微脉冲激光雷达同能见度仪水平能见度测量对比实验与分析
- 格式:pdf
- 大小:370.37 KB
- 文档页数:7
车载式激光雷达测量大气水平能见度谢晨波;韩永;李超;岳古明;戚福弟;范爱媛;尹君;袁松;周军【期刊名称】《强激光与粒子束》【年(卷),期】2005(017)007【摘要】激光雷达作为一种新型的大气观测工具,可以通过直接探测激光与大气相互作用的光辐射信号来定量地反演大气水平能见度,更好地反映大气对传输于其中激光的衰减作用,从而成为测量大气水平能见度的主要手段.简单介绍了自行研制的国内首台车载式拉曼-米(Raman-Mie)散射激光雷达的结构和技术参数,并利用斜率法从激光雷达的采集数据中反演出大气水平能见度.通过实际观测并与美国Belfort 能见度仪的对比试验,显示该激光雷达在探测大气水平能见度方面具有较高的可靠性和准确性,其测量误差小于20 %.【总页数】5页(P971-975)【作者】谢晨波;韩永;李超;岳古明;戚福弟;范爱媛;尹君;袁松;周军【作者单位】中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031;中国科学院,安徽光学精密机械研究所,安徽,合肥,230031【正文语种】中文【中图分类】TN249【相关文献】1.微脉冲激光雷达测量大气水平能见度 [J], 孙兆滨;郭金家;刘智深;马森;刘振2.基于激光雷达的水平能见度自动反演算法 [J], 韩道文;刘文清;张玉钧;刘建国;陆亦怀;仲健3.米散射激光雷达测量大气水平能见度 [J], 吴礼林;迟如利4.基于CCD的大气水平能见度测量方法研究 [J], 乔启发;刘庆;李学彬;詹杰5.红外成像激光雷达测量大气能见度实验研究 [J], 郑显明;张文忠;王菲菲;朱文越;罗涛;李学彬因版权原因,仅展示原文概要,查看原文内容请购买。
能见度激光雷达探测实验的设计【摘要】本实验旨在通过激光雷达技术对能见度进行探测,以提高交通和气象预警系统的准确性和效率。
研究背景详细介绍了目前常用的能见度探测方法及其局限性,引出了使用激光雷达的必要性。
研究目的在于验证激光雷达在不同天气条件下对能见度的测量精度和稳定性。
实验设计包括了激光雷达的设置和校准,以及数据采集与处理的流程。
数据分析将对实验结果进行统计和图表展示,以进行有效的数据解读。
结果讨论部分将分析实验结果并探讨其在实际应用中的潜力和局限性。
通过本实验的开展,有望为激光雷达在能见度探测领域的应用提供重要的参考和支持。
【关键词】能见度激光雷达、探测实验、设计、研究背景、研究目的、实验设计、数据分析、结果讨论、结论1. 引言1.1 引言激光雷达是一种常用于物体探测和测距的仪器,其原理是通过发射激光束并测量激光束被物体反射回来的时间来确定物体的位置和距离。
在许多领域都有广泛的应用,包括自动驾驶、工业生产和环境监测等。
能见度是指空气中的颗粒物或水汽对激光束透明度的影响程度,是影响激光雷达探测效果的重要因素之一。
如果能见度较差,激光束会被散射或吸收,导致测量精度降低甚至失效。
本实验旨在研究不同能见度条件下激光雷达的探测性能,通过设计实验并分析数据,探讨能见度对激光雷达测距的影响,为提高激光雷达在恶劣天气条件下的应用效果提供参考。
通过本实验的实施,我们期望能更深入地了解激光雷达在不同能见度条件下的表现,并为未来的改进和优化提供科学依据。
2. 正文2.1 研究背景在日常生活和工业生产中,能见度一直是一个重要的气象参数。
能见度指标直接影响着交通、航空、农业等多个领域的安全和效率。
对能见度进行准确可靠的探测具有非常重要的意义。
传统的能见度探测方法主要基于机械测云仪和人工观测的方式,存在着测量范围狭窄、数据采集不连续、准确性较低等问题。
随着激光雷达技术的发展和普及,利用激光雷达进行能见度探测成为了一种新的选择。
能见度激光雷达探测实验的设计一、实验目的1. 了解激光雷达探测在不同能见度条件下的性能表现。
2. 探究能见度激光雷达探测在不同环境条件下的适用性。
3. 评估激光雷达探测在不同能见度条件下的实际应用价值。
二、实验原理1. 激光雷达采用激光波束来探测目标,当激光波束遇到目标时,部分激光能量被目标散射回来,激光雷达接收到这些散射的激光信号并通过信号处理来获取目标的相关信息,如距离、速度等。
2. 能见度即大气中对目标的可见程度,通常通过水平能见度来表示。
在大雾、雨雾、沙尘暴等环境下,能见度较低,这对传统的光学和无线电波探测设备会产生一定的影响,而激光雷达由于其独特的工作原理可以在一定程度上克服这些困难。
三、实验设计1. 实验装置及设备a. 激光雷达探测设备。
b. 不同能见度条件下的模拟环境装置,如大雾、雨雾、沙尘暴模拟器。
c. 目标物体模拟器,如反射镜等。
d. 数据采集与处理设备。
e. 安全防护设备。
2. 实验步骤a. 制定能见度梯度分级,如分为优、良、中等、差等级。
b. 在不同的能见度条件下,设置不同的探测距离,建立目标物体模拟器。
c. 通过激光雷达探测设备对目标物体模拟器进行探测,记录激光雷达回传信号信息。
d. 利用数据采集与处理设备对记录的激光雷达回传信号信息进行分析,获取目标的相关信息。
e. 比较不同能见度条件下激光雷达探测的性能表现,并评估其实际应用价值。
四、实验注意事项1. 在进行实验时,需要严格遵守激光辐射安全规定,采取必要的安全措施。
2. 不同能见度条件下的模拟环境装置需要精确可控,确保实验的可重复性和准确性。
3. 实验数据采集与处理过程需要严格按照规定的程序进行,确保数据的准确性和可靠性。
4. 实验结束后,需要对实验装置及设备进行维护和安全清理,确保下次实验的顺利进行。
五、实验预期结果1. 在不同能见度条件下,激光雷达探测性能表现将有所不同。
在低能见度条件下,激光雷达的探测距离可能会受到一定程度的限制,探测精度有所下降。
能见度激光雷达探测实验的设计摘要:针对培养激光雷达人才的需要,我们从中国科学技术大学地球和空间科学学院实验教学中心的实际情况出发,详细设计了能见度激光雷达探测实验,包括激光雷达系统操作安全知识,能见度激光雷达系统结构和组成和能见度激光雷达基本原理和数据反演方法。
通过该项实验有利于学生掌握激光雷达的基本知识和培养基本动手操作能力,为学生将来进行更复杂的激光雷达系统科研工作打下坚实的基础。
