排桩支护设计与计算
- 格式:doc
- 大小:147.50 KB
- 文档页数:8
支护结构计算之排桩与地下连续墙计算排桩是指在地基中按一定的排列规律竖向钻孔和灌入浇筑有强度的混凝土,形成一定的桩状体,以增加地基的承载力和稳定性的一种地基加固方式。
而地下连续墙是指沿地基深处连续围成一定的围护结构,从而达到增加地基的稳定性和承载力的作用。
下面我们就来详细介绍一下排桩和地下连续墙的计算方法。
一、排桩的计算方法:1.确定设计堆载荷和设计基本桩载荷:根据工程的荷载要求,计算地基所能承受的荷载大小。
2.计算单桩承载力和桩长:采用极限平衡法,以单桩为单位计算桩的承载力,得到单桩的承载力和桩长。
3.计算点桩的间距和排桩深度:根据桩的承载力和荷载大小,计算相邻桩之间的距离和排桩深度。
4.桩的排列形式:根据工程的具体要求和土层的情况,确定桩的排列形式和间距。
5.计算排桩的承载力:按排桩的排列形式和间距,采用图解法或计算法计算排桩的整体承载力。
二、地下连续墙的计算方法:1.墙的排列形式和尺寸:根据工程的具体要求和土层的情况,确定连续墙的排列形式和尺寸。
2.确定土的侧压力和角度:根据土的密度、倾斜角等参数,计算土的侧压力和侧压力的作用角度。
3.计算墙的承载力和刚性:根据连续墙的尺寸和挡土高度,计算墙的承载力和刚性。
4.计算墙板的厚度和加固措施:根据土的侧压力和墙的承载力,计算墙板的厚度和加固措施,提高墙的稳定性。
5.计算墙的受力状态:计算连续墙在工作状态下的受力状态,包括剪切力、弯曲力、轴力等受力。
通过以上的计算方法,可以得到排桩和地下连续墙的各项参数和设计要求。
在实际工程中,还需要根据具体情况进行一些调整和改进,以确保结构的稳定性和可靠性。
同时,需要进行孔隙水压力和土的变形等方面的计算,进一步确认结构的可行性和安全性。
总结起来,排桩和地下连续墙的计算方法是基于土力学和结构力学的理论基础上进行的。
通过合理的计算和设计,能够保证工程的稳定性和可靠性,提高地基的承载力和稳定性。
第二部分支护结构的设计计算一、AB段支护本设计标高皆为绝对标高(吴淞高程)。
自然地面标高为12.0m,基坑开挖面绝对标高以底板垫层底标高计为6.7m,基坑挖深为5.3m。
地下水位按稳定地下水位埋深0.5m考虑。
地面均布超载按20kPa考虑,道路超载按10kPa考虑。
基坑安全等级按“二级”考虑,重要性系数Υ0=1.0。
设计采用灌注桩进行支护。
----------------------------------------------------------------------[ 支护方案 ]----------------------------------------------------------------------排桩支护----------------------------------------------------------------------[ 基本信息 ]----------------------------------------------------------------------规范与规程《建筑基坑支护技术规程》 JGJ 120-2012内力计算方法增量法支护结构安全等级二级支护结构重要性系数γ0 1.00基坑深度H(m) 5.300嵌固深度(m)7.200桩顶标高(m)-1.000桩材料类型钢筋混凝土混凝土强度等级C30桩截面类型圆形└桩直径(m)0.800桩间距(m) 1.000有无冠梁无放坡级数1超载个数2支护结构上的水平集中力0----------------------------------------------------------------------[ 放坡信息 ]----------------------------------------------------------------------坡号台宽(m)坡高(m)坡度系数1 1.000 1.000 1.000----------------------------------------------------------------------[ 超载信息 ]----------------------------------------------------------------------超载类型超载值作用深度作用宽度距坑边距形式长度序号(kPa,kN/m)(m)(m)(m)(m)130.000---------------210.0000.00015.00010.000条形---[ 附加水平力信息 ]水平力作用类型水平力值作用深度是否参与是否参与序号(kN)(m)倾覆稳定整体稳定[ 土层信息 ]土层数3坑内加固土否内侧降水最终深度(m) 5.800外侧水位深度(m) 1.000弹性计算方法按土层指定ㄨ弹性法计算方法m法基坑外侧土压力计算方法主动[ 土层参数 ]层号土类名称层厚重度浮重度粘聚力内摩擦角(m)(kN/m3)(kN/m3)(kPa)(度)1杂填土0.3018.0---10.0015.002杂填土 5.5018.48.418.0010.003粘性土14.0019.59.5------层号与锚固体摩粘聚力内摩擦角水土计算方法m,c,K值抗剪强度擦阻力(kPa)水下(kPa)水下(度)(kPa) 118.0---------m法 2.28---218.018.0010.00合算m法 2.80---355.044.6016.40合算m法8.20---[ 土压力模型及系数调整 ]----------------------------------------------------------------------弹性法土压力模型: 经典法土压力模型:层号土类水土水压力外侧土压力外侧土压力内侧土压力内侧土压力名称调整系数调整系数1调整系数2调整系数最大值(kPa) 1杂填土分算 1.000 1.000 1.000 