高精度稳定平台伺服系统的自抗扰控制_邝平
- 格式:pdf
- 大小:1.16 MB
- 文档页数:5
技术论文学校:南京理工大学队伍:7046指导老师:李军成员1:雷杨成员2:陈舒思成员3:邝平作品名称:高精度稳定平台控制系统摘要稳定平台能够隔离载体角运动,在载体机动状态下建立稳定基准面,使安装在平台上的光电设备不会因载体运动产生的抖动和滚动而丢失目标,保证光电设备准确瞄准和跟踪目标,因此广泛应用于民用和军事领域。
设计的高精度稳定平台控制系统是以动力调谐陀螺仪为速度敏感元件,旋转变压器为角度测量元件,DSP控制器TMS320F28335为主控芯片,直流力矩电机为被控对象的闭环控制系统。
根据所需关键器件的选型设计了系统的硬件电路,包括速度和角度信号采样电路、电机驱动电路、通信电路等。
采用电流环和位置环的双闭环控制方式实现系统载体静止时的伺服控制;采用电流环、速度环和位置环的三闭环控制方式实现系统在载体运动时的稳定控制。
以上两种控制模式下的角度控制精度都能够达到0.05mrad,载体运动时系统稳定控制模式下隔离扰动效果很好。
实测结果表明,该系统硬件结构简单,稳定性好,实时性强,具有良好的稳态和动态性能,能够满足稳定平台系统的性能要求。
关键词:稳定平台DSP 陀螺仪伺服控制目录1. 作品创意 (1)2. 方案设计与论证 (1)2.1 主控芯片的选择与论证 (2)2.2陀螺的选择与论证 (3)2.3 力矩电机的选择与论证 (3)2.4 位置检测元件的选择与论证 (3)3. 系统硬件与原理图设计 (4)3.1 最小系统外围电路 (4)3.2 旋转变压器-数字转换器电路 (5)3.3 滤波采样电路 (6)3.4 电机驱动电路 (7)3.5 通信电路 (8)3.6 闭锁电路 (9)3.7 电源隔离电路 (9)4. 软件设计与流程 (10)4.1 主程序框架 (10)4.2中断程序设计 (10)5. 系统测试与分析 (13)5.1 系统调试环境 (13)5.2 系统静止状态下伺服控制调试结果 (13)5.3 系统运动状态下稳定控制调试结果 (15)6.作品难点与创新 (18)6.1难点 (18)6.2创新点 (18)1. 作品创意陀螺稳定平台作为稳定视轴或瞄准线的主要手段,多年来一直是国内外科研机构的主要研究对象。
光电跟踪稳定平台控制系统关键技术浅析【摘要】当前无人机的研究工作和设计水平越来越高,光电跟踪稳定平台作为无人机的重要组成部分,应用也更加广泛。
光电稳定平台的跟踪和稳定程度将会直接影响到整个系统的成像质量。
本文就主要对当前光电跟踪稳定平台控制系统关键技术进行了分析,从视轴稳定控制和自抗扰控制等方面进行了研究,以期能够给日后的光电跟踪稳定平台控制系统中的关键技术有一定的帮助。
【关键词】光电跟踪稳定平台;控制系统;关键技术1 当前光电跟踪稳定平台的研究现状1.1 光电跟踪稳定平台的研究背景光电跟踪稳定平台对无人机、战车以及舰船等载体有着扰动的作用,并且能够更快的对跟踪机动目标进行快速的捕捉,当前已经在侦查、测量以及搜索和营救等多方面都有着广泛的应用。
在军事方面,随着当前科学技术的快速发展,现代化的战争形势也已经出现了。
光电跟踪稳定平台对军事武器的打击力的提升也有着很重要的作用,以往的海、陆、空三维方式的战场已经转变成当前的海、陆、空、信息、天为一体的五维战场。
对比近年来的战争来看,情报信息的实时性已经成为了决定战争胜利与否的重要因素。
而近些年来,侦查用的无人机在战争中的优势和作用也逐渐显现出来了,世界各国也都对无人机的性能进行了大力的研究和开发,我国的侦查用无人机的研发工作也成为了当前国家重点的研究项目。
1.2 光电跟踪稳定平台的研究现状光电跟踪稳定平台,在无人机中有着眼睛的作用,想要对机动目标进行跟踪和测量,与定基座的光电稳定平台伺服系统在性能上有很大的出入,主要是因为机载光电跟踪稳定平台利用了视轴稳定控制的方式。
视轴稳定技术主要是应用了陀螺仪等作为传感器,使其具有更好的稳定性,能够组成一个相对稳定的控制闭环,能够实时的测量出光电跟踪稳定平台在惯性中出现的角速率,并对其工作状态进行伺服系统的调整。
稳定视轴的主要作用就是能够保证摄像机以及红外热像仪等测量功能能够得到更高质量的图片或者视频,而更高质量的图像或者是视频能够提高对跟踪目标的准确度和精准度,进而保证光电稳定平台对目标的跟踪性能。
半潜式海洋平台动力定位的动态面自抗扰控制半潜式海洋平台是一种用于海洋上油气开采的稳定平台,能够在大海的风浪中保持平衡。
动力定位是半潜式海洋平台的主要控制方式,能够实现平台的动态控制和定位。
为保证半潜式海洋平台能够在各种环境下保持稳定性和安全性,需要对其进行动态面自抗扰控制。
