圆柱与圆锥知识点
- 格式:docx
- 大小:27.99 KB
- 文档页数:3
圆柱圆锥知识点总结一、圆柱的定义和性质圆柱是由一个矩形绕着一条平行于其中一边的直线移动而得到的几何体。
圆柱的底面是一个圆,上下底面平行且相等,侧面是一个矩形。
通常情况下,我们所说的圆柱指的是直圆柱,即底面和侧面直角相交的圆柱。
圆柱的性质:1. 圆柱的侧面是一个矩形,其面积等于底面周长乘以高度。
2. 圆柱的体积等于底面积乘以高度,即V=πr^2*h。
3. 圆柱的表面积等于两个底面积之和加上侧面积,即S=2πr^2+2πrh。
二、圆锥的定义和性质圆锥是由一个直角三角形绕着它的一个直角边旋转一周而得到的几何体。
圆锥的侧面是一个由母线和母线上一点到底面的连线组成的扇形。
通常情况下,我们所说的圆锥指的是直圆锥,即底面圆和侧面直角相交的圆锥。
圆锥的性质:1. 圆锥的侧面是一个扇形,其面积等于底面周长乘以母线的一半。
2. 圆锥的体积等于1/3底面积乘以高度,即V=1/3πr^2*h。
3. 圆锥的表面积等于底面积加上底面到顶点的母线所绕成的曲面积,即S=πr^2+πrl。
三、圆柱和圆锥的应用1. 圆柱和圆锥在日常生活中有着广泛的应用,比如有些容器的外形就是圆柱或者圆锥;例如筒形创可贴盒,花瓶,饮料瓶等。
2. 圆柱和圆锥的公式和计算方法可以用来解决一些实际问题,比如计算容器的容积和表面积,计算油桶的容量,设计工程建筑结构等。
3. 圆柱和圆锥的几何图形在工程实践中也有着广泛的应用,比如圆柱形的桥墩,圆锥形的喷水池等。
四、圆柱和圆锥知识点的考点在中学数学课本和考试中,圆柱和圆锥作为基础几何图形经常出现,特别是在解题和推导中经常需要用到它们的性质和公式。
掌握好圆柱和圆锥的知识对于初中数学的学习和考试成绩至关重要。
总结通过对圆柱和圆锥的定义、性质、公式和应用等方面的了解,我们可以更好地理解这两种几何图形的特点和作用,进而提高我们的数学运算能力和解决实际问题的能力。
在学习和应用过程中,我们要注重在不断的练习和实践中巩固这些知识,才能更好地应用它们解决实际问题,提高数学素养。
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
圆柱和圆锥的知识点1、圆柱的的圆柱的上下两个面叫做底面,它们是完全相同的两个圆,周围的面叫做侧面;两个底面之间的距离叫做高,圆柱有无数条高,每条高都相等。
2、圆柱有一个曲面,叫做侧面。
3圆柱的侧面展开以后是一个长方形,侧面展开以后的长是底面周长,宽是高4、圆柱的侧面积=底面圆的周长×高S=ch5、圆柱的底面周长=侧面积÷高高=侧面积÷圆柱的底面周长6、当圆柱的侧面展开是一个正方形时,底面周长和高相等,都等于正方形的边长。
7、在正方体里削出最大的圆柱或圆锥是以正方体的一条棱长做圆柱的底面直径,以另一条棱长做圆柱的高。
8、圆柱的表面积=侧面积+底面积×29、把一个圆柱拼成一个近似的长方体,长方体的体积等于圆柱的体积,长方体的底面积等于圆柱的底面积长方体的高等于圆柱的高圆柱的体积=底面积×高V=Sh10、圆柱的体积跟长方体、正方体一样,都是底面积×高11、圆柱的高=体积÷底面积圆柱的底面积=体积÷高12、圆锥的底面是一个圆。
圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高,圆锥只有一条高。
圆锥的侧面是一个曲面,展开是一个扇形。
13、圆锥的体积等于与它等底等高圆柱体积的314、圆柱的体积比和它等底等高的圆锥的体积大2倍15、圆锥的体积比和它等底等高的圆柱的体积少倍16、圆锥的高=圆锥体积×3÷底面积17、圆锥的底面积=圆锥体积×3÷高18、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
