热管换热器设计正文部分
- 格式:doc
- 大小:44.00 KB
- 文档页数:8
热管换热器设计计算及设计说明热管换热器设计计算及设计说明1.引言1.1 背景1.2 目的1.3 范围2.设计要求2.1 传热需求2.2 材料选择2.3 设计参数①换热面积②压降限制③管子尺寸④工作温度3.热管换热器基本原理3.1 热管换热器工作原理3.2 热管换热器的优点和应用领域4.设计计算4.1 换热器传热计算①热传导模型②热阻计算4.2 管子尺寸计算4.3 热管液体填充计算4.4 压降计算5.设计方案5.1 热管换热器结构设计①整体结构②管板结构③热管布置5.2 材料选用及制造工艺6.工程图纸6.1 总装图6.2 管板图6.3 管子图6.4 附件图7.安装与使用注意事项7.1 安装步骤7.2 操作须知7.3 维护保养附件:1.热管换热器结构设计图纸2.材料选择与使用说明书3.设备运行参数记录表本文所涉及的法律名词及注释:1.设计要求:设计过程中必须满足的相关要求和标准。
2.传热需求:根据工况和热流量确定的需要传热的要求。
3.材料选择:根据工作条件和传热要求选择合适的材料进行设计和制造。
4.设计参数:在设计过程中使用的相关参数,如换热面积、压降限制等。
5.工作温度:换热器在实际工作过程中的温度范围。
6.热传导模型:用于计算热管换热器传热效果的数学模型。
7.热阻计算:通过计算换热管道和外界之间的热阻来评估传热效果。
8.管子尺寸计算:根据传热需求和阻力要求,计算管道的尺寸。
9.热管液体填充计算:根据液体性质和工作温度,计算填充液体的数量和性质。
10.压降计算:根据流体流速和管道尺寸计算流体流经换热器时的压降。
11.设计方案:根据1.2节的目的和设计要求,提出符合要求的热管换热器结构设计。
12.制造工艺:制造热管换热器时需要采用的工艺方法。
13.总装图:热管换热器的整体结构图。
14.管板图:热管换热器中管板的结构图。
15.管子图:热管换热器中管道的结构图。
16.附件图:包括安装附件和连接管件的结构图。
热管换热器设计计算及设计说明设计说明书目录1.引言2.设计目标3.设计计算3.1传热需求计算3.2材料选择3.3热管尺寸计算3.4换热面积计算4.设计结果4.1热管尺寸4.2换热面积5.结论1.引言2.设计目标本设计的目标是设计一个能够满足热量传递需求的热管换热器。
具体设计目标如下:-传热效率高,热量损失小;-体积小,重量轻,便于安装和维护;-耐腐蚀,使用寿命长。
3.设计计算3.1传热需求计算根据所需传热功率和热传导方程,可以计算出所需的换热面积。
传热功率的计算公式如下:Q=U*A*ΔT其中,Q为传热功率,U为传热系数,A为换热面积,ΔT为温度差。
根据具体的应用条件和需求,可以确定传热系数和温度差。
3.2材料选择根据工作温度和压力,选择合适的材料用于热管换热器的制造。
常见的材料有不锈钢、铜、铝等。
需要考虑的因素包括材料的导热性能、耐腐蚀性能和成本等。
3.3热管尺寸计算热管的尺寸设计主要包括直径、长度和分段数等。
热管的直径与流体的流量有关,需要根据实际流量计算得出。
热管的长度与传热效果有关,需要根据传热需求和热管材料的导热性能计算得出。
分段数的选择主要考虑热管结构的复杂度和制造成本。
3.4换热面积计算根据传热功率和传热系数,可以计算出所需的换热面积。
换热面积的计算公式如下:A=Q/(U*ΔT)其中,A为换热面积,Q为传热功率,U为传热系数,ΔT为温度差。
根据具体的应用条件和需求,可以确定传热系数和温度差。
4.设计结果4.1热管尺寸根据具体的传热需求和热管材料的导热性能,计算得出热管的直径为XX mm,长度为XX mm,分段数为XX。
4.2换热面积根据传热功率和传热系数,计算得出所需的换热面积为XXm²。
5.结论本设计通过计算得出了一台满足特定条件下的热管换热器的尺寸和换热面积。
这个设计可以满足传热需求,并具有高传热效率、小体积和耐腐蚀等特点。
热管散热器设计方案热管散热器工作原理热管技术的原理和普通的散热器不同,热管主要是利用工质的蒸发与冷凝来传递热量。
热管一般是由管壳、吸液芯和工质三个部分组成。
将管内抽至较高的真空度后充以适量的工质,使得紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
热管有两端,分别为蒸发端(加热端)和冷凝端(散热端),两端之间需要采取绝热措施。
