,钢材恢复原来的性能。
根据大量试验数据和现场临氢设备的使用经验,nelson绘制了碳钢和铬钼钢避免氢蚀的安全使用范围,这就是有名的nelson曲线。
目前,工程设计仍以上述曲线为依据进行热情腐蚀环境下金属材料的选择。
3.2高温h2s+h2腐蚀环境
所谓高温h2s+h2的腐蚀环境指温度在204℃以上的h2s+h2腐蚀环境。
在高温高压下,原料中的硫化物和外加入的氢气反应形成
h2s,因而形成了h2s+h2这样的腐蚀环境。
在高温h2s+h2的腐蚀环境中,影响腐蚀速率的主要因素是温度和h2s浓度。
目前,工程设计依据a.s.cooper和j.w.gormon曲线估算腐蚀速率来确定材料。
一般来讲,在设计温度≤450℃时,采用18-8ti奥氏体不锈钢的腐蚀速率是可以接受的。
对更高的设计温度,则应对310cb进行评价。
■
【参考文献】
[1]张德义.含硫原油加工技术[m].北京:中国石化出版社,
2003.
[2]《石油炼制与化工》编辑部.加氢技术[c].北京:中国石化出版社,1999.
[3]林世雄.石油炼制工程[m].北京:石油工业出版社,2000.
[4]梁朝林.高硫原油加工[m].北京:中国石化出版社,2000.
[5]李大东.加氢处理工艺与工程[m].北京:中国石化出版社,2004.
[6]《石油炼制与化工》编辑部.催化裂化新技术[m].北京:中国石化出版社,2004.。