关键词:激光雷达;能见度;探测实验中图分类号:TN958.98 文献标志码:A 文章编号:2095-2945(2020)06-0109-04Abstract: Aiming at the needs of training LiDAR talents, we design the visibility LiDAR detection experiment from the actual situation of the experimental teaching center of the School of Earth and Space Sciences of the University of Science and Technology of China, including the knowledge of LiDAR operation safety, system structure and composition of visibility LiDAR,basic detection principle and data inversion methods. It is beneficial for students to master the basic knowledge of LiDAR and train the hands-on ability,as well as to lay a solid foundation for students carrying out research workof complex LiDAR system in the future.Keywords: LiDAR; visibility; detection experiment1 概述随着综合国力的提升,国家在科学研究和教育方面的投入逐渐增加,空间探测是各大国竞争的重要方向,其对于了解邻近空间环境极其重要。
各类能见度仪的观测值之间差异浅析和仪器维护作者:阮顺贤王京丽来源:《中国科技纵横》2018年第20期摘要:根据日常工作中,总结各能见度仪器之间人为或客观原因形成的误差,分析发生差异的原因。
从而尽量减少误差,确保能见度数据正确有效,从而各能见度仪长期处于正常工作状态,更好地服务于科研和业务工作。
关键词:能见度;原理;仪器维护中图分类号:TH765 文献标识码:A 文章编号:1671-2064(2018)20-0056-02能见度是3大基本气象观测的要素之一,是一个对航空、航海、陆上交通以及军事活动等都有重要影响的气象要素。
[1]能见度的准确测量在电力供应、通讯工程、工农业生产等众多领域有着极其重要的意义,能见度是关系到人员和设备安全的重要气象要素;在环保方面的研究、水利部门和雾霾监测治理等部门,能见度也是重要的气象指标。
能见度与每个人的生活息息相关,最近几年由于雾霾天气经常困扰北京,大家也越来越关心环境问题和能见度的相关问题。
由于数字摄像能见度项目的需要,透射能见度仪、前散能见度仪、数字能见度仪在北京市观象台已经运行的6年多的时间。
目前运行良好。
但在透射能见度仪、前散能见度仪、数字能见度仪对比分析中发现存在一些差异。
本人对各能见度仪器的维护和参与数字能见度仪的开发工作有8年多了。
通过对各能见度仪的观测值之间差异分析,以及根据以往的对各能见度仪维护的经验,进行归纳总结。
以便平时观测时更好的避免误差的产生,更准确的获取数据。
1 各能见度仪的基本原理及性能的差异目前国内用于气象探测的能见度仪器主要有前散能见度仪、透射能见度仪、数字能见度仪。
首先,VAISALA公司生产的前散能见度仪是一款适用于自动气象站系统的智能多变量传感器(例如型号为:PW D20,PWD22)。
仪器测量方法是光变送器通过45度发出散射光,由光接受器来测量与发射光束成45度的散射光束,利用该光束推算出相关消光系数,再利用Koschmieder能见度的公式,就可以得出大气水平能见度值。
微脉冲激光雷达测量大气水平能见度
孙兆滨;郭金家;刘智深;马森;刘振
【期刊名称】《激光技术》
【年(卷),期】2007(31)2
【摘要】为了改进乃至革新大气能见度的探测技术,探索新型、快速、准确测量大气能见度的方法,采用自行研制的能见度微脉冲激光雷达,进行了水平大气能见度测量实验,并同已经商品化的能见度仪NQ-1进行了同步对比测量.实验结果表明,在水平能见度较差时,微脉冲激光雷达和能见度仪具有很高的相关性,相关系数达到了0.88;在水平能见度较好的时候,相关系数保持在0.73以上.说明能见度微脉冲激光雷达系统可以应用于大气能见度的探测.
【总页数】3页(P200-202)
【作者】孙兆滨;郭金家;刘智深;马森;刘振
【作者单位】中国海洋大学,海洋遥感教育部重点实验室,青岛,266003;中国海洋大学,海洋遥感教育部重点实验室,青岛,266003;中国海洋大学,海洋遥感教育部重点实验室,青岛,266003;中国海洋大学,海洋遥感教育部重点实验室,青岛,266003;中国海洋大学,海洋遥感教育部重点实验室,青岛,266003
【正文语种】中文
【中图分类】P412.17
【相关文献】
1.米散射微脉冲激光雷达在大气探测中的应用 [J], 徐赤东;纪玉峰;徐青山
2.车载式激光雷达测量大气水平能见度 [J], 谢晨波;韩永;李超;岳古明;戚福弟;范爱媛;尹君;袁松;周军
3.微脉冲激光雷达对城市大气气溶胶污染过程相关的观测分析 [J], 易连结
4.米散射激光雷达测量大气水平能见度 [J], 吴礼林;迟如利
5.利用微脉冲激光雷达探测大气混合层高度和气溶胶垂直结构的初步研究 [J], 丁辉;牛生杰;张泽娇
因版权原因,仅展示原文概要,查看原文内容请购买。
后向散射式小型激光雷达能见度仪探测研究庄子波;黄炜;符超;蒋立辉【摘要】In order to satisfy the safety requirement of aircraft taking off and landing under bad weather conditions, a portable lidar visibility meter was designed based on the principle of atmospheric backscatter.Diode pumped solid-state laser with low pulse energy and high pulse repeat frequency and avalanche photo diode detector with low noise and high quantum efficiency were adopted to ensure the precision ofsystem.Specially, the embedded computer was adopted as the core of system controlling and data processing and the timing control of system was realized.The field test results show that the system has high detection accuracy and the overall error is less than 15%.The results show that the system has high detection precision and can satisfy the safety requirements of International Civil Aviation Organization.%为了满足在不良气象条件下,机场飞机安全起降对能见度的观测需求,基于后向散射原理设计了一台小型激光雷达能见度仪。