当热管的一端受热时(即两端出现温差时),毛细芯中的液体蒸发汽化,蒸汽在压差之下流向另一端放出热量并凝结成液体,液体再沿多孔材料依靠毛细作用流回蒸发端。
热管散热器的分类和特点按照工作温度,热管可以分为:(1)深冷热管:工作温度范围为(100~200)K,工质可选用氦、氩、氮、氧等。
(2)低温热管:工作温度范围为(200~250)K,工质可选用水、氟利昂、氨、酒精、丙酮等有机物质。
(3)中温热管:工作温度范围为(550~750)K,工质可选用导热姆A、水银、硫、铯等物质。
(4)高温热管:工作温度范围大于750K,工质可选用钾、锂、铝、银等高熔点液态金属。
热管散热器的特点:(1)利用工质的相变传热,传热能力高。
(2)热管内蒸汽处于饱和状态,均温特性好。
(3)具有可变换热流密度特性。
(4)具有良好的恒温特性。
电子设备热管散热器的设计1.热管的设计要求(1)工作温度:根据电子设备、电子器件及整机的温度控制要求,热管的工作温度一般为-50℃~200℃。
(2)发热量:根据器件的发热功率和工作环境条件确定热管所需传递的功率。
(3)热特性:按照电子器件发热功率的大小和温度控制的要求(均温、恒温或控温)来设计蒸发端、冷凝端、吸液芯和管壳的几何形状、尺寸。
(4)工作环境:根据电子设备的工作环境条件(如陆地、海面或高空等)来估计重力场对热管工作的影响,同时确定冷凝端与冷却介质的连接方式。
(5)结构尺寸:根据用户提供的热管外形尺寸、重量等要求进行结构设计。
2.工质选择(1)选择要求工质的工作温度范围在工质的凝固点与临界温度之间,以接近工质的沸点为宜;选用的工质无毒、不易爆、使用安全;工质与管壳材料及吸液芯应相容,对热管的安全工作和可靠性不产生有害的影响;工质的品质因素高;重力场条件下的热管,工质的选用应考虑毛细力的提升高度。
空调用热管换热器的设计计算西安工程大学 王晓杰 黄翔 武俊梅 郑久军摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在空调领域热管技术也逐渐受到重视,除了理论研究热管技术在空调领域的应用外,设计出合适的换热设备对热管在空调领域的应用也及其重要。
热管换热器的计算内容主要有热力计算和校核计算。
其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。
空调用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在制冷空调领域的应用研究。
关键词: 热管 空调 热力计算1 引言[1][2][4]热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,制冷空调领域冷冷热流体温差小,因此热管技术也逐渐受到重视。
根据实际需要设计出合理的热管换热器对于空调领域来说也极为重要。
同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。
在这里主要对热管换热器的热力计算做个介绍。
热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。
常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。
离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。
定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。
从而避免露点腐蚀及因结露而形成的灰堵。
空调系统要处理的对象一般为室外新风或是室内排风,都属于气态介质,因此空调用热管换热设备为气-气热管换热器。
本文将对空调用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是待处理室外新风,二次空气可以是室内排风或室外新风。
热管换热器设计计算及设计说明书第一章热管及热管换热器的概述热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。
具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。
将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。
热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。
