数字电子技术基础1-4二进制代码
- 格式:pptx
- 大小:129.14 KB
- 文档页数:8
第一章数字逻辑习题1.1 数字电路与数字信号1.1.2 图形代表的二进制数0101101001.1.4 一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0 1 2 11 12 (ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2 数制1.2.2 将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于2−4(2)127 (4)2.718解:(2)(127)D= 27 -1=()B-1=()B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4 二进制代码1.4.1 将下列十进制数转换为8421BCD 码:(1)43 (3)254.25 解:(43)D=()BCD1.4.3 试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+ (2)@ (3)you (4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。
(1)“+”的ASCⅡ码为,则()B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you 的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43 的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6 逻辑函数及其表示方法1.6.1 在图题1. 6.1 中,已知输入信号A,B`的波形,画出各门电路输出L 的波形。
解: (a)为与非, (b)为同或非,即异或第二章逻辑代数习题解答2.1.1 用真值表证明下列恒等式(3)A⊕ =B AB AB+ (A⊕B)=AB+AB解:真值表如下由最右边2栏可知,A⊕B与AB+AB的真值表完全相同。
数字电子技术试卷(1)一.填空(16)1.十进制数123的二进制数是 1111011 ;十六进制数是 7B 。
2.是8421BCD 码,其十进制为 861 。
3.逻辑代数的三种基本运算是 与 , 或 和 非 。
4.三态门的工作状态是 0 , 1 , 高阻 。
5.描述触发器逻辑功能的方法有 真值表,逻辑图,逻辑表达式,卡诺图,波形图 。
6.施密特触发器的主要应用是 波形的整形 。
7.设4位D/A 转换器的满度输出电压位30伏,则输入数字量为1010时的输出模拟电压为 。
8.实现A/D 转换的主要方法有 , , 。
三.化简逻辑函数(14)1.用公式法化简--+++=A D DCE BD B A Y ,化为最简与或表达式。
解;D B A Y +=-2.用卡诺图化简∑∑=mdD C B A Y ),,,,()+,,,,(84210107653),,,(,化为最简与或表达式。
四.电路如图1所示,要求写出输出函数表达式,并说出其逻辑功能。
(15)解;C B A Y ⊕⊕=, C B A AB C )(1++=,全加器,Y 为和,1C 为进位。
五.触发器电路如图2(a ),(b )所示,⑴写出触发器的次态方程; ⑵对应给定波形画出Q 端波形(设初态Q =0)(15)解;(1)AQ Q Q n +=-+1,(2)、A Q n =+1六.试用触发器和门电路设计一个同步的五进制计数器。
(15)七.用集成电路定时器555所构成的自激多谐振荡器电路如图3所示,试画出V O ,V C 的工作波形,并求出振荡频率。
(15)数字电子技术试卷(2)二.填空(16)1.十进制数的二进制数是;十六进制数是。
2.逻辑代数中逻辑变量得取值为 0、1 。
3.组合逻辑电路的输出状态只与当前输入有关而与电路原状态无关。
4.三态门的输出有0、1、高阻,三种状态,当多个三态门的输出端连在一根总线上使用时,应注意只能有1个三态门被选通。
5.触发器的基本性质有有两个稳态,在触发信号作用下状态可相互转变,有记忆功能6.单稳态触发器的主要应用是延时。
数字电子技术基础试卷试题答案汇总数字电子技术基础试题(二)一、填空题 : (每空1分,共10分)1.八进制数 (34.2 ) 8 的等值二进制数为(11100.01 ) 2 ;十进制数 98 的8421BCD 码为(10011000 ) 8421BCD 。
2 . TTL 与非门的多余输入端悬空时,相当于输入高电平。
3 .下图所示电路中的最简逻辑表达式为。
AB4. 一个 JK 触发器有两个稳态,它可存储一位二进制数。
5. 若将一个正弦波电压信号转换成同一频率的矩形波,应采用多谐振荡器电路。
6. 常用逻辑门电路的真值表如表1所示,则 F 1 、 F 2 、 F 3 分别属于何种常用逻辑门。
表 1A B F 1 F 2 F 30 0 1 1 00 1 0 1 11 0 0 1 11 1 1 0 1F 1 同或;F 2 与非门;F 3 或门。
二、选择题: (选择一个正确答案填入括号内,每题3分,共30分 )1、在四变量卡诺图中,逻辑上不相邻的一组最小项为:(D )A、m 1与m 3B、m 4与m6C、m 5 与m 13D、m 2 与m 82、 L=AB+C 的对偶式为:(B )A 、 A+BC ;B 、( A+B )C ; C 、 A+B+C ;D 、 ABC ;3、半加器和的输出端与输入端的逻辑关系是(D )A、与非B、或非C、与或非D、异或4、 TTL 集成电路 74LS138 是3 / 8线译码器,译码器为输出低电平有效,若输入为 A 2 A 1 A 0 =101 时,输出:为(B )。
A . 00100000 B. 11011111 C.11110111 D. 000001005、属于组合逻辑电路的部件是(A )。
A、编码器B、寄存器C、触发器D、计数器6.存储容量为8K×8位的ROM存储器,其地址线为(C )条。
A、8B、12C、13D、147、一个八位D/A转换器的最小电压增量为0.01V,当输入代码为10010001时,输出电压为(C )V。