专利名称:一种船载微脉冲激光雷达能见度仪专利类型:实用新型专利
发明人:常建华,徐帆,朱玲嬿,李红旭,刘秉刚申请号:CN201720491198.7
申请日:20170505
公开号:CN206710602U
公开日:
20171205
专利内容由知识产权出版社提供
摘要:本实用新型公开了一种船载微脉冲激光雷达能见度仪,包括激光器、光纤耦合器、Y型光纤、准直透镜、望远镜、聚焦透镜、窄带干涉滤光片、雪崩光电二极管、单光子计数器、微处理器、无线传输模块、导航定位模块;激光器发出的激光束通过光纤耦合器耦合进入Y型光纤的发射端,通过准直透镜后经望远镜射入大气,后向散射信号由望远镜接收,聚焦后耦合进入Y型光纤的接收端,然后依次经聚焦透镜、窄带干涉滤光片、聚焦透镜、雪崩光电二极管后进入单光子计数器;微处理器分别与无线传输模块、导航定位模块、单光子计数器相连。
采用本实用新型能见度仪能获得更准确的能见度信息,提高驾驶人员警觉性。
申请人:南京信息工程大学
地址:210044 江苏省南京市建邺区奥体大街69号
国籍:CN
代理机构:南京汇盛专利商标事务所(普通合伙)
更多信息请下载全文后查看。
能见度激光雷达探测实验的设计概述随着激光雷达技术的不断发展,其在自动驾驶、环境监测等领域已经得到广泛应用。
而能见度激光雷达则是一种新兴的应用场景,它能够通过激光束来探测空气中的灰尘、烟雾等粒子,从而实现对能见度的测量。
本实验旨在设计一种能见度激光雷达探测实验方案,探究其测量准确性及实际应用情况。
实验方案设计1. 实验设备(1)激光发射器使用波长在780-820nm之间的近红外激光发射器,发射功率不低于100mW,照射范围60度,频率在10Hz以上。
(2)接收器使用集成光电探测器,带宽在1-100MHz之间,灵敏度在10^(-9)-10^(-12)W之间。
(3)双轴平台为了能够对不同角度的空气进行测量,本次实验使用双轴平台来控制激光雷达的方向。
(4)计算机实验中需要使用计算机来控制激光雷达的发射和接收,并进行数据处理和分析。
2. 实验步骤(1)调整激光发射器的参数,使其发出符合要求的激光束。
(2)安装双轴平台,并通过计算机控制其运动,使激光雷达能够扫描不同方向的空气。
(3)使用遮光板,使激光束只在一定范围内照射空气,并记录下其照射范围。
(4)使用接收器接收激光照射区域中的反射光,并将数据传输到计算机中。
(5)对接收到的数据进行处理和分析,得到空气中的粒子密度和能见度值。
3. 实验注意事项(1)在实验中应使用防护眼镜,避免激光对眼睛造成损伤。
(2)在激光雷达运转过程中,应注意安全,并避免其对周围环境造成干扰。
(3)精确控制激光雷达的角度,以保证测量的准确性。
实验结果分析通过本次实验,我们获得了不同方向空气中的粒子密度和能见度值,并将其进行了分析。
实验结果表明,通过能见度激光雷达可以实现对空气中的灰尘、烟雾等粒子进行测量,并能够得出较为准确的能见度值。
此外,本实验方案中使用的设备选型和实验步骤均较为简单易行,具有很高的实际应用价值。
总结能见度激光雷达是当前较为新兴的应用场景,本实验方案通过使用简便的设备和步骤,探究其在测量空气质量中的应用情况,并获得了较为准确的实验结果。
Visibility Comparisons over the Horizontal Path by Lidar and VisibilityMeterSun zhaobin Guo jinjia Liu zhishen Ma sen Liu zhen Laboratory of Ocean Remote Sensing of Ministry of Education of China, Ocean University of China,Qingdao, 266003, ChinaAbstract: As a new tool to detect atmosphere, 1idar can derive the value of visibility by directly collecting the scattered laser from the atmosphere. It makes lidar become a main instrument for measuring visibility in the future.Simultaneous measurements of atmosphere visibility by Micro-pulsed lidar and visibility meter NQ-1 have been performed to validate the feasibility of MPL systems designed by Ocean Remote Sensing Laboratory ,Ocean University Of China, from October 21 2005 to November 21 2005 in ShiLaoRen Tour Garden in Qingdao . This paper summarizes the characters of the lidar system and the comparison results.Key words:visibility ,Micro-pulsed lidar(MPL),Visibility meter, extinction coefficient, aerosol1、Introduction:For obvious reasons, visibility is a crucial parameter for aeronautical, seafaring, expressway