随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中.热管气—气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。
热管气-气换热器是目前应用最广泛的一种气—气换热器.我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。
大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气—气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。
据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。
如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6].利用热管气—气换热器代替传统的管壳式气—气换热器,一方面,能够大大提高预热空气进入炉内的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气—气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低. 1。
1 热管及其应用热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。
流体流量进口温度出口温度压力煤油水一.热力计算1.换热量计算2。
冷却剂用量计算由于水的压力较之煤油较大,黏度较之煤油也较大,所以选择水为壳程,煤油为管程。
3.换热面积估算查图得ε∆t=0.85传热面积估算:取传热系数:K=450取安全系数0.1:4管径,管长,管数确定:由流量确定管数:煤油在管中的流速为0.8~1,取管程流体流速常用换热管为与选用外径换热管。
管程流体体积流量可由煤油的要求流量的出:取管数由换热面积确定管程数和管长:由于是U型管换热器,由GB151—1999管壳式换热器查得有2,4两种管程可选。
初选管程为4A=38.13n=20N=4考虑到常用管为9m管,为生产加工方便,选用单程管长8m又考虑到单程管长8m会使得换热器较长,在选取换热器壳体内径时,尽量选取较大的,以保证安全,因此换热器内部空间较大,故选用较为宽松的正方形排布。
换热管材料由于管程压力大于0。
6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。
按照GB—151管壳式换热器1999选取常用管心距;分程隔板两侧管心距按下图作正方形排列选择布管限定圆直径由布管限定圆从《GB151—1999》管壳式换热器中选定工程直径的卷制圆筒,查得碳素钢,低合金钢圆筒最小厚度不得小于8mm,高合金钢圆筒最小厚度不得小于3.5mm圆筒厚度计算:选用壳体材料为现在工业生产中压力容器的常用材料Q345R,为一种低合金钢。
按《GB150.1~。
4—2011压力容器》中圆筒厚度计算公式:L=8m布管限定圆圆筒工程直径DN=400计算压力圆筒内径由选定的圆筒公称直径得设计温度下的圆筒材料的许用应力由选定的材料Q345R从GB150.2中查得焊接接头系数由于壳程流体为水,不会产生较严重的腐蚀,选取腐蚀yu量又由于Q345R在公称直径为400mm是可选取得最小厚度为8mm,则选择圆筒厚度为8mm折流板间距:折流板间距一般不小于圆筒内径的五分之一且不小于50mm;因此取折流板间距为200mm核算传热系数:由GB151-1999管壳式换热器得到包括污垢在内的,以换热管外表面积为基准的总传热系数K的计算公式:管外流体给热系数:折流板间距200mm查得定性温度下流体的粘度为壁温下流体的粘度1004查得壳程流体的普朗克数查得水的导热系数管内流体给热系数:查得煤油的导热系数查得煤油的密度管内流体的流速煤油的粘度煤油的比热换热管的内径在总传热系数计算公式中,可看作管外流体的污垢热阻管内流体的污垢热阻用外表面表示的管壁热阻查GB151—1999管壳式换热器得换热管材料导热系数总传热系数:初选K值为450相对误差处于相对许可范围内壁温计算:假设换热面积裕度:K=483换热面积裕度符合要求压降计算:(1)管程阻力计算:沿程阻力可按下式计算莫迪圆管摩擦系数:莫迪圆管系数可由管内流体雷诺数得到管内流体雷诺数:管内为湍流.用公式:得管内粘度校正因子取1.05回弯阻力可由下式得到:进出口接管阻力:管程总阻力:管程压降符合要求壳程压降计算:壳程压降符合要求机械设计一.管箱设计计算管箱有封头,管箱短节,法兰,分程隔板等零件组成。