1.00010000.000 2杂填土合算 1.000 1.000 1.000 1.00010000.000 3粘性土合算 1.000 1.000 1.000 1.00010000.000 [ 工况信息 ]工况工况深度支锚号类型(m)道号1开挖 5.300---[ 设计结果 ]---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:内力位移包络图:地表沉降图:----------------------------------------------------------------------[ 截面计算 ]----------------------------------------------------------------------钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF500桩是否均匀配筋是混凝土保护层厚度(mm)50桩的纵筋级别HRB400桩的螺旋箍筋级别HPB300桩的螺旋箍筋间距(mm)200弯矩折减系数 1.00剪力折减系数 1.00荷载分项系数 1.25配筋分段数一段各分段长度(m)11.50[ 内力取值 ]段内力类型弹性法经典法内力内力号计算值计算值设计值实用值基坑内侧最大弯矩(kN.m)0.000.000.000.001基坑外侧最大弯矩(kN.m)387.96290.22484.96484.96最大剪力(kN)149.28130.39186.60186.60段选筋类型级别钢筋实配[计算]面积号实配值(mm2或mm2/m)1纵筋HRB40012E224562[4307]箍筋HPB300d8@200503[895]加强箍筋HRB335D16@2000201----------------------------------------------------------------------[ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:有效应力法条分法中的土条宽度: 1.00m滑裂面数据整体稳定安全系数 K s = 2.852圆弧半径(m) R = 16.258圆心坐标X(m) X = -0.022圆心坐标Y(m) Y = 9.037----------------------------------------------------------------------[ 抗倾覆稳定性验算 ] ----------------------------------------------------------------------抗倾覆安全系数:M p——被动土压力及支点力对桩底的抗倾覆弯矩, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
排桩支护设计与计算8.7.1概述基坑开挖事,对不能放坡或由于场地限制而不能采用搅拌桩支护,开挖深度在6~10米左右时,即可采用排桩支护。
排桩支护可采用钻孔灌注桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。
图8-4排桩支护的类型排桩支护结构可分为:(1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀疏钻孔灌注桩或挖孔桩支挡土坡,如图8-4a所示。
(2)连续排桩支护(图8-4b)在软土中一般不能形成土拱,支挡结构应该连续排。
密排的钻孔桩可互相搭接,或在桩身混凝土强度尚未形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图8-4c所示。
也可采用钢板桩、钢筋混凝土板桩,如图8-4d、e所示。
(3)组合式排桩支护在地下水位较高搭软土地区,可采用钻孔灌注排桩与水泥土桩防渗墙组合的方式,如图8-4f所示。
按基坑开挖深度及支挡结构受力情况,排桩支护可分为一下几种情况。
(1)无支撑(悬臂)支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。
(2)单支撑结构:当基坑开挖深度较大时,不能采用无支撑支护结构,可以在支护结构顶部附近设置一单支撑(或拉锚)。
(3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。
根据上海地区的施工实践,对于开挖深度<6m的基坑,在场地条件允许的情况下,可采用重力式深层搅拌桩挡墙较为理想。
当场地受限制时,也可采用φ600mm密排悬臂钻孔桩,桩与桩之间可用树根桩密封,也可采用灌注桩后注浆或打水泥搅拌桩作防水帷幕;对于开挖深度在4~6m的基坑,根据场地条件和周围环境可选用重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,其后注浆或加搅拌桩防渗,设一道檩和支撑也可采用φ600mm钻孔桩,后面用搅拌桩防渗,顶部设一道圈梁和支撑;对于开挖深度为6~10米的基坑,以往采用φ800~1000mm的钻孔桩,后面加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质情况、周围环境及围护结构变形要求而定;对于开挖深度大于10m的基坑,以往常采用地下连续墙,设多层支撑,虽然安全可靠,但价格昂贵。
排桩支护设计流程,需要注意的事项1.确定桩基布置方案,考虑周边环境和土质条件。
(Determine the layout scheme of the pile foundation, considering the surrounding environment and soil conditions.)2.进行现场勘察和地质勘测,获取地下情况资料。