and military operations. Atmospheric visibility can be reduced by fog, snow, dust, sand, smog or any combination of them, and it is a part of normal atmospheric phenomena. According to the American Meteorological Society’s Glossary, daytime atmospheric visibility is defined as the greatest distance from an observer where a prominent dark object against the sky at the horizon can be seen and identified by an unaided eye. At night, a known, preferably unfocused, moderately intense light source is placed as the visibility target of recognition for the measurement of maximum visible distance. In most domestic and overseas meteorological departments, the method to measure visibility is by eyeballing which lacks of criterion and objectivity. In recent years, many instrumental approaches for measuring visibility have been developed such as using forward scatter meters ,backward scatter meters an d some prototype systems that use a camera and automatically analyze an image by recognizing (or not recognizing) predefined marks. Visibility meter is the general term for instruments used to make direct measurements of visual range in the atmosphere or of the physical characteristics that determine the visual range of the atmosphere. Visibility meters may be classified according to the quantities that they measure. Telephotometers and transmissometers measure the transmissivity or, alternatively, the extinction coefficient of the atmosphere. Nephelometers measure the scattering function of the particles suspended in the atmosphere. A third category of visibility meters makes use of an artificial “haze” of variable density that is used to obscure a marker at a fixed distance from the visibility meter. Most of these visibility meters have been commercially used in some meteorological departments and airports. The principle of the visibility meter we used is that it evaluates visibility by directly measuring transmission coefficient of the atmosphere between two fixed points. A new preferred instrumental method is using lidar. The principle for visibility measurement of lidar is to retrieve visibility by measuring the extinction coefficient of the atmosphere which is more accurate and objective. It is a new method in atmosphere detection .The limitations of traditional lidar are that itcosts a lot and it is expensive for maintenance and needs professional technicians to operate. Thus Micro-pulsed lidar, a cheaper, less complex lidar, was designed to satisfy this requirement. Actually, MPL has come to market since 1994 produced by Science and Engineering Services Inc. (SESI) USA. In this experiment, the MPL used was designed independently by Ocean Remote Sensing Laboratory, Ocean University Of China and the visibility meter was designed by Shanghai ChangWang Meteorotech