19、圆柱与圆锥等高等体积时,圆锥的底面积=圆柱的底面积×3圆柱的底面积=圆柱的底面积×20圆柱与圆锥等底等体积时,圆锥的高=圆柱高×3圆柱的高=圆锥的高×21在一个盛有水的容器中放入一个物体,这是水面上升了,上升的体积就是放入物体的体积,上升的体积=容器的底面积×上升的高容器的底面积=上升的体积÷上升的高上升的高=上升的体积÷容器的底面积22、把一个圆柱拼成一个长方体,体积不变,表面积比原来增加了两个长方形的面,每个长方形的面积=半径×高高=长方形的面积÷半径半径=长方形的面积÷高23、、把一个圆柱沿底面直径切成两个半圆柱,表面积之和比原来增加了两个切面,每个切面的面积=直径×高高=每个切面的面积÷直径直径=每个切面的面积÷高。
★圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h★圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh★圆柱的特征:①底面的特征:圆柱的底面是完全相等的两个圆。
②侧面的特征:圆柱的侧面是一个曲面。
③高的特征:圆柱有无数条高。
★圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形★圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h★圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh★圆锥的特征:①底面的特征:圆锥的底面一个圆。
②侧面的特征:圆锥的侧面是一个曲面。
③高的特征:圆锥有一条高。
★圆柱和圆锥的关系①圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
②圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
③圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
④圆柱与圆锥等底等高,体积相差2/3Sh。
圆柱体与圆锥体知识点圆柱体与圆锥体是几何学中的重要概念,它们在日常生活和工程设计中都有广泛的应用。
本文将详细介绍圆柱体与圆锥体的定义、性质、公式及其应用。
一、圆柱体的定义和性质圆柱体是由两个平行且相等的圆面和它们之间的侧面组成的几何体。
圆柱体的侧面是一个矩形,其两条边分别与两个圆面的切线垂直相交。
以下是圆柱体的一些性质:1. 所有生成圆柱体的平行直线都与底面圆相切。
2. 圆柱体的两个底面圆半径相等。
3. 圆柱体的侧面积等于底面周长乘以高度。
4. 圆柱体的体积等于底面积乘以高度。
二、圆柱体的公式1. 底面积公式:圆柱体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆柱体的侧面积等于底面周长乘以高度。
公式表示为:侧面积= 2πrh,其中r为底面圆的半径,h为圆柱体的高度。
3. 全面积公式:圆柱体的全面积等于底面积加上两倍的侧面积。
体的高度。
4. 体积公式:圆柱体的体积等于底面积乘以高度。
公式表示为:体积 = 底面积 × h,其中h为圆柱体的高度。
三、圆锥体的定义和性质圆锥体是由一个圆锥面和一个平面封闭的几何体。
圆锥体的底面是一个圆,其顶点与底面圆的中心相连。
以下是圆锥体的一些性质:1. 所有生成圆锥体的平行直线都与底面圆相交。
2. 圆锥体的侧面积等于底面周长乘以母线长。
3. 圆锥体的体积等于底面积乘以高度除以3。
四、圆锥体的公式1. 底面积公式:圆锥体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆锥体的侧面积等于底面周长乘以母线长除以2。
公式表示为:侧面积= πrl/2,其中r为底面圆的半径,l为母线长。
3. 全面积公式:圆锥体的全面积等于底面积加上侧面积。
公式表示为:全面积= πr(r+l),其中r为底面圆的半径,l为母线长。
4. 体积公式:圆锥体的体积等于底面积乘以高度除以3。
圆柱圆锥所有知识点
圆柱和圆锥是立体几何中的重要概念,在我们日常生活中也经常能够见到相关的形状和物品。
下面,就让我来为大家介绍一下关于圆柱圆锥的所有知识点吧。
1. 基本概念
圆柱和圆锥都是由圆和高组成的几何图形。
其中,圆柱的底面和顶面均为圆形,而圆锥只有一个底面为圆形,而顶面则为尖锐的顶点。
2. 特征参数