动态面自抗扰控制是一种使用自适应控制理论实现船舶动态稳定的控制方法。
其基本原理是通过对环境因素的变化进行感知,并对船舶姿态参数进行连续调整,从而保证船舶的稳定性和安全性。
在半潜式海洋平台的动力定位中,采用动态面自抗扰控制技术可以有效地应对海洋环境因素的变化,保证平台的稳定性和安全性。
在半潜式海洋平台动力定位的动态面自抗扰控制中,需要考虑以下两个方面:1. 建立动态面模型首先需要建立半潜式海洋平台的动态面模型。
该模型需要考虑以下因素:船舶的体态参数、海洋环境因素和动力系统参数。
其中,船舶的体态参数包括姿态角、速度和加速度等;海洋环境因素包括风浪、潮流和水温等;动力系统参数包括电机功率、推进器参数和控制系统参数等。
根据这些因素,建立动态面模型,提取出船舶的主要动态特性,为后续的自适应控制提供基础。
2. 设计自适应控制方案接下来需要设计动态面自抗扰控制方案。
该方案需要进行以下步骤:(1)系统建模和状态估计通过观测半潜式海洋平台的运动状态和环境参数,对系统进行建模和状态估计。
其中,状态估计可以利用卡尔曼滤波器进行实现,根据半潜式海洋平台的运动状态和环境参数对姿态角、速度和加速度等状态变量进行估计。
(2)自适应控制器设计根据半潜式海洋平台的动态面模型和状态估计结果,设计自适应船舶控制器。
该控制器需要具有一定的自适应能力,能够感知环境因素的变化,对船舶姿态参数进行连续调整,从而保证平台的稳定性和安全性。
(3)控制器的实现和调试将设计好的自适应控制器应用到半潜式海洋平台的动力定位控制中。
进行实际调试,优化控制器参数,提高控制效果。
同时,对控制器的稳定性和鲁棒性进行验证,确保其能够在各种复杂环境下实现半潜式海洋平台的动力定位。
基于自抗扰控制技术的高超声速飞行器控制研究基于自抗扰控制技术的高超声速飞行器控制研究近年来,高超声速飞行器在航空航天领域引起了广泛的关注。
高超声速飞行器的出现不仅极大地推动了航空技术的发展,也对飞行器控制技术提出了更高的要求。
由于高超声速飞行器的特殊工况,传统的控制方法已经无法满足需求,因此,研究基于自抗扰控制技术的高超声速飞行器控制成为了一个重要课题。
高超声速飞行器控制涉及到多个方面的问题,如姿态控制、飞行路径跟踪和飞行稳定性等。
其中,姿态控制是高超声速飞行器控制中最为关键的一环。
由于高超声速飞行器的高速飞行特性,其姿态变化剧烈,传统的姿态控制方法已经无法满足需求。
因此,基于自抗扰控制技术的姿态控制成为了高超声速飞行器控制的研究热点。
基于自抗扰控制技术的姿态控制,主要通过引入扰动观测器和控制器来实现。
扰动观测器可以对外部扰动进行估计和补偿,从而使系统具备更好的抗干扰能力。
控制器通过根据扰动观测器的估计结果进行修正,实现对飞行器姿态的精确控制。
通过引入自抗扰控制技术,可以提高姿态控制系统的鲁棒性和稳定性。
在高超声速飞行器的控制研究中,利用自抗扰控制技术能够解决多种问题。
首先,由于高超声速飞行器飞行速度较快,飞行器表面会受到强烈的气动力和热载荷的影响,这些扰动会对姿态控制系统产生较大的影响。
利用自抗扰控制技术,可以精确估计和补偿这些扰动,使飞行器姿态控制系统具备更好的鲁棒性。
其次,高超声速飞行器由于飞行速度较快,对操纵输入的敏感性较高。
传统的姿态控制方法很难应对高超声速飞行器在不同工况下对操纵输入的高要求。
利用自抗扰控制技术,可以通过引入控制器来修正操纵输入,以实现高超声速飞行器在不同工况下的精确控制。
最后,高超声速飞行器的飞行特性非常复杂,例如激波和边界层的相互作用以及失稳现象等。
传统的控制方法很难满足高超声速飞行器对飞行稳定性的要求。
利用自抗扰控制技术,可以实现对飞行器飞行稳定性的优化。
综上所述,基于自抗扰控制技术的高超声速飞行器控制研究具有重要的实际意义。
高精度稳定平台伺服系统的自抗扰控制邝平;李军;雷阳;雷鹏飞【摘要】A new design method applied in high-precision stabilized platform is introduced. In view of the requirements of isolating disturbances and stabilizing optical axis of a stabilized platform, it can im-prove the performance of the system control by optimizing control algorithms. Active disturbance rejection control( ADRC) controllers