Ltd. In this paper, we mainly discuss the lidar method and the visibility comparisons with the NQ-1 visibility meter.2、System description and methodologyThe micro-pulsed Lidar, an eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering, has been demonstrated in Fig.1 .The main specifications of the MPL are shown in Table.1.Fig.1 The diagram of MPLTable.1 the diameters of the MPLTransmitter Laser: Nd: YAG ,SHG 532nmOutput wavelength 532nm Output energy perpulse 6µJ Repetition rate 2KHzReceiverCassegrain/203mmField of view (full angle ):0.5mradDetector PMT Detection mode Photon countingVertical resolution 37.5m Detection range50m-30KmV olume 0.8m 3Weight 25Kg The derivation of the extinction coefficient from lidar data using the slope method is the lidar equation (J.D.Campbel and D.L.Hlavka,1998)(1)22()[(()[()])()]()()b ap c P r n r DTC n r n n r r O r CE r T β=∗−−=Where:n(r): the measured signal return in photo electron counts per second at range rOc: the overlap correction as a function of range caused by field of view conflicts in the transmitter-receiver systemβ(r): the backscattering cross section due to all types of atmospheric scattering C: a dimensional system calibration constant E: the transmitted laser pulse energy T: atmospheric transmittancen b :background contribution from ambient light n ap(r): the afterpulse correction for detector run onDTC: the detector offset deadtime correction as a function of raw count rate. Knowing that T eτ−=a nd r τσ=, where τi s the optical thickness through the layer and τi sthe extinction cross section, we can rewrite Eq. (1) as:2()()()r c P r O r CE r e σβ−= (2)When there is a complete overlapping between the transmitter and the receiver fields of view, the convergence factor is equal to 1, the overlap ceases to exist and the correction factor O c (r)becomes 1.0. For the section of this function where O c = 1.0, taking the natural log of both sides of Eq. (4) yields:ln ()ln[()]2P r CE r r βσ=− (3)Because this layer is assumed homogeneous , CE βb ecomes constant. Plotting ln[P] versus r takes the form of y = mx +b with -2σa s the slope m.From Koschmieder lawexp()w k V εσ=− (4)ε: the mean brightness contrast threshold of normal eyesV k :the horizontal visibility σw :the extinction coefficientwe can obtain the horizontal visibility V kln k wV εσ=−(5)WMO recommend thatεequals 0.02,while ICAO recommend 0.05. In this experiment we adopt εas 0.02.3.912k wV σ=−(7)NQ-I visibility meter is a instrument which adopts advanced photo-electronic andcommunication technique to evaluate visibility based on the principle of forward scattering. The main parameters for NQ-I are as following. Detailed information for this equipment may refer to Shanghai ChangWang Meteorotech Ltd.Fig.2 NQ-1 Visibility meterTable.2 the parameters of NQ-1 