(Conduct on-site survey and geological exploration to obtain underground information.)3.根据设计要求进行桩基承载力计算和设计方案的制订。
(Carry out pile bearing capacity calculation and design scheme formulation according to the design requirements.)4.确定桩基的材质、型号和长度,根据设计荷载和地质条件选择合适的桩材。
(Determine the material, type, and length of the pile, and choose the appropriate pile material according to the design load and geological conditions.)5.编制桩基支护的施工图纸,明确施工工艺和要求。
(Prepare construction drawings for pile foundation support, specifying construction techniques and requirements.)6.根据施工图纸确定施工工艺和方案,包括挖孔、灌浆、打桩等步骤。
(Determine construction techniques and schemes accordingto the construction drawings, including excavation, grouting, and pile driving.)7.确保桩基施工符合相关标准和规范,保证施工质量。
悬臂式排桩支护的计算首先,悬臂式排桩支护的计算需要考虑以下几个要素:施工荷载、土壤力学参数、桩材质及受力状况、抗弯能力、刚度分析等。
1.施工荷载:施工过程中,排桩支护需要承受土壤压力、地下水压力、施工机械力等荷载。
根据施工荷载的大小和分布,可以计算出排桩支护的总荷载。
2.土壤力学参数:土壤力学参数是进行排桩支护计算的重要依据。
通过对工程现场进行土壤试验,测定土壤的强度参数、压缩性参数等,并进行土壤分类。
3.桩材质及受力状况:悬臂式排桩支护通常选择钢筋混凝土桩作为支护材料。
根据桩的受力状态,分析桩的截面特性,计算桩的抗弯能力和抗剪能力。
4.抗弯能力:排桩支护的抗弯能力是支护结构稳定的重要因素。
根据桩的截面尺寸和钢筋配筋,通过弹塑性分析或有限元分析,计算桩的弯矩和应力。
5.刚度分析:悬臂式排桩支护的刚度分析是为了确定桩与桩之间的相互作用和桩与土壤之间的相互作用。
通过刚度分析,可以计算出支撑系统的刚度矩阵和位移矩阵,确定主动桩和被动桩的受力情况。
6.桩身稳定性:悬臂式排桩支护的桩身稳定性是影响支护效果的关键因素。
根据施工荷载、土壤条件、桩的截面尺寸等参数,计算桩的稳定性,包括桩身的抗倾覆稳定性和侧推稳定性。
综合以上要素,可以进行悬臂式排桩支护的计算。
根据工程的实际情况和需求,可以分析桩的布置形式、桩的数量、桩的直径和间距,以及桩顶和桩底的刚度特征等。
通过理论计算和数值仿真,可以得到排桩支护的稳定性和安全性评估。
需要注意的是,悬臂式排桩支护的计算是一个复杂的过程,需要考虑众多的参数和因素。
因此,在进行计算前,需要综合考虑工程的实际情况和参数的精确性,进行合理的假设和边界条件确定。
悬臂式排桩支护的计算是地下工程设计中的重要环节,合理的设计能够确保施工的安全和高效。
通过科学的计算方法和有效的分析手段,可以得到合理的支护方案,提高施工的质量和效益。
因此,对于工程设计人员和施工人员来说,掌握悬臂式排桩支护计算的方法和技巧,具有重要的意义。
基坑排桩支护毕业设计关于基坑排桩支护的毕业设计一、引言基坑排桩支护是建筑施工中常见的一种地基处理方法,它通过在基坑周边或内部进行钢筋混凝土或钢板桩的挖掘、安装,以增加地基的稳定性和承载力。
本文将探讨基坑排桩支护的设计原理、方法、施工工艺以及工程经济等方面,为毕业设计的进行提供参考和指导。
二、设计原理1.地基基本知识地基是建筑物的承重部分,它直接承受着地表以上的荷载,地基的稳定性和承载力对建筑物的安全与稳定有着至关重要的影响。
2.基坑排桩支护的原理三、设计方法1.地质勘察与设计参数确定在进行基坑排桩支护设计之前,必须进行地质勘察以确定地层状况、土质参数等。
根据地质勘察结果确定设计参数,包括土壤分类、抗剪强度、侧壁倾斜角度等。
2.计算基坑尺寸与深度根据基坑内土质参数和侧壁倾斜角度,计算基坑的尺寸和深度,以确保基坑的稳定性和合理的施工条件。
3.排桩支护设计根据基坑的尺寸和深度,确定排桩的类型和布置方式。
常见的排桩方式有周边桩、内部桩、组合桩等。
根据土质条件和工程要求,选择合适的桩柱类型和桩长,进行桩身设计。
4.确定桩身间距和支撑结构根据排桩方式和桩身强度,确定桩身间距,以及支撑结构的类型和布置方式,如水平支撑、斜撑等。
四、施工工艺1.基坑开挖与支护根据设计深度和尺寸进行基坑开挖,同时进行基坑支护,采用支护结构与桩体相结合的方式进行。
2.桩的安装根据设计要求和桩的类型选择合适的安装方式,常见的桩的安装方式有振动沉桩、静载沉桩等。
3.支撑结构的安装根据设计要求和支撑结构类型选择相应的安装方式,如水平支撑、斜撑等。
五、工程经济分析在进行基坑排桩支护设计时,需要综合考虑工程经济因素。
通过对施工工艺的优化和材料的选择,达到最佳的经济效益和施工效率。
六、结论基坑排桩支护设计是建筑施工中必不可少的地基处理方法之一、通过合理的设计原理、方法和施工工艺,能够保证基坑的稳定性和承载力,确保建筑物的安全与稳定。
同时,在进行设计时需要充分考虑结构效益和工程经济,以达到最佳的经济效益和施工效率。
M法计算书土压力计算依据《上海市标准基坑工程设计规程》(DBJ08-61-97)。