are used to design the speed loop of the high-precision stabilized system, to-gether with current loop based on conventional PID control consist ADRC-PID control. By Simulink sim-ulations it shows that the ADRC has more faster response, and the isolation degree of disturbance high than that of PID. In conclusion, the ADRC based on current loop satisfies the performance requirements of photoelectrical stabilized platforms and has such characters as fast response, good isolation, strong ro-bustness and high stability.%提出了一种应用于高精度稳定平台伺服系统的设计方法. 为满足稳定平台快速隔离扰动、稳定视轴的要求,将自抗扰控制应用于平台系统的速度环,和常规PID控制的电流环一起构成ADRC-PID控制. Simulink仿真结果表明,与传统PID控制相比,采用自抗扰控制后系统响应速度快,隔离度有较大的提高. ADRC-PID 控制可满足高精度光电稳定平台的性能要求,系统具有响应速度快,隔离度好,鲁棒性强,稳定性高等特点.【期刊名称】《工业仪表与自动化装置》【年(卷),期】2016(000)001【总页数】5页(P14-18)【关键词】稳定平台;自抗扰控制;伺服控制;电流环【作者】邝平;李军;雷阳;雷鹏飞【作者单位】南京理工大学自动化学院,南京210094;南京理工大学自动化学院,南京210094;南京理工大学自动化学院,南京210094;南京理工大学自动化学院,南京210094【正文语种】中文【中图分类】TP302陀螺稳定平台能够隔离载体角运动,在载体机动状态下建立稳定基准面,使安装在平台上的光电设备不会因载体运动产生的抖动和滚动而丢失目标,保证光电设备准确瞄准和跟踪目标[1],因此广泛应用于民用和军事领域。
永磁同步电机自抗扰控制技术探究摘要:永磁同步电机(PMSM)拥有高效、高精度、高动态响应等优势,在现代工业中得到越来越多的应用。
然而,PMSM的动态响应受到外部干扰和模型误差等因素的影响,导致控制效果降低。
自抗扰控制技术(ADRC)是一种有效的控制方法,其具有较强的鲁棒性和适应性,能够有效地降低外部干扰和模型误差对系统的影响,提高PMSM的控制性能。
本文基于ADRC理论,探究了PMSM的自抗扰控制技术,建立了PMSM的数学模型,并进行了控制器的设计和仿真试验。
结果表明,ADRC技术对于PMSM的控制效果具有良好的鲁棒性和适应性,在外部干扰和模型误差的状况下,可以有效地提高PMSM的控制精度和动态性能。
关键词:永磁同步电机;自抗扰控制;鲁棒性;适应性;动态性能。
正文:一、绪论随着现代工业的不息进步,永磁同步电机(PMSM)已经成为了各种机电设备中的重要部件,在机器人、电动车、风力发电机、电子电器等领域得到广泛的应用。
PMSM拥有高效、高精度、高动态响应等优势,是替代传统感应电机的重要选择。
然而,PMSM的动态响应受到外部干扰和模型误差等因素的影响,导致控制效果降低。
因此,如何提高PMSM的控制精度和动态性能,是当前探究的热点之一。
自抗扰控制技术(ADRC)是一种有效的控制方法,它不依靠于精确的系统模型和干扰预估,能够有效地降低外部干扰和模型误差对系统的影响,提高系统的稳定性和控制性能。
因此,ADRC 技术在PMSM的控制中也得到了广泛的应用。
本文基于ADRC理论,探究了PMSM的自抗扰控制技术,建立了PMSM的数学模型,并进行了控制器的设计和仿真试验。
二、 PMSM的数学模型PMSM是一种典型的无刷直流电机,其数学模型可以表示为:$$u=\frac{d}{dt}\psi+Ri+e$$$$T=\frac{3}{2}p(\psi i_m-L_d i_d i_m)-J\frac{d\omega}{dt}$$其中,$u$为输入电压,$\psi$为磁链,$R$为电阻,$i$为电流,$e$为反电势,$T$为转矩,$p$为极对数,$i_m$为磁场电流,$L_d$为轴向电感,$L_q$为切向电感,$J$为转动惯量,$\omega$为转速。