《大学物理》第8章 能量守恒
- 格式:ppt
- 大小:3.79 MB
- 文档页数:55
《普通物理》课程标准1. 课程基本信息课程代码:课程归口:电子信息工程技术专业适用专业:电子信息工程技术学时数:64学分:4先修课程:高等数学2. 课程性质与地位大学物理是高等院校非物理类理工科各专业学生一门重要的通识性必修基础课。
物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。
它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。
课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。
该课程在培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。
3.课程的内容与要求第一部分力学.第1章质点运动学1.1质点运动的描述1.2加速度为恒矢量时的质点运动1.3圆周运动1.4相对运动基本要求:1.深入地理解质点、位移、速度和加速度等重要概念,深入理解质点的运动。
2.分析加速度为恒矢量时的质点运动方程。
3.明确圆周运动中角位移、角速度、切向加速度、法向加速度的关系。
重点与难点:1.加速度为恒矢量时质点运动方程的描写。
2.质点圆周运动的分析。
第2章动力学基本定律2.1牛顿定律2.2物理量的单位和量纲2.3几种常见的力2.4惯性参考系力学相对性原理2.5质点和质点系的动量定理2.6动量守恒定律2.7动能定理2.8保守力与非保守力势能2.9功能原理机械能守恒定律2.10完全弹性碰撞完全非弹性碰撞2.11能量守恒定律基本要求:1.清晰的理解牛顿第一定律、牛顿第二定律和牛顿第三定律。
2.熟练掌握几种常见力。
3.掌握物理量的单位和量纲。
4.理解惯性参考系和力学相对性原理,能列举出牛顿定律应用的例子。
5.掌握质点和质点系的动量定理。
6.熟练掌握动量守恒定律和动能定理。
7.掌握功能原理和机械能守恒定律。
8.清晰分辩出完全弹性碰撞和完全非弹性碰撞重点与难点:1.牛顿三定律的应用。
2.参考系的选择。
《大学物理》(8-13章)练习题(2022年12月)第八章气体运动论1.气体温度的微观或统计意义是什么?2.理想气体状态方程的三种形式?PV=N KT, p=nkT, (n=N/V)3.气体的最概然速率、方均根速率、平均速率的关系是什么?4.气体分子的平均平动动能的表达式及其意义?5.理想气体的内能?6.气体分子的平均自由程是指?7.单原子分子、刚性双原子分子气体的自由度数目各是多少?8、理想气体的微观模型是什么?综合练习1. 在某容积固定的密闭容器中,盛有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 4p1. ;B. 5p1;C. 6p1;D. 8p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B.pV mT⁄; C. pV kT⁄; D. pV RT⁄.3. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为( )A. 52pV; B. 32pV; C. pV; D. 12pV。
4 刚性双原子分子气体的自由度数目为()。
A. 2B. 3C. 4D. 55.气体温度的微观物理意义是:温度是分子平均平动动能的量度;温度是表征大量分子热运动激烈程度的宏观物理量,是大量分子热运动的集体表现;在同一温度下各种气体分子平均平动动能均相等。
6. 设v̅代表气体分子运动的平均速率,v p代表气体分子运动的最概然速率,(v2̅̅̅)12代表气体分子运动的方均根速率。
处于平衡状态下理想气体,三种速率关系为( )A. (v2̅̅̅)12=v̅=v p;B. v̅=v p<(v2̅̅̅)12;C. v p<v̅<(v2̅̅̅)12;D. v p>v̅>(v2̅̅̅)12。
最新大学物理-(第4版)主编赵近芳-第8章课后答案8.1 选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。
](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。
热力学第一定律描述个热力学过程中的能量守恒定性质。
](3) 如题8.1图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题8.1图[答案:B。
b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b 2a cb 构成逆循环,ΔE = 0,A 净 < 0,Q = Q b 2a + Q acb = A 净 <0,但 Q acb = 0,∴ Q b 2a <0 放热 ; b 2a 压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的. [ ](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.[答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。
01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。
02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。
法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。
介绍互感的概念、计算方法以及变压器的工作原理和应用。
分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。
电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。