烟气余热利用热管换热器设计一.原始数据1. 烟气侧:流量 10V •=50000Nm ³/h (标况) 入口温度 t'₁=300℃ 2. 空气侧:流量 20V •=49000Nm ³/h (标况)⒊ 热管采用正三角形叉排,沿流动方向,其横向中心距T S =0.065m ,则纵向中心距L S =0.057m 。
光管外径 0D 0.025m = 光管内径 i d 0.02m = 热管全长 t l 2.5m =带翅片的热管长度 l 2.5m = 翅片高度 f l 0.0125m = 翅片厚度 f δ0.001m = 翅片间隙 f S =0.007m 翅片节距 S =f δ+f S =0.008m 单根热管长度之上的翅片数 f n =1S=125个 翅片管外径 d f =0.050m热力计算1. 工艺参数的计算热管换热器的工艺参数包括流量及进出口温度。
冷热流体的放热量及吸热量应满足如下的热平衡方程:Q =p m c t •∆△=p V c t ρ•∆△ 其中:Q ——放热量或吸热量,W ;m •——质量流量, /kg s ;p c ——定压比热,/()J kg ℃; t ∆△——进出口温度,℃; ρ——流体密度,3/kg m ; V •——流体的体积流量,3/m s考虑到露点腐蚀的问题,烟气的出口温度取为1''t 150=℃,空气的入口温度取为2't 20=℃, 标况下,烟气的物性参数为: 密度 10ρ 1.295= 3/kg m定压比热 10p c =1.10×10³/()J kg ℃假定热损失为10%101010()'''11p Q V -c t t ρ•=放 =1.295×(50000/3600)×1.10×10³×(300—150) =2967.9kWQ 吸=0.95Q 放=0.95×2967.9=2819.5kW''',202220=()20p Q V t t c ρ•-吸其中20ρ——标况下的空气密度1.293 3/kg m20V•——标况下的空气体积流量,490003/ms2m •——空气的质量流量, /kg s,20p c —工作状况下空气的定压比热,1.013×10³ /()J kg ℃代入数据:2819.5×10³=1.293×(49000/3600)×1.013×10³×(t 2”-20)得:t 2”=178.2℃烟气的平均温度 由1m T=12(1't +1''t ) =225℃ 得烟气的物性参数: 密度 1ρ=0.7218 3/kg m ;定压比热 1p c =1.12×10³ /()J kg ℃; 导热系数 1λ=0.0418 /()w m •℃; 运动粘度 1v =3.541×10ˉ5 2/m s ; 普朗特数 1r P =0.661;由空气侧平均温度2m T =12(2''t +2't ) =99.1 ℃ 得空气的物性参数: 密度 2ρ=0.946 3/kg m ;定压比热 2p c =1.009×10³ /()J kg ℃; 导热系数 2λ=0.0321 /()w m •℃; 运动粘度 2v =2.313×10ˉ52/m s ; 普朗特数 2r P =0.6882. 热管的工作温度v T 及热管的长度选择工作温度T v =(T 1m +T 2m )/2=162.1 ℃热管的总长度为2.5 m ,取12 1.25m l l == 其中 1l ——烟气侧的热管长度,m 2l ——空气侧的热管长度,m3. 热管换热器的流速选择及迎风面宽度B 的计算透过系数02()T f f f TS d l S S n ϕ=--⨯=0.336取烟气侧的迎风流速 10u =5/m s 由11010B u l V •= 得迎风面宽度10110B V l u •==(50000÷3600)/1.25×5=2.22 则横向热管数,即列数33.53TBn S ==,取n=34 则 340.065 2.18T S B n =⨯==⨯m 烟气侧的最大流速:101u u ϕ==14.9 /m s空气侧的迎风速度:20202BV u l •==(49000÷3600)/1.25×2.18=4.99 /m s 空气侧的最大流速:u 2=u 20/0.336=14.85 /m s4. 