圆柱和圆锥的几何参数包括底面半径、高、侧面直毂、侧面积等等。
对于圆柱来说,它的侧面指的是连接底面的所有侧边而成的表面,而对于圆锥来说,则是由从圆心到样边所组成的侧面。
圆柱和圆锥的侧面积可以通过计算底面积与侧面直毂的乘积来计算得出。
3. 变形
圆柱和圆锥可以通过移动、旋转等变形操作来生成更加复杂的形状。
例如,当圆锥的底面被旋转时,就可以得到一个圆形。
同时,当圆柱和圆锥的高和底面半径比例发生变化时,它们的形状也会发生相应的变化。
4. 应用
圆柱和圆锥在生产生活中有着广泛的应用。
例如,在建筑中,柱子就可以被看作是一个由圆柱面和侧面构成的几何体;而在工程领域,锥形装置则可以被用来方便地控制液体流动的方向和速度。
总之,圆柱和圆锥是几何学中的两个重要概念,我们在生产生活中也经常会遇到相关的形状和物品。
熟悉圆柱和圆锥的知识点,不仅有助于我们更好地理解和应用它们,也能够为我们在日常生活中遇到的一些问题提供更加科学的解决方案。
圆柱和圆锥知识点总结
圆柱和圆锥是几何学中的两个重要概念。
下面是关于圆柱和圆锥的一些知识点总结。
圆柱:
1. 圆柱是由一个长方形和两个平行于长方形边的圆所组成的立体。
2. 圆柱有三个重要的元素:底面、高和侧面。
3. 底面是圆柱的两个平行圆所围成的区域。
4. 高是连接底面的两个圆心的线段,垂直于底面。
5. 圆柱的侧面是连接底面两个圆周上的点的曲面。
6. 圆柱的体积可以通过底面的面积乘以高来计算:体积 = 底面面积×高。
7. 圆柱的表面积可以通过底面的周长乘以高再加上两个底面的面积来计算:表面积 = 2πr^2 + 2πrh。
圆锥:
1. 圆锥是由一个圆形底面和一个尖顶的点组成的立体。
2. 圆锥也有三个重要的元素:底面、高和侧面。
3. 底面是圆锥的底部圆形区域。
4. 高是连接底面圆心和尖顶的线段,垂直于底面。
5. 圆锥的侧面是连接底面圆周上的点和尖顶的曲面。
6. 圆锥的体积可以通过底面的面积乘以高再除以3来计算:体积 = (底面面积×高) / 3。
7. 圆锥的表面积可以通过底面的周长乘以斜高再加上底面的面积来计算:表面积 = πr(l + r),其中l为斜高。
总结:
圆柱和圆锥都是由圆形底面和侧面组成的立体,它们的特点和计算公式有一些相似之处,但也有一些不同之处。
了解圆柱和圆锥的知识点,可以帮助我们解题时更加准确地计算体积和表面积。
数学圆柱和圆锥的知识点
数学圆柱和圆锥的知识点如下:
1. 圆柱和圆锥的底面都是圆形的,侧面都是曲面。
2. 圆柱和圆锥的侧面都是可以展开成平面图形的,它们之间的区别在于展开后图形的形状不同。
3. 圆柱由3个面组成,圆锥由2个面组成。
4. 圆柱的体积公式为:V=πr²h,其中r表示底面半径,h表示高;圆锥的体积公式为:V=1
πr²h,其中r表示底面半径,h表
3
示高。
5. 圆柱的表面积公式为:S=2πrh+2πr²,其中r表示底面半径,h表示高;圆锥的表面积公式为:S=πr²+πr,其中r表示底面半径,l表示母线长度。
6. 圆柱的侧面展开后是一个长方形,长为底面周长,宽为高;圆锥的侧面展开后是一个扇形,半径为母线长度,圆心角为底面周长。
7. 圆柱的体积公式和圆锥的体积公式可以分别用V=πd²h和
πd²h来推导。
V=1
3
8. 圆柱和圆锥的底面周长和侧面的高是可以通过计算得到的。
9. 圆柱和圆锥的表面积和体积也可以通过实验和观察得出结论,例如将一个圆柱形物体放入水中,它会排开与自己体积相等的水。
10. 圆柱和圆锥在日常生活中有很多应用,例如杯子、管道、灯罩、帽子等。
圆柱和圆锥的知识点归纳圆柱和圆锥是几何学中重要的几何体,它们的形状和性质在我们日常生活和工作中都有广泛的应用。
本文将对圆柱和圆锥的知识点进行归纳和概述。
一、圆柱的概念与性质圆柱是由一个圆在平行于其所在平面的平面上作直线运动而生成的几何体。
圆柱的形状特点是上下底面均为同心圆,且其侧面由平行于底面的直线段组成。
1. 底面与高度:圆柱的底面是一个圆,圆柱的高度是连接底面圆心的直线段。
底面和高度决定了圆柱的大小和形状。
2. 侧面与母线:圆柱的侧面是由底面圆上的点沿着底面的圆弧上升或下降所得到的轨迹线。