1.地质勘探数据如下:—————————————————————————————————————序号 h(m) (kN/m3) C(kPa) (°) M值计算方法1 1.90 19.00 18.00 20.00 7800.0 水土合算2 1.29 18.70 18.00 20.00 7800.0 水土合算3 5.00 17.50 16.00 14.00 4120.0 水土合算4 3.34 16.90 11.00 10.00 2100.0 水土合算5 3.99 19.70 42.00 20.00 10200.0 水土合算6 4.89 18.90 7.00 31.50 17395.0 水土合算—————————————————————————————————————表中:h为土层厚度(m),为土重度(kN/m3),C为内聚力(kPa),为内摩擦角(℃)2.基底标高为-8.40m,支撑分别设置在标高计算标高分别为-8.40m处,3.地面超载:—————————————————————————————————————序号布置方式作用标高m 荷载值kPa 距基坑边线m 作用宽度m—————————————————————————————————————基坑侧壁重要性系数为1.10,为一级基坑采用单排桩排桩直径为0.6m,砼标号为C30,桩间距为0.85m.抗隆起、抗倾覆、抗渗流验算结果按地基承载力验算抗隆起基坑外侧支护结构底部至地面之间土层的加权重度1=18.17(kN/m3)基坑内侧支护结构底部至坑底之间土体的加权重度2=18.37(kN/m3)支护结构嵌入深度D=6.60(m)基坑开挖深度h=8.40(m)基坑地表附加荷载q=0.00(kPa)坑底被动区附加荷载q pa=0.00(kPa)支护结构底部滑裂面上地基土的粘聚力c=42.00(kPa)支护结构底部滑裂面上地基土的内摩擦角=20.00°Nq=6.40Nc=14.83计算的抗隆起安全系数为Kwz=[42.00×14.83+(18.37×6.60+0.00)×6.40]/[18.17×(8.40+6.60)+0.00]=5.13达到规范规定安全系数2.50,合格!按滑弧稳定验算抗隆起围护墙底以上地基土各土层天然重度的加权平均值=18.23(kN/m3) 围护墙在基坑开挖面以下的入土深度D=6.60(m)主动土压力系数Ka=tg2(45o-15.47o/2)=0.58滑裂面上地基土的粘聚力加权平均值c=23.15(kPa)滑裂面上地基土的内摩擦角加权平均值=0.27(弧度)基坑开挖深度h0=8.40(m)最下一道支撑距地面的深度h0'=8.40(m)最下一道支撑面与基坑开挖面间的水平夹角a1=0.00(弧度)以最下一道支撑点为圆心的滑裂面圆心角a2=3.14(弧度)坑外地面荷载q=0.00(kPa)q f=18.23×8.40+0.00=153.14(kPa)M SL=0.5×(18.23×8.40+0.00)×6.602=3335.35(kN.m/m)R3=8.40×6.60+(3.14-0.00)×6.602=192.29(m2)R2=0.5×6.602×153.14+{3.14-0.00-0.5×[sin(2×3.14)-sin(2×0.00)]}-1/3×18.23×6.603×{sin2(3.14)×cos(3.14)-sin2(0.00)×cos(0.00)+2×[cos(3.14)-cos(0.00)]} =10326.84(kN.m/m)R1=6.60×(18.23×8.402/2+0.00×8.40)+0.5×6.602×153.14×[3.14-0.00+sin(3.14)×cos(3.14)-sin(0.00)×cos(0.00)]-1/3×18.23×6.603×[cos3(3.14)-cos3(0.00)]=18217.48(kN.m/m)M RL=18217.48×0.58×tg(0.27)+10326.84×tg(0.27)+192.29×23.15=10270.03(kN.m/m)计算的抗隆起安全系数为:K L=3.08=10270.03/3335.35=3.08达到规范规定安全系数2.50,合格!按经验公式计算基坑隆起量:基坑开挖深度H=8.40(m)地表超载q=0.00(kPa)支护结构底部处土的粘聚力c=42.00(kPa)支护结构底部处土的内摩擦角=20.00(°)基坑外侧支护结构底部至地面之间土层的加权重度1=18.17(kN/m3)基坑外侧坑底至地面之间土的加权重度2=18.01(kN/m3)支护结构入土深度D=6.60(m)基坑底最大隆起量=-291.67-25.21+141.02+172.01=0.01(mm)验算抗倾覆稳定最下一道支撑(若无支撑,则为桩顶)以下的主动土压力合力为Ea=951.05(kN/m),合力标高为Elva=-9.43(m)被动土压力合力为Ep=1504.14(kN/m),合力标高为Elvp=-12.90(m)最下一道支撑(若无支撑,则为桩顶)的标高为Elvs=0.00(m)主动土压力对最下一道支撑产生的力矩为Moc=Ea×(Elvs-Elva)=951.05×(9.43-0.00)=8970.47(kN.m/m)被动土压力对最下一道支撑产生的力矩为Mrc=Ep×(Elvs-Elvp)=1504.14×(12.90-0.00)=19408.13(kN.m/m)计算的抗倾覆安全系数为:2.16达到规范规定安全系数1.20,合格!验算抗渗流稳定的公式为:基坑外水位标高为Elvwout=-0.50(m),基坑内水位标高为Elvwin=-10.30(m)基坑内外水头差hw=Elvwout-Elvwin=-0.50-(-10.30)=9.80(m)坑底标高为Elvebot=-8.40(m),桩墙底标高为Elvpbot=-15.00(m),桩墙宽度为Pw=0.60(m) 水的渗流路径长度L =(Elvwin-Elevpbot)+Pw+(Elvwout-Elevpbot )=[-10.30-(-15.00)]+0.60+[-0.50-(-15.00)]=19.80(m)坑底土的渗流水力坡度i=hw/L=9.80/19.80=0.49坑底土的浮重度'=6.90(kN/m3) (近似取坑底土的天然容重为其饱和容重)坑底土的临界水力坡度ic='/w=6.90/10.=0.69计算的抗渗流安全系数k=ic/i=0.69/0.49=1.39计算的渗流稳定安全系数为:1.39没有达到规范规定安全系数1.50,不合格!内力及位移计算采用m法计算计算采用位移法有限元,单元最大长度为0.1m。