单根热管的总热阻及总热管数:烟气侧的雷诺数:1011e R u d v ==(14.9×0.025)/3.541×10-5=10520空气侧的雷诺数:0222e R u d v ==(14.85×0.025)/2.313×10-5=16051由无因次方程:130.63380.137e u r N R P =得106338300.137e rh R P d λ=烟气侧的换热系数:111110633830.137e r h R P d λ== 0.137×0.0418/0.025×105200.6338×0.6611/3 = 70.57 /()w m ⋅℃ 空气侧的对流换热系数:2222106338300.137e r h R P d λ== 0.137×0.0321/0.025×160510.6338×0.6881/3 = 71.66/()w m •℃ 翅片管的翅化比:00022[2]1(1)4()f f f f f d d d n d d δδπππβπ-+-+=⨯⨯⨯223.14[2(0.050.025) 3.140.050.001]143 3.140.025(10.001)43.140.025⨯⨯-+⨯⨯⨯+⨯⨯-⨯== 5.9翅化效率表示实际传热能力与翅片在根部温度时传热能力之比:()f fth ml ml η=其中,m =45w λ=/()w m •℃为翅片材料的导热系数则烟气侧的翅化效率 :1η== 0.863 空气侧的翅化效率:2η== 0.8615 单根热管的总热阻为:1220010112021111lnln 22i i w w R d d h d l l d l d h d l πβηπλπλπβη=+++ 110.025ln3.1467.750.025 1.25 6.80.87932 3.1445 1.250.02=+⨯⨯⨯⨯⨯⨯⨯⨯10.0251ln 2 3.1445 1.250.02 3.1436.590.025 1.25 6.80.9302++⨯⨯⨯⨯⨯⨯⨯⨯ = 0.058/w ℃对数平均温差为:△T m =(300-178.2)-(150-20)/㏑(300-178.2)/(150-20)=126.2 ℃单根热管的传热效率:q =△T m /R =126.2/0.058=2176总热管数:333230.7102.31010'Q N q ⨯⨯===1295.7取20%的富裕量,则实际需要热管数 1.2'N N ==1554最终取列数为n=34,排数m=46排 设备的基本尺寸为: 长:46×57=2622 mm 宽:34×65=2210 mm高:2500 mm5. 两侧的壁温及压力损失 烟气侧的平均壁温: 111101m m QNT T h d l πβη=-=173.5 ℃ 空气侧的平均壁温: 222220m m QNT T h d l πβη=+=149.9℃热管换热器的净自由容积:2220044()f f T L f d NFV S S d d n ππδ=---2223.140.0253.140.0650.057(0.050.025)0.00114344⨯⨯--⨯-⨯⨯==3.03×10-3 3/m m容积的当量直径:4NFVD A=其中A ——流体的总浸润表面积,2m烟气侧的容积当量直径:311447.34103.140.0251.256.8NFVD A -⨯⨯⨯⨯⨯===0.021m空气侧的容积当量直径:322447.34103.140.0251.256.8NFVD A -⨯⨯⨯⨯⨯===0.021m 烟气侧的雷诺数:511118.930.0444.450910e u D Rv -⨯⨯===8837空气侧的雷诺数:522224.690.0442.54510e u D Rv -⨯⨯===13483烟气侧的能量耗散系数: 110.1451.92e R ξ-==1.92×8837-0.145=0.5142空气侧的能量耗散系数: 220.1451.92e R ξ-==1.92×13483-0.145=0.4837 烟气侧的压力损失:。
毕业设计热管换热器设计综述
摘要:本文综述了换热器在热力学计算中的重要性,其中包括传热器
的基本概念、热管换热器(SHR)的种类、传热器的分类及计算方法等。
其
次介绍了热管换热器的结构特点、工作原理及概念、轴向传热模型、实验
设计、计算方法等。
最后,介绍了热管换热器的应用及其特点,以及研究
展望。
关键词:热力学;热管换热器;结构特点;计算方法;应用
1简介
换热器是一种能够实现两种流体之间的热能交换过程,广泛应用于能