连接两个底面圆心的直线称为圆柱的母线,且与侧面平行。
3. 表面积和体积:圆柱的表面积等于两个底面的周长和侧面的面积之和。
圆柱的体积等于底面的面积乘以高度。
二、圆锥的概念与性质圆锥是由一个圆在平行于其所在平面且以一点为中心的射线上作直线运动而生成的几何体。
圆锥的形状特点是一个底面为圆的尖锐或钝角三维图形。
1. 底面与高度:圆锥的底面是一个圆,圆锥的高度是连接底面圆心和尖点的直线段。
底面和高度决定了圆锥的大小和形状。
2. 侧面与母线:圆锥的侧面是由底面圆上的点沿着射线上升或下降所得到的轨迹线。
连接底面圆心和尖点的直线称为圆锥的母线,且与侧面相交于一点。
3. 表面积和体积:圆锥的表面积等于底面的面积和与底面相交的侧面的面积之和。
圆锥的体积等于底面的面积乘以高度再除以3。
三、圆柱和圆锥的应用圆柱和圆锥在日常生活和工作中都有广泛的应用,以下列举几个常见的应用场景:1. 圆柱:饮水机、水管、葱、铅笔、调酒器等均采用了圆柱体的形状。
此外,圆柱的性质使得它在数学和物理中也有重要的应用,如圆柱体积公式在计算液体容量和体积问题中的应用。
2. 圆锥:喇叭、冰淇淋圆锥、圆锥形山顶等都是圆锥体的应用。
在工程和建筑领域,常常使用圆锥体来设计锥形物体以提高流体的效率和流动性。
四、圆柱和圆锥的相关定理在研究圆柱和圆锥的性质时,我们还需要了解一些相关的定理,它们对于解决具体问题具有指导作用。
圆柱和圆锥知识点归纳总结一、圆柱1.定义及性质圆柱是由一个平行于底面的曲线(母线)围绕着一个平行于母线的轴旋转而成的立体图形。
圆柱具有以下性质:a.圆柱的底面是一个圆,轴与底面圆相交于圆心。
b.圆柱的侧面是一个长方形,其面积等于底面圆的周长乘以母线的长度。
c.圆柱的体积等于底面圆的面积乘以母线的长度。
2.圆柱的表面积和体积计算公式a. 表面积计算公式:S = 2πr² + 2πrh,其中r为底面圆半径,h为母线的长度。
b.体积计算公式:V=πr²h,其中r为底面圆半径,h为母线的长度。
3.圆柱的投影a.圆柱的平行截面是一个与底面圆相似的圆。
b.圆柱的垂直截面是一个矩形。
4.圆柱的应用a.圆柱广泛应用于日常生活中的容器,如杯子、筒子、桶等。
b.圆柱也是建筑中常用的结构形式,如圆柱形的支柱、柱子等。
二、圆锥1.定义及性质圆锥是由一个平行于底面的点(顶点)与一个与底面相交的曲线(母线)围成的立体图形。
圆锥具有以下性质:a.圆锥的底面是一个圆,顶点与底面圆的圆心相重。
b.圆锥的侧面是一个三角形,其面积等于底面圆的周长乘以母线的长度的一半。
c.圆锥的体积等于底面圆的面积乘以母线的长度的一半。
2.圆锥的表面积和体积计算公式a. 表面积计算公式:S = πr² + πrl,其中r为底面圆半径,l为母线的长度。
b.体积计算公式:V=1/3πr²h,其中r为底面圆半径,h为母线的长度。
3.圆锥的投影a.圆锥的平行截面是与底面圆相似的圆。
b.圆锥的垂直截面是一个等腰三角形。
4.圆锥的应用a.圆锥广泛应用于日常生活中的容器,如冰淇淋蛋筒。
b.圆锥也是建筑中常用的结构形式,如锥形的尖塔、圆锥形的钟楼等。
总结:圆柱和圆锥是几何学中重要的几何体,具有许多相似的性质和计算公式。
它们在日常生活和建筑中有着广泛的应用,对于理解立体几何形状和计算体积、表面积都具有重要意义。
深入学习和理解圆柱和圆锥的知识,有助于解决实际问题和提升数学能力。
圆柱和圆锥知识点总结一、圆柱的定义和性质1.定义:圆柱是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆柱由两个平行的底面、两个底面之间的侧面和两个底面的圆所组成。
3.特点:(1)底面积相等:圆柱的两个底面积相等。
(2)高度:圆柱的高度是连接两个底面的垂直线段。
(3)侧面积:圆柱的侧面积等于底面周长乘以高度。
(4)体积:圆柱的体积等于底面积乘以高度。
(5)闭曲面:圆柱的底面和侧面构成闭合的曲面。
4.圆柱的投影:圆柱的投影形态为一个矩形。
二、圆锥的定义和性质1.定义:圆锥是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆锥由一个底面、一个尖顶和底面与尖顶之间的侧面组成。