动contents •简谐振动•阻尼振动与受迫振动•振动的合成与分解•振动在介质中的传播•多自由度系统的振动•非线性振动与混沌目录01简谐振动简谐振动的定义与特点定义简谐振动是最基本、最简单的振动形式,指物体在跟偏离平衡位置的位移成正比,并且总是指向平衡位置的回复力的作用下的振动。
特点简谐振动的物体所受的回复力F与物体偏离平衡位置的位移x成正比,且方向始终指向平衡位置;振动过程中,系统的机械能守恒。
动力学方程根据牛顿第二定律,简谐振动的动力学方程可以表示为F=-kx,其中F为回复力,k为比例系数,x为物体偏离平衡位置的位移。
运动学方程简谐振动的运动学方程可以表示为x=Acos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相。
势能与动能在简谐振动过程中,系统的势能Ep和动能Ek都在不断变化,但它们的总和保持不变,即机械能守恒。
能量转换在振动过程中,势能和动能之间不断相互转换。
当物体向平衡位置运动时,势能减小、动能增加;当物体远离平衡位置时,势能增加、动能减小。
同方向同频率简谐振动的合成当两个同方向、同频率的简谐振动同时作用于同一物体时,它们的合振动仍然是一个简谐振动,其振幅等于两个分振动振幅的矢量和,其初相等于两个分振动初相的差。
同方向不同频率简谐振动的合成当两个同方向、不同频率的简谐振动同时作用于同一物体时,它们的合振动一般不再是简谐振动,而是比较复杂的周期性振动。
在某些特定条件下(如两个分振动的频率成简单整数比),合振动可能会呈现出一定的规律性。
相互垂直的简谐振动的合成当两个相互垂直的简谐振动同时作用于同一物体时,它们的合振动轨迹一般是一条复杂的曲线。
在某些特定条件下(如两个分振动的频率相同、相位差为90度),合振动轨迹可能会呈现出一定的规律性,如圆形、椭圆形等。
02阻尼振动与受迫振动阻尼振动的定义与分类定义阻尼振动是指振动系统在振动过程中,由于系统内部摩擦或外部介质阻力的存在,使振动幅度逐渐减小,能量逐渐耗散的振动。
物理第8章总结知识点第8章中涉及了一些重要的物理概念和原理,我们来逐一总结一下这些知识点。
1. 力和运动本章最重要的知识点之一就是力和运动的关系。
力可以改变物体的位置、形状和速度,它是一种动力。
牛顿三定律是力和运动的重要基础。
第一定律说:一个物体如果没有受到外力的作用,它将保持静止或匀速直线运动;第二定律说:一个物体所受的力等于它的质量乘以它的加速度;第三定律说:两个物体之间的相互作用力大小相等、方向相反。
2. 动能和势能在力和运动的基础上,我们要了解动能和势能的概念。
动能是移动的物体由于其运动状态而拥有的一种能量,它与物体的质量和速度有关;而势能是物体由于其位置和状态而拥有的一种能量,它与重力场或其他力场的性质有关。
动能和势能之间可以通过能量守恒定律相互转化。
3. 动量守恒定律动量是物体的运动状态的度量,它等于物体的质量乘以其速度。
动量守恒定律说:在一个系统内,如果不受外力的作用,系统内各个物体的总动量守恒。
这个定律对于解释一些物理现象和计算碰撞问题有很大的帮助。
4. 弹性碰撞和非弹性碰撞在碰撞的过程中,能量和动量的守恒是非常重要的。
弹性碰撞是指碰撞后物体之间没有能量损失,动量守恒,而非弹性碰撞是指碰撞后物体之间有能量损失和动量守恒。
弹性碰撞和非弹性碰撞都有其特定的计算方法和实际应用。
5. 阻力和运动在运动的过程中,阻力是一种很常见的现象,它是运动物体所受的一种外力。
阻力的大小与速度和物体形状有关,它会影响物体的运动状态。
了解阻力对于分析物体的运动状态和计算阻力等问题有很大的帮助。
6. 力的做功和功率作用在物体上的力所做的功等于力的大小和物体移动的距离的乘积。
功率是做功的效率,它等于单位时间内所做的功。
力的做功和功率可以帮助我们理解一些实际的工作和能量的转化问题。
7. 能量守恒定律能量守恒定律是物理学中一个重要的定律,它说:一个孤立系统内的能量总量是守恒的。
利用能量守恒定律可以解决许多能量转化和利用问题,如机械能守恒、弹簧振子、弹性碰撞等。
习题8选择题(1) 关于可逆过程和不可逆过程有以下几种说法:①可逆过程一定是准静态过程.②准静态过程一定是可逆过程.③不可逆过程发生后一定找不到另一过程使系统和外界同时复原.④非静态过程一定是不可逆过程.以上说法,正确的是:[](A) ①、②、③、④. (B) ①、②、③.(C) ②、③、④. (D) ①、③、④.[答案:D. 准静态过程不一定是可逆过程.因准静态过程中可能存在耗散效应,如摩擦、粘滞性、电阻等。
](2) 热力学第一定律表明:[](A) 系统对外做的功不可能大于系统从外界吸收的热量.(B) 系统内能的增量等于系统从外界吸收的热量.(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量.(D) 热机的效率不可能等于1.[答案:C。
热力学第一定律描述个热力学过程中的能量守恒定性质。
](3) 如题图所示,bca为理想气体绝热过程,b1a和b2a是任意过程,则上述两过程中气体做功与吸收热量的情况是: [](A) b1a过程放热,做负功;b2a过程放热,做负功.(B) b1a过程吸热,做负功;b2a过程放热,做负功.(C) b1a过程吸热,做正功;b2a过程吸热,做负功.(D) b1a过程放热,做正功;b2a过程吸热,做正功.题图[答案:B。
b1acb构成正循环,ΔE = 0,A净> 0,Q = Q b1a+ Q acb= A净>0,但Q acb= 0,∴Q b1a >0 吸热; b1a压缩,做负功b2a cb构成逆循环,ΔE = 0,A净< 0,Q = Q b2a+ Q acb= A净<0,但Q acb= 0,∴Q b2a <0 放热; b2a压缩,做负功](4) 根据热力学第二定律判断下列哪种说法是正确的.[](A) 功可以全部变为热,但热不能全部变为功.(B) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量.[答案:C. 热力学第二定律描述自然热力学过程进行的条件和方向性。