源工程、食品加工等行业中,使得换热器的研究受到了广泛关注。
近年来,热管换热器(SHR)在实验和实践领域均受到了关注,由于其占用空间小、
传热效率高、换热面积小等优点,被越来越多的企业采用。
因此,本文综
述了换热器在热力学计算中的重要性,以及热管换热器的结构特点、工作
原理、计算方法、应用及研究展望等内容。
2换热器热力学计算
2.1传热器的基本概念
传热器是一种利用两种不同流体进行热交换而设计的装置,是能量转
换的重要组成部分。
传热器的作用是:将其中一介质的能量即热量,从一
种流体传递给另一种流体。
换热器设计示例范文换热器是一种常见的热交换设备,用于传递热量或冷却流体。
它广泛应用于许多工业和商业领域,如发电厂、化工厂、空调系统等。
本文将介绍一个换热器的设计示例,包括换热器类型的选择、尺寸计算、传热面积的确定等。
根据不同的应用需求和工作原理,换热器有很多类型可供选择,例如:管壳式热交换器、板式热交换器、螺旋板式热交换器等。
在本示例中,我们选择了管壳式热交换器作为设计对象。
管壳式热交换器由一个管束和壳体组成,热量通过管束通过壳体边界流体之间进行传递。
首先,我们需要确定设计要求和工作条件。
在本例中,我们需要设计一个能够传热500kW的换热器,冷却液体为水,流动速度为1.5m/s。
根据这些要求,我们可以开始进行设计计算。
第一步是确定热载流体的流量和入口/出口温度。
根据传热功率和热载流体的比热容,我们可以计算出热载流体的流量。
在本例中,假设冷却液体的入口温度为30℃,出口温度为60℃。
根据这些数据,我们可以计算出流量。
第二步是计算热载流体的平均温度差(log mean temperature difference, LMTD)。
LMTD是换热器设计中一个重要的参数,用于计算热量传递。
根据换热器的类型和流动模式,可以采用不同的方法来计算LMTD。
在本例中,我们可以采用简化的LMTD计算公式来进行估算。
第三步是通过换热器壳体流体的流速和热载流体侧的流速来确定计算的管壳侧传热系数。
传热系数是换热器设计中另一个关键参数,它决定了热量的传递速率。
传热系数可以通过经验公式或计算程序进行估算。
在本例中,我们可以使用经验公式来估算管壳侧传热系数。
第四步是确定传热面积。
通过热负荷和传热系数的计算,我们可以得出需要的传热面积。
根据实际的传热面积和换热器的结构要求,可以估算出具体的换热器尺寸。
第五步是进行压降计算。
压降是指在换热器内部流动的阻力损失。
通过流体流速、管壳侧传热系数和换热器结构参数,可以计算出压降的大小。
根据实际的施工和使用要求,可以确定设计中的压降限制。
热管换热器的设计摘要:热管是高效的传热元件,它是一种能快速将热能从一点传至另一点的装置,由热管元件组成的,利用热管原理实现热交换的换热器称之为热管换热器。
由于其结构简单、可操控性强、换热效率高、动力消耗小等优点,热管换热器越来越受到人们的重视,是一种应用前景非常好的换热设备。
目前,它被广泛应用于动力、化工、冶金、电力、计算机等领域。
本文就热管换热器的发展现状、趋势、应用及设计做了一个简要的论述,着重探讨了热管换热器的设计。
在讨论热管换热器的设计过程中,主要针对其热力计算、设备结构计算、元件参数的选择做了一个合理构建,并结合实际情况设计出了空气预热热管式换热器基本模型。
关键词:热管;热管换热器;结构参数;设计计算Abstract:Heatpipe is a highly efficient heat transfer components, it is a fast heatto spread from one point to another point of the device, consisting of the heat pipe components, the use of the principle of heat pipe heat exchanger for thermal exchange called the heat pipe heat exchanger. Because of its simple structure, strong control, heat exchanger, high efficiency, power consumption, etc, and heat pipe heat exchanger more and more attention, is a very good prospect heat