3.特点:(1)底面:圆锥的底面是一个圆。
(2)高度:圆锥的高度是连接底面和尖顶的垂直线段。
(3)侧面:圆锥的侧面是由底面上任意一点到尖顶的直线构成。
(4)侧面积:圆锥的侧面积等于圆周长乘以半斜高。
(5)体积:圆锥的体积等于底面面积乘以高度再除以3(6)闭曲面:圆锥的底面和侧面构成闭合的曲面。
4.圆锥的投影:圆锥的投影形态为一个三角形。
三、圆柱和圆锥的应用1.圆柱的应用:圆柱广泛应用于各个领域,如:(1)建筑:柱子、立柱、柱圈等结构都是圆柱体的应用。
(2)机械:轴、销、滚筒等都是圆柱体的应用。
(3)制造:瓶子、罐子、圆筒形容器等都是圆柱体的应用。
(4)数学:柱体的几何性质是数学中的重要内容,如计算底面积、侧面积、体积等。
(5)其他:圆柱的轴对称性质也常用于解决几何问题。
2.圆锥的应用:圆锥也有广泛的应用,如:(1)建筑:塔、锥形屋顶、圆锥形尖塔等都是圆锥体的应用。
(2)环境工程:漏斗、喷泉、喷水池等都是圆锥体的应用。
(3)制造:圆锥形工件的制造是机械加工中常见的任务。
(4)数学:圆锥的几何性质也是数学中的重要内容,如计算底面积、侧面积、体积等。
圆柱与圆锥总结练习知识点一:关于圆柱展开图1、下面()图形是圆柱的展开图。
(单位:cm)2、一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
3、做一个底面直径是20厘米,高是50厘米的圆柱形通风管,至少需要_________平方厘米的铁皮。
知识点二:圆柱的侧面积,表面积以及应用侧面积C侧= 底面积S底=表面积S表=实际计算中很多时候计算表面积时,很多时候只要求计算侧面积或者底面积只算一个。
4、一个圆柱的展开图如图所示,求该圆柱的表面积。
5、旋转得到的圆柱。
如图长方形绕过中心的直线旋转一周得到一个圆柱体,已知长方形的长为20厘米,宽是10厘米,求圆柱体的表面积。
6、会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?7、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?8、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?知识点三、圆柱的体积以及应用体积V柱=圆柱的体积与容积,以及根据体积求质量等问题9、(1)直角三角形的两条边分别是6cm和7cm。
(2)长方形的长是10厘米,宽是5厘米,绕过中点的直线旋转一圈。
知识点四、圆锥的体积以及应用体积V柱=圆锥的体积与容积,以及根据体积求质量等问题10、一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米?知识点五、圆柱圆锥体积之间的关系,底面积,体积比的问题①如果圆柱与圆锥等底等高,圆柱的体积是圆锥的②如果圆柱与圆锥体积相等,高相等,则圆锥的底面积是圆柱的③如果圆柱与圆锥体积相等,底面积相等,则圆锥的高是圆柱的11、一个圆柱体橡皮泥,底面积是12平方厘米,高4厘米,把它捏成:(1)底面积不变的圆锥,圆锥的高是多少?(2)高不变的圆锥,圆锥的底面积是多少?(3)底面积是8平方厘米的圆锥,高是多少?12、一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器内,水深是多少分米?13、有一段钢可做一个底面直径8厘米,高9厘米的圆锥形零件.如果把它改制成高是12厘米的圆柱形零件,零件的底面积是多少平方厘米?知识点六、体积单位,表面积单位之间的互换,以及常见立体图形的体积表面积问题表面积单位:平方厘米平方分米平方米(进率是10*10=100)体积单位:立方厘米立方分米立方米(进率是10*10*10=1000)表面积是所有表面的面积的总和,算出各个面的面积求和即可长方形面积= 正方形面积= 三角形面积=平行四边形面积= 梯形面积=体积:所有立体图形的体积都可以用底面积×高求解,各个立体图形也有自己的体积公式。
数学圆柱与圆锥知识点总结一、圆柱的基本概念圆柱是空间几何体中的一种。