吉林市中心医院深基坑支护设计 1-1剖面支护方案:排桩+锚索基本信息土层参数支锚信息土压力模型经典法土压力模型:工况信息结构计算各工况:内力位移包络图:地表沉降图:冠梁选筋结果截面计算:截面参数内力取值锚杆计算:锚杆参数锚杆自由段长度计算简图整体稳定验算计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 0.50m滑裂面数据整体稳定安全系数 K s = 1.578圆弧半径(m) R = 10.595圆心坐标X(m) X = -3.545圆心坐标Y(m) Y = 5.750抗倾覆稳定性验算抗倾覆安全系数:M p——被动土压力及支点力对桩底的抗倾覆弯矩, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
M a——主动土压力对桩底的倾覆弯矩。
注意:锚固力计算依据锚杆实际锚固长度计算。
工况1:注意:锚固力计算依据锚杆实际锚固长度计算。
序号支锚类型材料抗力(kN/m) 锚固力(kN/m)1 锚索 0.000 0.0002 锚索 0.000 0.0003 锚索 0.000 0.0004 锚索 0.000 0.000K s = 24.127 >= 1.200, 满足规范要求。
工况2:注意:锚固力计算依据锚杆实际锚固长度计算。
序号支锚类型材料抗力(kN/m) 锚固力(kN/m)1 锚索 144.667 75.2672 锚索 0.000 0.0003 锚索 0.000 0.0004 锚索 0.000 0.000K s = 24.909 >= 1.200, 满足规范要求。
工况3:注意:锚固力计算依据锚杆实际锚固长度计算。
序号支锚类型材料抗力(kN/m) 锚固力(kN/m)1 锚索 144.667 75.2672 锚索 0.000 0.0003 锚索 0.000 0.0004 锚索 0.000 0.000K s = 5.683 >= 1.200, 满足规范要求。
结合Plaxis2D计算结果及相关规范得到的一些结论Plaxis2D模型按照黏土一层、粉土两层建立土体模型然后建立多个开挖层。
Plaxis2D中只能使用二、整体位移情况为了体现开挖过程中位移变化,图一调整了每一幅图的标尺,使其处于同一颜色标尺下,深蓝表示+36mm,红色表示-37mm。
图二未调整标尺,使用Plaxis2D默认颜色标尺,位移绝对值最大处为红色,符号相反最大为蓝色。
1、桩顶堤防底板与桩身连接位置有效抗弯刚度。
影响桩的桩顶弯矩变化情况,如果实际情况连接达不到设计时的刚度,那么前后排桩之间内力大小关系可能会发生显著变化,施工时应尤其注意此位置。
对于设计而言,设计时确定有效宽度是计算堤防底板配筋的依据,需要进行考虑,在桩距3.6m范围内并不是所有混凝土都能有效参与抗弯,确定一个有效宽度进行抗弯抗剪承载力计算十分必要。
2、开挖影响,开挖过程中桩身内力会发生变化,桩顶弯矩会发生变化,同时桩身的内力会发生变化,弯矩正负、最大弯矩位置都会发生变化,由于桩身这样会导致计算时最不利截面的位置发生改变,可能开挖完成后设计时应考虑。
3、2D模型是平面应变模型,需要的是沿长度方向结构完全一致的假定,所以2D里面双排桩最接近的实际情况是板桩或者前后排桩等桩距布置,这也是建筑基坑支护规程我的计算模型只是将抗弯刚度分布在长度方向,但是没能考虑土压力在不同桩之间的影响,这个需要用3D模型进一步分析讨论4、后排桩(在土中的桩)在开挖之后处于拉弯受力状态,对混凝土结构而言是比较不利的受力方式。
结合二三两点,桩的设计可能比较复杂5、桩间土的影响很大,存在一部分桩间土是先开挖后回填的,由于这部分位置恰好在建成后清淤线以上,这部分土性质的对桩身内力随施工过程变化有显著影响。
排桩支护设计及计算排桩支护是一种常用的地下工程支护措施,广泛应用于基坑工程、地铁工程、桥梁工程等。
排桩支护设计及计算是确保地下结构施工安全和施工质量的重要环节。
本文将从排桩支护设计原理、设计步骤、计算方法以及设计注意事项等方面进行详细阐述。
一、排桩支护设计原理排桩支护是通过设置一定间距的垂直桩体来增加土的抗侧性能,从而抵抗地下结构施工期间可能引起的土体侧向变形和变位。
排桩支护设计原理主要包括以下几点:1.土体侧向力学行为的分析:通过土体的剪切强度、侧向压力分布、桩与土体的相互作用等参数的计算,分析土体在侧向荷载作用下的力学行为。
2.土的排桩支护效应:排桩支护能够增加土的整体抗剪强度,减小土体的侧向位移,提高土体的稳定性。
3.桩与土体的相互作用:桩与土体之间存在一定的相互作用,通过研究桩的剪切阻抗特性和土的侧向位移变形特性,进行排桩支护设计。
二、排桩支护设计步骤1.地质勘察:对施工场地进行地质勘察,掌握地质情况、土层特性,确定施工地段的荷载条件、地下水位等。
2.设置桩的类型与间距:根据工程要求确定采用的桩的类型,如钢筋混凝土桩、钢管桩等,并根据工程需求确定桩的间距。
3.排桩效应分析:通过合理的计算方法,分析排桩后土体的变形与位移情况,确定桩的稳定性和支护效果。
4.桩的计算与设计:根据排桩后的土体变形和位移情况,进行桩的计算与设计,确定桩的尺寸和数量。
5.施工方法的选择:根据地质条件、桩的类型和设计要求,选择适合的施工方法,包括静载试验、动力触探、振动沉桩等。
6.监测与检查:在施工过程中进行监测与检查,保证排桩支护的施工质量。
三、排桩支护设计计算方法排桩支护的设计计算主要包括桩的受力计算和土体的侧向位移计算。