《数字电路与逻辑设计》作业教材:《数字电子技术基础》(高等教育出版社,第2版,2012年第7次印刷)第一章:自测题:一、1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路5、各位权系数之和,1799、01100101,01100101,01100110;11100101,10011010,10011011二、1、×8、√10、×三、1、A4、B练习题:、解:(1) 十六进制转二进制: 4 5 C0100 0101 1100二进制转八进制:010 001 011 1002 13 4十六进制转十进制:(45C)16=4*162+5*161+12*160=(1116)10(2) 十六进制转二进制: 6 D E . C 80110 1101 1110 . 1100 1000 二进制转八进制:011 011 011 110 . 110 010 0003 3 3 6 . 6 2十六进制转十进制:()16=6*162+13*161+14*160+13*16-1+8*16-2=()10所以:()16=()2=()8=()10(3) 十六进制转二进制:8 F E . F D1000 1111 1110. 1111 1101二进制转八进制:100 011 111 110 . 111 111 0104 3 7 6 . 7 7 2十六进制转十进制:(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*16-2=(2302.98828125)10 (4) 十六进制转二进制:7 9 E . F D0111 1001 1110 . 1111 1101二进制转八进制:011 110 011 110 . 111 111 0103 6 3 6 . 7 7 2十六进制转十进制:(79E.FD)16=7*162+9*161+14*160+15*16-1+13*16-2=(1950. 98828125)10 所以:()16.11111101)2=(363)8=(1950.98828125)10、解:(74)10 =(0111 0100)8421BCD=(1010 0111)余3BCD(45.36)10 =(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001 )余3BCD(136.45)10 =(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000 )余3BCD (374.51)10 =(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD、解(1)(+35)=(0 100011)原= (0 100011)补(2)(+56 )=(0 111000)原= (0 111000)补(3)(-26)=(1 11010)原= (1 11101)补(4)(-67)=(1 1000011)原= (1 1000110)补第二章:自测题:一、1、与运算、或运算、非运算3、代入规则、反演规则、对偶规则二、2、×4、×三、1、B3、D5、C练习题:2.2:(4)解:(8)解:2.3:(2)证明:左边=右式所以等式成立(4)证明:左边=右边=左边=右边,所以等式成立(1)(3)2.6:(1)2.7:(1)卡诺图如下:BCA00 01 11 100 1 11 1 1 1所以,2.8:(2)画卡诺图如下:BC A 0001 11 100 1 1 0 11 1 1 1 12.9:如下:CDAB00 01 11 1000 1 1 1 101 1 111 ×××10 1 ××2.10:(3)解:化简最小项式:最大项式:2.13:(3)技能题:2.16 解:设三种不同火灾探测器分别为A、B、C,有信号时值为1,无信号时为0,根据题意,画卡诺图如下:BC00 01 11 10A0 0 0 1 01 0 1 1 1第三章:自测题:一、1、饱和,截止7、接高电平,和有用输入端并接,悬空;二、1、√8、√;三、1、A4、D练习题:、解:(a)Ω,开门电阻3kΩ,R>R on,相当于接入高电平1,所以(e) 因为接地电阻510ΩkΩ,R<R off,相当于接入高电平0,所以、、解:(a)(c)(f)、解: (a)、解:输出高电平时,带负载的个数2020400===IH OH OH I I N G 可带20个同类反相器输出低电平时,带负载的个数78.1745.08===IL OL OL I I NG反相器可带17个同类反相器EN=1时,EN=0时,根据题意,设A为具有否决权的股东,其余两位股东为B、C,画卡诺图如下,BC00 01 11 10A0 0 0 0 01 0 1 1 1则表达结果Y的表达式为:逻辑电路如下:技能题::解:根据题意,A、B、C、D变量的卡诺图如下:CD00 01 11 10AB00 0 0 0 001 0 0 0 0 11 0 1 1 1 10 0 0 0 0电路图如下:第四章:自测题:一、2、输入信号,优先级别最高的输入信号7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C练习题:4.1;解:(a),所以电路为与门。
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
第一章数字逻辑基础第一节重点与难点一、重点:1.数制2.编码(1) 二—十进制码(BCD码)在这种编码中,用四位二进制数表示十进制数中的0~9十个数码。
常用的编码有8421BCD码、5421BCD码和余3码。
8421BCD码是由四位二进制数0000到1111十六种组合中前十种组合,即0000~1001来代表十进制数0~9十个数码,每位二进制码具有固定的权值8、4、2、1,称有权码。
余3码是由8421BCD码加3(0011)得来,是一种无权码。
(2)格雷码格雷码是一种常见的无权码。
这种码的特点是相邻的两个码组之间仅有一位不同,因而其可靠性较高,广泛应用于计数和数字系统的输入、输出等场合。
3.逻辑代数基础(1)逻辑代数的基本公式与基本规则逻辑代数的基本公式反映了二值逻辑的基本思想,是逻辑运算的重要工具,也是学习数字电路的必备基础。
逻辑代数有三个基本规则,利用代入规则、反演规则和对偶规则使逻辑函数的公式数目倍增。
(2)逻辑问题的描述逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图,它们各具特点又相互关联,可按需选用。
(3)图形法化简逻辑函数图形法比较适合于具有三、四变量的逻辑函数的简化。
二、难点:1.给定逻辑函数,将逻辑函数化为最简用代数法化简逻辑函数,要求熟练掌握逻辑代数的基本公式和规则,熟练运用四个基本方法—并项法、消项法、消元法及配项法对逻辑函数进行化简。
用图形法化简逻辑函数时,一定要注意卡诺图的循环邻接的特点,画包围圈时应把每个包围圈尽可能画大。
2.卡诺图的灵活应用卡诺图除用于简化函数外,还可以用来检验化简结果是否最简、判断函数间的关系、求函数的反函数和逻辑运算等。
3.电路的设计在工程实际中,往往给出逻辑命题,如何正确分析命题,设计出逻辑电路呢?通常的步骤如下:1.根据命题,列出反映逻辑命题的真值表; 2.根据真值表,写出逻辑表达式; 3.对逻辑表达式进行变换化简; 4.最后按工程要求画出逻辑图。