它是由一个矩形与一个平行于它的圆组成的几何体,其中矩形是圆的曲面生成直线。
圆柱的一个特点是它的两个底面都是相等的圆。
1. 圆柱的定义圆柱是由两个平行且相等的圆所围成的曲面,这两个圆称为圆柱的底面圆,它们的直径通常被称为圆柱的直径,两个底面之间的距离称为圆柱的高。
圆柱的侧面由两个底面的边缘和它们之间的曲面组成。
2. 圆柱的性质(1)圆柱的直径是圆柱的底面直径。
(2)圆柱的侧面积等于底面周长乘以高。
(3)圆柱的表面积等于两个底面的面积之和再加上侧面积。
(4)圆柱的体积等于底面积乘以高。
(5)圆柱的体对角线就是从一个底面中心到另一个底面中心的直线。
3. 圆柱的公式(1)圆柱的侧面积S=2πrh。
(2)圆柱的表面积S=2πr(r+h)。
(3)圆柱的体积V=πr^2h。
二、圆锥的基本概念圆锥是几何学中的一个立体图形,它的底面是一个圆,而顶点与底面上的任意一点相连的曲线称为圆锥的侧棱,圆锥的高是从顶点到底面中心的距离。
1. 圆锥的定义圆锥是由一个圆和任意一点组成的平面所围成的图形。
2. 圆锥的性质(1)圆锥的高是圆锥的侧棱和圆中心的连线的垂直距离。
(2)圆锥的表面积等于底面面积加上侧面积。
(3)圆锥的体积等于底面积乘以高再除以3。
3. 圆锥的公式(1)圆锥的侧面积S=πrl。
其中,r为圆锥底面的半径,l为圆锥的侧棱长度。
(2)圆锥的表面积S=πr(l+r)。
(3)圆锥的体积V=1/3 × πr^2h。
其中,r为圆锥底面的半径,h为圆锥的高。
三、圆柱与圆锥的应用圆柱与圆锥这两种几何图形在日常生活以及工程技术中都有着广泛的应用。
下面将介绍圆柱与圆锥在各个领域的具体应用。
1. 圆柱的应用(1)日常生活中的容器,如水杯、马克杯等,大多数的樽形容器都是圆柱形的。
(2)工业上的立式压力容器一般都是圆柱形的,因为这种形式的容器可以在相对较小的外形尺寸下获得较大的容积。
圆柱和圆锥的知识点一、圆柱知识点1、圆柱上、下两个面叫底面,底面是两个完全一样的圆;两个底面之间的距离叫高,圆柱有无数条高。
2、圆柱周围的面叫侧面,它是一个曲面,侧面沿高展开后是长方形,这个长方形的长与圆柱的底面周长相等,宽与圆柱的高相等,因为长方形的面积=(长)×(宽),所以圆柱的侧面积=(底面周长)×(高)。
3、当圆柱的底面周长=高时,侧面沿高展开后是一个正方形,此时高是半径的2π倍。
4、圆柱的侧面积=底面周长×高已知底面半径和高求侧面积:圆柱的侧面积=2πrh S=2πrh已知底面直径和高求侧面积:圆柱的侧面积=πdh S=πdh已知底面周长和高求侧面积:圆柱的侧面积=底面周长×高S=ch已知侧面积和高求底面周长:圆柱的底面周长=圆柱的侧面积÷高c=s÷h已知侧面积和底面周长求高:圆柱的高=圆柱的侧面积÷高h=s÷c5、圆柱所占空间大小叫做圆柱的体积。
6、把一个圆柱沿半径平均分成若干份,能拼成一个近似的长方体,长方体的底面积与圆柱的底面积相等,长方体的高与圆柱的高相等,因为长方体的体积=底面积×高,所以圆柱的体积=底面积×高。
用字母表示:V=sh。
已知体积和底面积求高:圆柱的高=圆柱的体积÷圆柱的底面积h=v÷s已知体积和高求底面积:圆柱的底面积=圆柱的体积÷圆柱的高s=v÷h7、把一个圆柱切拼成一个长方体后,体积不变,表面积增加两个完全一样的长方形,一个长方形的面积=半径×高,表面积共增加2rh。
8、把一个圆柱平行于底面切成两段,体积不变,表面积增加两个完全一样的圆,一个圆的面积=πr²,表面积共增加2πr²;9、把一个圆柱体沿底面直径和高切成完全相同的两半,表面积增加两个完全一样的长方形,一个长方形的面积=直径×高,表面积共增加2dh。
圆柱与圆锥的知识点整理
圆柱和圆锥是几何图形中的基本形状,它们有一些重要的知识点需要了解:
1.圆的周长和面积公式:周长为直径乘以π,面积为半径的平方乘以π。
2.圆柱侧面积公式:将圆柱侧面展开,得到一个长方形,长方形的长是底面周长,宽是高。
侧面积等于长方形的面积,即底面周长乘以高。
3.圆柱表面积和体积公式:表面积等于侧面积加上两个底面积,体积等于底面积乘以高。
4.圆锥的体积公式:体积等于底面积乘以高再除以3.