大学物理中的能量守恒机械能和热能的转化在大学物理中,能量守恒是一个非常重要的概念。
能量守恒描述了能量在物体或系统中的转化和传递,并且在自然界中起着至关重要的作用。
其中,机械能和热能的转化是能量守恒的两个方面。
机械能是指物体的动能和势能的总和。
动能是物体由于运动而具有的能量,它与物体的质量和速度有关;势能是指物体由于位置、形态或状态的改变而具有的能量,它与物体的位置、形状和其他特性有关。
机械能的转化发生在物体的运动过程中。
在物理学中,机械能的转化可以通过以下几个方面来理解和描述。
首先,当物体在自由下落或抛体运动时,机械能的转化十分明显。
物体自由下落时,它的势能会逐渐减小,同时动能会逐渐增加,两者之和保持不变。
这是因为物体下落的过程中,它的势能转化为了动能。
同样地,在抛体运动中,物体在上升阶段势能增加而动能减小,在下降阶段则相反,这也是机械能转化的体现。
其次,当物体在弹簧振动或摆动过程中,机械能的转化也是显著的。
弹簧振动时,物体的势能和动能之间不断转化。
当物体通过平衡位置时,势能最大而动能最小;当物体通过最大偏移时,动能最大而势能最小。
这样的转化过程是循环性的,并且机械能是一个守恒量。
此外,机械能的转化还可以通过以下几个示例来加以阐述。
例如,当小球从斜面上滚动下来时,它的势能减小而动能增加,机械能的转化是明显的。
同样地,当一辆自行车通过刹车减速时,机械能也转化为了其他形式的能量,如声能和热能。
在物理学中,热能是指物体微观粒子的随机运动引起的能量。
热能的转化也与能量守恒密切相关。
首先,当两个不同温度的物体接触或热交换时,热能的转化是明显的。
根据热力学第一定律,能量守恒成立,即能量不能被创造或销毁,只能从一种形式转化为另一种形式。
当两个物体接触时,热能会从高温物体流向低温物体,直至两者的温度达到平衡。
这个过程中,热能转化为了其他形式的能量。
其次,当物体发生燃烧时,化学能转化为热能。
燃烧是一种氧化还原反应,发生在可燃物质与氧气结合时。
第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ ,它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B.该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F]应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R R I B π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20y d cos d π-=θθμ RIR I B 202/π020x d sin π-=π-=⎰μθθμ R I R I B 202/π020y d cos π-=π-=⎰μθθμ【T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ/方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d =)2/(d d 0r l j B π=μ`由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为:):2/122002)(122x a IrIB +⋅π=π=μμ …1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ (2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行;~(2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为%2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.·8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上解:依据无限长带电和载流导线的电场和磁场知: r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:【)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ )(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.…I 1I 22I 1解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,…式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==—本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ~方向向右,从a x =到a x 2=磁场所作的功为;BI I 2)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得|NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B!四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]{8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管bIaP单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.}[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.、[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π.