transfer equipment. At present, it is widely used in power, chemical, metallurgy, electric power, computers and other fields. In this paper, the development of heat pipe heat exchanger status, trends, applications and design had a brief discussion, focused on the design of heat pipe heat exchanger. Heat pipe heat exchanger in the discussion of the design process, mainly for the thermal calculation, equipment, structural calculations, component selection of parameters made a reasonable construction and design combined with the actual situation of the air heat pipe heat exchanger preheating the basic model.Key words:calculationHeat pipe; Heat pipe heat exchanger; Structural parameters; Design设计(论文)专用纸第一章前言换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器,换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
换热器的热性能不仅与自身的几何形状和材料有关,而且还取决于进行热交换,热状态介质的热力学性质。
节能换热器过程中能量损失包括两个方面:首先,功率促进流体流动的消耗量到达有些速度;其次,温度热传递不可逆的损失。
在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体温度较低,吸收热量。
在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。
目前,换热器在化工、石油、动力、制冷、食品等行业中被广泛使用。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益增强。
换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器也相继问世。
[1]1.1热管热管是高效的传热元件,它是一种能快速将热能从一点传至另一点的装置,由于它具有超常的热传导能力,而且几乎没有热损耗,因此它被称作传热超导体,其导热系数为铜的数千倍。
热管传热技术于六十年代初期由美国的科学家发明,它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。
随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中。
1.1.1 热管工作原理(如图1-1、1-2 所示)[2] -4 -1其大致原理为:热管外部有一个形成真空的密闭管壳,真空度为 1.3×10 —1.3×10 pa,沿管子内壁有毛细结构材料,管子内补充有一定量的工作液体。
管内的工作液体在热管的一端吸收热量后蒸发汽化,在微小的压强差下流向热管的另一端,向外部释放热量,于是又冷凝成液体,借助毛细结构材料抽力返回,再次吸热、汽化、传输、放热、冷凝过程,从而实现热量从热管一端到另一端的传递。
2 / 44设计(论文)专用纸图1-1热管工作原理图1—管壳;2—管芯;3—蒸汽腔;4—工作液图1-21.1.2 热管的基本特性[3]热管工作演示图(1)很高的导热性。
热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的传热能力导热能力。
(2)优良的等温性。
热管内腔的蒸汽处于饱和状态,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的Clausuis-Clapeyron 方程式可知,温降亦很小,因而热管具有优良的等温性。