5.等底等高的圆柱体积是圆锥体积的3倍,反之圆锥体积是圆柱体积的1/3.
6.等体积等高的圆柱和圆锥,圆锥底面积是圆柱底面积的
3倍,圆锥高是圆柱高的3倍。
7.圆柱的横切需要切成n段,需要n-1次切割,增加2×
(n-1)个底面积。
8.圆柱的纵切需要切1次,增加2个长方形,长方形的长
是底面的直径,宽是圆柱的高。
9.圆锥的纵切需要切1次,增加2个三角形,三角形的底
是圆锥的直径,高是圆锥的高。
10.将一个正方体削成一个最大的圆柱或圆锥时,正方体
的棱长就是底面直径和高。
11.熔铸或铸造时,物体的体积不变;注水问题中,上升
或下降的水的体积等于物体的体积(完全浸没)。
12.圆柱的侧面展开图是一个正方形,说明底面周长和高
的比是1∶1,半径和高的比是1∶2π,直径和高的比是1∶π。
13.当侧面积一定时,越是细长的圆柱体积越小,越是粗矮的圆柱体积越大。
以上是圆柱和圆锥的基本知识点,掌握这些知识可以更好地理解和应用这些几何图形。
圆柱和圆锥的知识点圆柱和圆锥是几何学中的两个重要概念,它们在日常生活中也有着广泛的应用。
本文将从定义、性质、公式和应用等方面介绍圆柱和圆锥的知识点。
一、圆柱的定义和性质圆柱是由一个圆沿着其直径方向移动形成的几何体,其底面和顶面都是圆形,且底面和顶面平行。
圆柱的高度是连接底面和顶面的垂直线段,圆柱的侧面是由底面和顶面之间的曲面所组成。
圆柱的性质有:1. 圆柱的底面积等于顶面积。
2. 圆柱的侧面积等于底面周长乘以高度。
3. 圆柱的体积等于底面积乘以高度。
4. 圆柱的母线是连接底面和顶面的直线。
二、圆锥的定义和性质圆锥是由一个圆沿着其直径方向移动形成的几何体,其底面是圆形,顶点在底面上方,连接底面和顶点的直线称为母线,连接顶点和底面圆心的直线称为轴线,圆锥的侧面是由底面和顶点之间的曲面所组成。
圆锥的性质有:1. 圆锥的底面积等于圆锥母线上的一条直线段与底面圆心的连线的乘积再除以2。
2. 圆锥的侧面积等于底面周长乘以母线长度再除以2。
3. 圆锥的体积等于底面积乘以高度再除以3。
4. 圆锥的母线长度等于轴线长度乘以底面半径与顶点到底面的距离之比。
三、圆柱和圆锥的公式1. 圆柱的底面积公式:S=πr²2. 圆柱的侧面积公式:S=2πrh3. 圆柱的体积公式:V=πr²h4. 圆锥的底面积公式:S=πr²5. 圆锥的侧面积公式:S=πrl6. 圆锥的体积公式:V=πr²h/3其中,r为底面半径,h为高度,l为母线长度。
四、圆柱和圆锥的应用圆柱和圆锥在日常生活中有着广泛的应用,例如:1. 圆柱形的容器,如水杯、咖啡杯、花瓶等。
2. 圆锥形的容器,如冰淇淋蛋筒、圆锥形帽子等。
3. 圆柱形的建筑物,如柱子、烟囱等。
4. 圆锥形的建筑物,如塔楼、圆锥形顶等。
5. 圆柱形的机械零件,如轴、滚筒等。
6. 圆锥形的机械零件,如锥齿轮、锥形滚子轴承等。
圆柱和圆锥是几何学中的两个重要概念,它们在日常生活中有着广泛的应用。
圆柱圆锥所有知识点圆柱和圆锥是几何学中的两个基本形状,它们具有许多特点和性质。
下面将分别介绍圆柱和圆锥的相关知识点。
一、圆柱1. 定义:圆柱是由一个圆和与该圆平行的一个平面上的一条曲线所围成的立体图形。
2. 元素:圆柱有两个底面、一个侧面和两个底面的边缘。
底面是两个平行的圆,侧面是连接两个底面边缘的曲面。
3. 性质:- 圆柱的底面积为底面圆的面积,记为S底= πr²。
- 圆柱的侧面积为底面周长乘以高,记为S侧= 2πrh。
- 圆柱的表面积为底面积加上侧面积,记为S表= 2πr² + 2πrh。
- 圆柱的体积为底面积乘以高,记为V = S底× h = πr²h。
4. 应用:- 圆柱广泛应用于日常生活中,例如杯子、柱子、筒形容器等。
- 圆柱的性质在工程、建筑和物理学等领域中也有广泛的应用。