一般常用的计算方法有以下几种:1.桩的受力计算方法:根据杆件受力平衡原理,计算桩的竖向荷载、弯矩和剪力等。
根据桩的受力情况,可以确定桩体的截面尺寸和钢筋配筋等。
2. 土体的侧向位移计算方法:根据土的力学特性,可以采用有限元方法、解析方法或经验公式等进行土体的侧向位移计算。
深基坑开挖支护方案四:排桩支护—混凝土灌注桩支护一、排桩支护—混凝土灌注桩支护的概念排桩支护(图1)是指以某种桩型按队列式布置组成的基坑支护结构,其中包括混凝土灌注桩支护和钢制桩支护两大类型。
混凝土灌注桩支护(图2),指在施工现场利用成孔机械(或人工)成孔后,根据工程需要选择是否下钢筋笼,然后灌注混凝土所形成的排桩式支护结构。
根据成孔方式的不同,混凝土灌注桩支护主要分为机械钻孔灌注桩支护和人工挖孔灌注桩支护两大类。
图1 排桩支护图2 混凝土灌注桩支护二、混凝土灌注桩支护的特点1、优点(1)施工设备简单;(2)所需作业场地不大,噪声低,振动小;(3)无挤土现象,对周围环境影响小;(4)成本较低;(5)桩身强度高,刚度大,变形小,支护稳定性好。
2、缺点(1)桩间间距较大,易造成水土流失,特别是在高水位松软土质地区,需根据工程条件配合注浆、水泥搅拌桩、旋喷桩等施工措施以解决挡水问题;(2)在砂砾层和卵石中施工困难;(3)桩与桩之间主要通过桩顶冠梁和围檩连成整体,因而相对整体性较差,当在重要地区,特殊工程及开挖深度很大的基坑中应用时需要专项设计。
三、混凝土灌注桩支护的适用范围混凝土灌注桩支护适用于大部分的地质条件,但在砂砾层和卵石中施工较为困难。
多用于坑深7~15m 的基坑工程,在我国北方土质较好地区已有8~9m 的悬臂桩围护墙,在软土地区悬臂式灌注桩结构不能超过5m。
四、资源需求计划1、水电需要量计划2、劳动力需要量计划3、施工机械需要量计划4、材料需求量计划五、施工准备(1)技术准备:熟悉、审查施工图纸。
(2)施工现场准备工作:地上、地下各种管线及障碍物的勘测定位;地上、地下障碍物的拆除;施工现场的平整;测量放线;临时道路、临时供水、供电等管线的敷设;临时设施的搭设;现场照明设备的安装。
(3)劳动组织准备:建立各施工部的管理组织,集结施工力量、组织劳动力进场,做好施工人员入场教育等工作。
(4)材料、机械准备:根据相关的设计图纸和施工预算,编制详细的材料、机械设备需要量计划;签定材料供应合同;确定材料运输方案和计划;组织材料按计划进场和保管。
排桩支护设计和计算排桩支护是一种在土壤工程中常用的支护措施,它通过钢筋混凝土或钢桩等部件将土壤固定在地下,以防止土体塌方、滑动等地质灾害的发生。
本文将介绍排桩支护设计和计算的基本原理和步骤。
排桩支护的设计和计算主要包括以下几个方面:确定地下水位、确定排桩参数、桩身设计、桩端承载力计算、桩间距设计、荷载计算、桩长设计等。
第一步是确定地下水位。
地下水位的高低对排桩支护设计起到重要的作用,因为地下水的压力会对土体产生一定影响,需要在设计计算中进行考虑。
第二步是确定排桩参数。
排桩参数包括桩径、桩长、桩间距等。
这些参数的确定需要综合考虑土体的性质、地下水位、工程荷载等因素。
第三步是桩身设计。
桩身设计主要包括桩体的截面形状和桩身钢筋的布置等。
桩身设计需要满足强度和稳定性的要求,在设计中需要对桩身进行强度计算和稳定性分析。
第四步是桩端承载力计算。
桩端承载力是指桩端在承受荷载时的承载能力,它是排桩支护设计中至关重要的因素之一、桩端承载力可以通过理论计算或现场试验来确定。
第五步是桩间距设计。
桩间距的设计需要满足排桩结构的整体稳定性要求,一般要保证相邻桩之间的土体不会倒塌或滑动。
桩间距的设计通常需要进行反复计算和修正。
第六步是荷载计算。
荷载是排桩支护设计中的重要参数之一,需要根据工程的实际情况来确定。
荷载计算包括静载荷计算和动载荷计算两部分,需要考虑工程的特点和设计要求。
第七步是桩长设计。
桩长的设计是指确定桩的埋置深度。
桩的埋置深度一般根据土体的特性和工程要求来确定,需要满足排桩结构的稳定性和承载能力要求。
综上所述,排桩支护设计和计算是一个复杂的过程,需要考虑多个因素并进行综合分析。
通过合理的设计和计算,可以有效地提高排桩支护结构的稳定性和承载能力,确保土体工程的安全和可靠。
排桩支护设计与计算8.7.1 概括基坑开挖事,对不可以放坡或因为场所限制而不可以采纳搅拌桩支护,开挖深度在6~10 米左右时,即可采纳排桩支护。
排桩支护可采纳钻孔灌输桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。
图 8-4排桩支护的种类排桩支护结构可分为:( 1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀少钻孔灌输桩或挖孔桩支挡土坡,如图8-4a 所示。
( 2)连续排桩支护(图8-4b )在软土中一般不可以形成土拱,支挡结构应当连续排。
密排的钻孔桩可相互搭接,或在桩身混凝土强度还没有形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图 8-4c 所示。
也可采纳钢板桩、钢筋混凝土板桩,如图8-4d、e所示。
(3)组合式排桩支护在地下水位较高搭软土地域,可采纳钻孔灌输排桩与水泥土桩防渗墙组合的方式,如图 8-4f 所示。
按基坑开挖深度及支挡结构受力状况,排桩支护可分为一下几种状况。
(1)无支撑 ( 悬臂 ) 支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。
(2)单支撑结构:当基坑开挖深度较大时,不可以采纳无支撑支护结构,能够在支护结构顶部周边设置一单支撑(或拉锚)。
(3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。
依据地域的施工实践,关于开挖深度 <6m的基坑,在场所条件同意的状况下,可采纳重力式深层搅拌桩挡墙较为理想。