3 / 44设计(论文)专用纸(3)热流密度可变性。
热管可以独立改变蒸发段或冷却段的加热面积,即可改变热管的管内蒸汽压力和温度,这样即可以改变热流密度。
(4)热流方向的可逆性。
一根水平放置的有芯热管,由于其内部循环动力是毛细力,因此任意一端受热就可作为蒸发段,而另一端向外散热就成为冷凝段。
(5)恒温特性。
普通热管的各部分热阻基本上不随着热量的变化而变化,但可变导热管,使得冷凝段的热阻随加热量的增加而降低、随加热量的减少而增加,这样热管在加热量大幅度变化的情况下,蒸汽温度变化极小,实现温度的控制,这就是热管的恒温特性。
(6)热二极管与热开关性能。
热二极管就是只允许热流向一个方向流动,而不允许向相反的方向流动;热开关则是当热源温度高于某一温度时,热管开始工作,当热源温度低于这一温度时,热管就不传热。
(7)环境的适应性。
热管的形状可随热源和冷源的条件而变化,热管可做成电机的转轴燃气轮机的叶片、钻头、手术刀等等,热管也可做成分离式的以适应长距离或冷热流体不能混合的情况下的换热;热管既可以用于地面(重力场),也可用于空间(无重力场)。
1.1.3 热管技术的应用及进展热管是一种高效的传热元件,热管技术研究的重心已经从理论研究转移到应用研究,热管的应用已经由航天转向地面,由工业转向民用。
当前,热管在太阳能利用、笔记本电脑CPU 的冷却以及大功率晶体管的冷却、化工、冶金、动力等领域的应用都取得了良好效果,热管在这些领域的应用,将进一步促进新型热管技术的开发和应用。
特别指出的是,热管技术在太阳能方面的应用市场前景尤为广阔。
目前太阳能热管发电装置、太阳能热管热水器等产品已经得到了较为广泛的应用。
最近几年来,热管技术以其独特的性能,在各方面发展都十分迅速。
热管研究和应用的领域也在不断拓宽,特别是微型热管技术的出现,使得热管在医疗手术、电子装置芯片、笔记本电脑CPU的冷却、电路控制板的冷却、核电工程中的应用得到了极大的发展。
毋庸置疑,21世纪热管技术必将朝着更高效、更普及、微型化、大规模化的方向发展。
[5] [4]1. 2热管换热器由热管元件组成的,利用热管原理实现热交换的换热器称之为热管换热器。
一般情况下,它有一个矩形的外壳,在矩形外壳中布满了带翅片的热管,热管的布置可以是错列呈三角形的排列,也可以是顺列呈正方形排列。
在矩形壳体内部的中央有一块隔板把壳体分成两个部分,形成热流体与冷流体4 / 44设计(论文)专用纸的通道。
当热冷流体同时在各自的通道中流过时,热管就将热流体的热量传给了冷流体,实现了两种流体的热量交换。
热管换热器是由美国发明的,最初被用于航天技术和核反应堆,以解决向阳面和背阴面受热不均匀。
它是一种新型的换热器,于70 年代初才开始应用于工业中作为节能设备。
虽然热管换热器在工业中应用时间不长,但发展速度很快。
热管换热器的最大特点是:结构简单、换热效率高,在传递相同热量的条件下,热管换热器的金属耗量少于其他类型的换热器,换热流体通过换热器时的压力损失也比其他换热器小,因而动力消耗也小。
热管换热器的这些特点正越来越受到人们的重视,是一种应用前景非常好的换热设备。
20 世纪90 年代被用于民用空调,由于其优越的导热性,受到越来越广泛的重视,目前在计算机、雷达等高科技领域被广泛应用。
1.2.1 热管换热器的基本特性[6](1)热管换热器可以通过换热器的中隔板使冷热流体完全分开,在运行过程中单根热管因为磨损、腐蚀、超温等原因发生破坏时基本不影响换热器运行。
热管换热器用于易然、易爆、腐蚀性强的流体换热场合具有很高的可靠性。
(2)热管换热器的冷、热流体完全分开流动,可以比较容易的实现冷、热流体的逆流换热。
冷热流体均在管外流动,由于管外流动的换热系数远高于管内流动的换热系数,用于品位较低的热能回收场合非常经济。
(3)对于含尘量较高的流体,热管换热器可以通过结构的变化、扩展受热面等形式解决换热器的磨损和堵灰问题。
(4)热管换热器用于带有腐蚀性的烟气余热回收时,可以通过调整蒸发段、冷凝段的传热面积来调整热管管壁温度,使热管尽可能避开最大的腐蚀区域。
1.2.2 热管换热器分类(1) 按形式分:整体式热管换热器、分离式热管换热器、回转式热管换热器等。
(2)按功能分:气-气式换热器、气-液式换热器、气-汽式换热器等。
根据具体工况设计的热管换热器结构及外形形式多样,图1-3、图1-4 分别为应用最为广泛的气-气热管换热器外形示意图和气-液热管换热器外形示意图。