二、圆锥1. 定义:圆锥是由一个圆和一个连接圆上任意一点到与该圆在同一平面上的一条曲线所围成的立体图形。
2. 元素:圆锥有一个底面、一个侧面和一个顶点。
底面是一个圆,侧面是连接圆上任意一点到顶点的曲面。
3. 性质:- 圆锥的底面积为底面圆的面积,记为S底= πr²。
- 圆锥的侧面积为底面周长乘以斜高,记为S侧= πrl。
- 圆锥的表面积为底面积加上侧面积,记为S表= πr² + πrl。
- 圆锥的体积为底面积乘以高再除以3,记为V = (1/3)πr²h。
4. 应用:- 圆锥的形状常见于冰淇淋蛋筒、喇叭等物体中。
- 圆锥的性质在建筑、工程和物理学等领域中也有广泛的应用。
圆柱和圆锥是几何学中常见的形状,它们有着各自的定义、元素和性质。
圆柱和圆锥的性质在日常生活和科学研究中有广泛的应用,对于我们理解和解决实际问题具有重要意义。
通过深入了解圆柱和圆锥的知识,我们可以更好地应用它们,并在实际生活中发挥它们的作用。
《圆柱与圆锥》知识点
面的旋转
1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:
(1)圆柱的两个底面是半径相等的两个圆。
(2)圆柱曲面部分叫做圆柱的侧面。
(3)两个底面间的距离叫做圆柱的高。
(4)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:
(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高,是圆锥的顶点到底面圆心的距离。
圆柱的表面积
1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形),长等于圆柱的底面周长,宽等于圆柱的高。
(如果不是沿高剪开,有可能还会是平行四边形)
2.圆柱的侧面积=底面周长×高,用字母表示为:S侧面=C底面h 。
3.圆柱的侧面积公式的应用:dh S π=侧面
(1)已知底面周长和高,求侧面积,可运用公式:S侧面=C底面h ;
(2)已知底面直径和高,求侧面积,可运用公式:;
dh S π=侧面
(3)已知底面半径和高,求侧面积,可运用公式:rh S π=2侧面
4.圆柱表面积的计算方法:如果用S 侧面表示一个圆柱的侧面积,S 底面表示底面积,d 表示底面直径,r 表示底面半径,h 表示高,那么这个圆柱的表面积为:
S 表=S 侧面+2S 底面
或 或222r rh S ππ+=表
5.圆柱表面积的计算方法的特殊应用:
(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
圆柱的体积
1.圆柱的体积:一个圆柱所占空间的大小。
2.圆柱的体积=底面积×高。
如果用V 表示圆柱的体积,S 表示底面积,h 表示高,那么V =Sh 。
3.圆柱体积公式的应用:
(1)已知底面积和高,求圆柱体积可用公式:V =Sh 。
(2)已知底面半径和高,求圆柱体积可用公式:h r V 2π=;
(3)已知底面直径和高,求圆柱体积可用公式:()h d V 2
2÷=π; (4)已知底面周长和高,求圆柱体积可用公式:()h C V 2
2÷÷=ππ; 4.圆柱形容器的容积=底面积×高,用字母表示是V =Sh 。
5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。
圆锥的体积
()222÷+d dh S ππ=表
1. 圆锥只有一条高。
2. 圆锥的体积=1/3×底面积×高。
如果用V表示圆锥的体积,S 表示底面积,h 表示高,则字母公式为:
3. 圆锥体积公式的应用:
(1)已知底面积和高
,求圆锥体积可以直接运用
(2)已知底面半径和高,求圆锥体积可以运用(3)已知底面直径和高,求圆锥体积可以运用
(4)已知底面周长和高,
sh V 31=。