就地所受限制时,也可采纳φ600mm密排悬臂钻孔桩,桩与桩之间4~可用树根桩密封,也可采纳灌输桩后注浆或取水泥搅拌桩作防水帷幕;关于开挖深度在6m的基坑,依据场所条件和四周环境可采纳重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,后来注浆或加搅拌桩防渗,设一道檩和支撑也可采纳φ 600mm钻孔桩,后边用搅拌桩防渗,顶部设一道圈梁和支撑;关于开挖深度为6~ 10 米的基坑,过去采纳φ800~1000mm的钻孔桩,后边加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质状况、四周环境及围护结构变形要求而定;关于开挖深度大于10m的基坑,以平时采纳地下连续墙,设多层支撑,固然安全靠谱,但价钱昂贵。
排桩支护设计与计算基坑开挖事,对不能放坡或由于场地限制而不能采用搅拌桩支护,开挖深度在6~10米左右时,即可采用排桩支护。
排桩支护可采用钻孔灌注桩、人工挖孔桩、预制钢筋混凝土板桩或钢板桩。
图8-4排桩支护的类型排桩支护结构可分为:(1)柱列式排桩支护当边坡土质尚好、地下水位较低时,可利用土拱作用,以稀疏钻孔灌注桩或挖孔桩支挡土坡,如图8-4a所示。
(2)连续排桩支护(图8-4b)在软土中一般不能形成土拱,支挡结构应该连续排。
密排的钻孔桩可互相搭接,或在桩身混凝土强度尚未形成时,在相邻桩之间做一根素混凝土树根桩把钻孔桩排连起来,如图8-4c所示。
也可采用钢板桩、钢筋混凝土板桩,如图8-4d、e所示。
(3)组合式排桩支护在地下水位较高搭软土地区,可采用钻孔灌注排桩与水泥土桩防渗墙组合的方式,如图8-4f所示。
按基坑开挖深度及支挡结构受力情况,排桩支护可分为一下几种情况。
(1)无支撑(悬臂)支护结构:当基坑开挖深度不大,即可利用悬臂作用挡住墙后土体。
(2)单支撑结构:当基坑开挖深度较大时,不能采用无支撑支护结构,可以在支护结构顶部附近设置一单支撑(或拉锚)。
(3)多支撑结构:当基坑开挖深度较深时,可设置多道支撑,以减少挡墙挡压力。
根据上海地区的施工实践,对于开挖深度<6m的基坑,在场地条件允许的情况下,可采用重力式深层搅拌桩挡墙较为理想。
当场地受限制时,也可采用φ600mm密排悬臂钻孔桩,桩与桩之间可用树根桩密封,也可采用灌注桩后注浆或打水泥搅拌桩作防水帷幕;对于开挖深度在4~6m的基坑,根据场地条件和周围环境可选用重力式深层搅拌桩挡墙,或打入预制混凝土板桩或钢板桩,其后注浆或加搅拌桩防渗,设一道檩和支撑也可采用φ600mm钻孔桩,后面用搅拌桩防渗,顶部设一道圈梁和支撑;对于开挖深度为6~10米的基坑,以往采用φ800~1000mm的钻孔桩,后面加深层搅拌桩或注浆放水,并设2~3道支撑,支撑道数视土质情况、周围环境及围护结构变形要求而定;对于开挖深度大于10m的基坑,以往常采用地下连续墙,设多层支撑,虽然安全可靠,但价格昂贵。
近来上海常采用φ800~1000mm 大直径钻孔桩代替地下连续墙,同样采取深层搅拌桩放水,多道支撑或中心岛施工法,这种支护结构已成功用于开挖深度达到13米的基坑。
图8-5 悬臂板桩的变位及土压力分布图a.变位示意图b.土压力分布图c.悬臂板桩计算图d. Blum 计算图式8.7.2 悬臂式排桩支护设计和计算悬臂式排桩支护的计算方法采用传统的板桩计算方法。
如图8-5所示,悬臂板桩在基坑底面以上外侧主动土压力作用下,板桩将向基坑内侧倾移,而下部则反方向变位.即板桩将绕基坑底以下某点(如图中b点)旋转。
点b处墙体无变位,故受到大小相等、方向相反的二力(静止土压力)作用,其净压力为零。
点b以上墙体向左移动,其左侧作用被动土压力,右侧作用主动土压力;点b以下则相反,其右侧作用被动土压力,左侧作用主动土压力。
因此,作用在墙体上各点的净土压力为各点两侧的被动土压力和主动土压力之差,其沿墙身的分布情况如图8-5b所示,简化成线性分布后的悬臂板桩计算图式为图8-5c,即可根据静力平衡条件计算板桩的入上深度和内力。
H.Blum又建议可以图8-5d代替,计算入土深度及内力。
下面分别介绍下面两种方法。
1.静力平衡法图8-5表示主动土压力及被动土压力随深度呈线性交化,随着板桩入土深度的不同,作用在不同深度上各点的净土压力的分布也不同。
当单位宽度板桩墙两侧所受的净土压力相平土深度,可根据静力平衡条件即水平力平衡方程和对桩底截面的力矩平衡方程(∑=0M )。
(1).板桩墙前后的土压力分布第n 层土底面对板桩墙主动土压力为)2/45tan(2)2/45(tan )(0102n n n i n i i n an C h q e ϕϕγ---+=∑= (8-1)第n 层土底面对板桩墙底被动土压力为)2/45tan(2)2/45(tan )(0102n n n ni i i n pn c h q e ϕϕγ++++=∑= (8-2) 式中 n q ——地面递到n 层土底面底垂直荷载; i γ——i 层土底天然重度; i h ——i 层土的厚度;n ϕ——n 层土的内摩擦角;n c ——n 层土的内聚力; 对n 层土底面的垂直荷载n q ,可根据地面附加荷载、邻近建筑物基础底面附加荷载0q 分别计算。
图8-6 静力平衡法计算悬臂板桩地面几种荷载可折算成均布荷载:1) 繁重的起重机械:距板桩1.5m 内按60kN/m 2取值;距板桩1.5~3.5m ,按40kN/m 2取值;2) 轻型公路:按5kN/m 2;3) 重型公路:按10kN/m 2;4) 铁道:按20kN/m 2。
对土的内摩擦角n ϕ及内聚力n c 按固结快剪方法确定。
当采用井点降低地下水位,地面有排水和防渗措施时,土的那摩擦角n ϕ值可酌情调整:1) 板桩墙外侧,在井点降水范围内,n ϕ值可乘以1.1~1.3;2) 无桩基的板桩内侧,n ϕ值可乘以1.1~1.3; 3) 有桩基的板桩墙内侧,在送桩范围内乘以1.0;在密集群桩深度范围内,乘以1.2~4;4) 在井点降水土体固结的条件下,可将土的内聚力n c 值乘以1.1~1.3。