visibility meterDetectionrange6—16000m(or 6—50000m adjustable)Detectionaccuracy±10% (when ≤60m error ±6m) Power supply AC 220V ±10% communication RS-232/RS-485/GPRS/CDMA(selectable) SuitableTemperature-35~55 ℃Remarks Resistance to salt and fog erosion, suitable for using in coastal area3、The result of comparisonWe compare the visibility retrieved from MPL and visibility meter, the result is shown in Fig.3 and Fig.4.Fig.3 Lidar/Visibility meter comparisons over the horizontal pathFrom the figure above, we can find a good correlation between Lidar and the visibility meter when the visibility is at a range of 1-5km. we obtained the root mean square deviation is 0.3473km and the root mean square relative deviation is 14.54%. These data we obtained were collected between 19:00 to 20:00 on October 27, 2005, a thin foggy day. At this time, the influence of background was not as strong as in daytime and a thin fog avoided multiple scattering.Fi.g.4 Lidar/Visibility meter comparisons over the horizontal pathFig.4 indicates the whole data we obtained from October 21 2005 to November 21 2005.During this period, we experienced fine, cloud, foggy, rainy days especially low temperature at the end of these days. Although there is a bigger deviation at the end of this experience, we can find a good trend in these data.4、Summary and conclusionsSome 550 data samples of lidar/visibility meter comparisons have been obtained under different situations from October 21,2005 to November 21,2005 .All the data obtained were measured at the horizontal path. From the results above, we may find our measurements show a good correlation between the two instruments at the horizontal path .However, the results of the whole experiments shows no such satisfaction. The cause for this phenomenon we interpreted to be the results of temperature difference. At the last days of this experiment, there was a great temperature fluctuation that the temperature may fall below zero on the top of mountain at night, it may be 10 at midnoon. Because the adjustable arms are made from aluminum, which has a high expanding coefficience, the optical path may change and the overlap of the system is changed at the same time. The result is that we can’t have valid data all the time. We will try to solve this problem in the following work and find other ways to improve the stability of this lidar system..Reference1、Research and Experiments for Visibility by Micro-pulse Lidar (MPL) Jinjia Guo 20042、Lidar-Transmissometer Visibility Comparisons Over Slant and Horizontal Paths J.L GaumetAND A.Petitpa 19823、Operational Cloud Boundary Detection and Analysis from Micropulse Lidar Data J. R.Campbell and D. L. Hlavka etc.4、Mobile lidar for visibility measurement XIE Chen—bo etc. HIGH POW ER LASER AND PAR F1C1 E BEAM S Vo1.17。