探究三? 探究三?
类比复数加法的几何意义,请指出复数减法的几何意义? 类比复数加法的几何意义,请指出复数减法的几何意义?
设 OZ1 及 OZ 2 分别与复数 a + bi 对应, 及复数 c + di对应,则 OZ1 ,= ( a, b) OZ 2 = (c, d ) y Z 1
Z 2 Z1 = OZ1 OZ 2 = (a, b) - (c, d) = (a - c, b - d)
意z1∈C,z2∈C,z3∈C , ,
z1+z2=z2+z1 z1+z2=z2+z1 显然 (z1 (z 3=z1+(z2+z3) 同理可得 +z2)+z1+z2)+z3=z1+(z2+z3)
点评:实数加法运算的交换律,结合律在复数集 中 点评:实数加法运算的交换律,结合律在复数集C中 依然成立. 依然成立.
作业:课本 作业 课本P61,第1,2,3题 课本 第 题
3.2.1复数代数形式的加减运算 复数代数形式的加减运算 及其几何意义
第二课时) (第二课时)
知识回顾: 知识回顾:
1,复数的加减法法则: ,复数的加减法法则: 是任意两个复数, 设z1=a+bi,z2=c+di是任意两个复数, 是任意两个复数 那么(a+bi) ±(c+di)=____ 那么 ) ____ ; 两个复数的和或减是一个确定的_____; 两个复数的和或减是一个确定的 2,复数的加法在几何上可 , 以按照____来进行; 以按照____来进行; ____来进行 减法在几何上可以按 ____来进行 来进行; 照____来进行;
思考? 思考?
是共轭复数,则在复平面上, 若z1,z2是共轭复数,则在复平面上,它们 所对应的点有怎样的位置关系? 所对应的点有怎样的位置关系?