墙侧的土压力分布如图8-6所示。
(2).建立并求解静力平衡方程,求得板桩入土深度1) 计算桩底墙后主动土压力3a e 及墙墙被动土压力3p e ,然后进行迭加,求出第一个土压力为零的,该点离坑底距离为u ;2) 计算d 点以上土压力合力,求出至d 点的距离y ;3) 计算d 点处墙前主动土压力1a e 及墙后被动土压力1p e ; 4) 计算柱底墙前主动土压力2a e 和墙后被动土压力2p e ; 5) 根据作用在挡墙结构上的全部水平作用力平衡条件和绕挡墙底部自由端力矩总和为零的条件: ∑=0H []02)(2)()(0332233=⋅--⋅-+-+t e e z e e e e E a p a p a p a (8-3) ∑=0M []032)(3)()(2)(003322330=⋅⋅--⋅-+-⋅++⋅t t e e z e e e e z y t E a p a p a p a (8-4)整理后可得t 0的四次方程式:04)(6)(2(622110112301140=+--⎥⎦⎤⎢⎣⎡-+-⋅-+ββββa a p a a p a a p E e e y E t e e y E t e e t (8-5)式中 [])2/45(tan )2/45(tan 0202n n n ϕϕγβ--+=求解上述四次方程,即可得板桩嵌入d 点以下的深度t 0值。
为安全起见,实际嵌入坑底面以下的入土深度为 02.1t u t += (8-6)(3).计算板桩最大弯矩板桩墙最大弯矩的作用点,亦即结构端面剪力为零的点。
例如对于均质的非粘性土,如图8-3所示,当剪力为零的点在基坑底面以下深度为b 时,即有02)(222=+-a p K b h K b γγ (8-7)式中)2/45(tan 02ϕ-=a K ;)2/45(tan 02ϕ+=p K由上述解得b 后,可求得最大弯矩 []p a p a K b K b h K b b K b h b h M 3322max )(6233)(-+=-++=γγγ (8-8) 2. 布鲁姆(Blum)法布鲁姆(H.Blum )建议以图8-3d 代替8-3c ,即原来桩脚出现的被动土压力以一个集中力p E '代替,计算结果图如8-7所示。
a 作用荷载图b 弯矩图c 布鲁姆理论计算曲线图8-21 布鲁姆计算简图图如图8-7a 所示,为求桩插入深度,对桩底C 点取矩,根据∑=0c M 有03)(=--+∑x E a x l P p (8-9)式中2)(22)(x K K x x K K E a p a p p ⋅-=⋅-=γγ代入式(8-9)得化简后得 0)()(6)(63=-----∑∑a P a P K K a l P x k k P x γγ (8-10)式中 ∑P ——主动土压力、水压力的合力;a ——∑P 合力距地面距离;u h l +=u ——土压力为零距坑底的距离,可根据净土压力零点处墙前被动土压力强度和墙后主动土压力相等的关系求得,按式(8-11)计算。
)(a p a K K h K u -= (8-11)从式(8-12)的三次式计算求出x 值,板桩的插入深度x u t 2.1+= (8-12)布鲁姆(H.Blum )曾作出一个曲线图,如图8-7c 所示可求得x 。
令l x=ξ,代入式(8-10)得 再令)(62a p K K l P m -=∑γ,)(63a p K K l P a n -⋅=∑λ上式即变成n m -+=)1(3ξξ (8-13) 式中m 及n 值很容易确定,因其只与荷载及板桩长度有关。
在这式中m 及n 确定后,可以从图8-7c 曲线图求得的n 及m 连一直线并延长即可求得ξ值。
同时由于x =l ξ,得出x 值,则可按式(8-14)得到桩的插入深度: l u x u t ξ2.12.1+=+= (8-14)最大弯矩在剪力Q =0处,设从O 点往下x m 处Q =0,则有a 土压力分布b 弯矩图图8-8 挖孔桩悬臂挡墙计算)(2a p m K K Px -=∑γ (8-15)最大弯矩 ∑---+⋅=6)()(3max m a p x K K a xm l P M γ (8-16)求出最大弯矩后,对钢板桩可以核算截面尺寸,对灌注桩可以核定直径及配筋计算。
【例 8-1】 某工程基坑挡土桩设计。
可采用φ100cm 挖孔桩,基坑开挖深度6.0m ,基坑边堆载q =10 kN/m 2(图8-8)。
地基土层自地表向下分别为:(1)粉质粘土:可塑,厚1.1~3.1m ;(2)中粗砂:中密~密实,厚2~5m ,ϕ=340,γ=20kN/m 3;(3)砾砂:密实,未钻穿,ϕ=340。
试设计挖孔桩。
【解】 1.求桩的插入深度查布鲁姆理论的计算曲线,得桩的总长:6+5.84=11.84m ,取12.0m 。
2.求最大弯矩最大弯矩位置:最大弯矩:3.截面配筋预选桩径d =100cm ,钢筋保护层厚度a =5cm ,钢筋笼直径cm a d d 90)52100(21=⨯-=-= 选竖向主筋20根,沿d 1均匀布置,各钢筋至x -x 轴的垂直距离y 1由比例图量出,如图8-9a 所示。
选φ 25,A g =4.91cm 2,R g =34kN/cm 2钢筋总抗弯刚度能力a 钢筋布置图b 桩的布置示意图图8-9 桩身配筋计算图为了减少竖向钢筋用量,刻考虑受压区(靠基坑一侧的半圆截面)混凝土的抗压作用,混凝土用C15,认为R w =1.1kN/m 2受压区每根钢筋截面积为构造配筋φ 14,'g A =1.542cm 为了进一步减少钢筋用量,宜在桩身上部减少配筋,求max 2/1M 弯矩点,试算地面下5.5m 处土的主动土压力强度:因此,开挖桩钢筋笼中,竖向钢筋的配置为:上部5m :5 φ 25mm +5 φ 14 mm下部7m :10 φ 25mm +10 φ 14 mmφ 14m 钢筋全部配置在桩身混凝土受压区,即在面向基坑内侧的半圆内。