@(C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]!8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则 |(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T .(C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于~OI 1>(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的(A )H仅与传导电流有关.)(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ.`(D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ),8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ).…____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.<ef图(1)图(2)图(3)y xzO8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.~8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )?8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.!IB8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.!8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.;8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.、a bI120°BO IaI dy ORωO bxaPδ8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.】8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.'8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.\8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.)8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.?8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量;·(3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.!(真空的磁导率=4×10-7T ·m/A ,铜的相对磁导率r≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.:8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )*x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)-8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).?8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.~8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。
第八章课后习题解答一、选择题8-1如图8-1所示,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即=A B p p 。
则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然[ ](A) 对外作正功 (B) 内能增加 (C) 从外界吸热 (D) 向外界放热分析:由p V -图可知,A A B B p V p V =,即知A B T T <,则对一定量理想气体必有B A E E >,即气体由状态A 变化到状态B ,内能必增加。
而作功、热传递均是过程量,与具体的热力学过程相关,所以(A )、(C )、(D )不是必然结果,只有(B )正确。
8-2 两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。
开始时它们的压强和温度都相同。
现将3 J 热量传给氦气,使之升高到一定的温度。
若使氢气也升高同样的温度,则应向氢气传递热量为[ ](A) 6 J (B) 3 J (C) 5 J (D) 10 J分析:由热力学第一定律Q E W =∆+知在等体过程中Q E =∆。
故可知欲使氢气和氦气升高相同的温度,由理想气体的内能公式2m i E R T M '∆=∆,知需传递的热量之比22222:():():5:3HHe H He H He H He H Hem m Q Q i i i i M M ''===。
故正确的是(C )。
8-3 一定量理想气体分别经过等压、等温和绝热过程从体积1V 膨胀到体积2V ,如图8-3所示,则下述正确的是[ ]习题8-1图(A) A C →吸热最多,内能增加(B) A D →内能增加,作功最少(C) A B →吸热最多,内能不变(D) A C →对外作功,内能不变分析:根据p V -图可知图中A B →为等压过程,A C →为等温过程,A D →为绝热过程。
又由理想气体的物态方程pV vRT =可知,p V -图上的pV 积越大,则该点温度越高,因此图中D A B C T T T T <==,又因对于一定量的气体而言其内能公式2i E vRT =,由此知0AB E ∆>,0AC E ∆=,0AD E ∆<。