2019-2020高一物理必修二第六章《万有引力与航天》知识点总结
- 格式:doc
- 大小:218.00 KB
- 文档页数:6
万有引力与航天1、开普勒行星运动定律(1).所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.(2).对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.(3).所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等. 32a K T= (K 只与中心天体质量M 有关) 行星轨道视为圆处理,开三变成32r K T =(K 只与中心天体质量M 有关)2、万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。
表达式:122,m m F G r=2211kg /m N 1067.6⋅⨯=-G 适用于两个质点(两个天体)、一个质点和一个均匀球(卫星和地球)、两个均匀球。
(质量均匀分布的球可以看作质量在球心的质点)3、万有引力定律的应用:(天体质量M , 卫星质量m ,天体半径R, 轨道半径r ,天体表面重力加速度g ,卫星运行向心加速度n a ,卫星运行周期T)两种基本思路:1.万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h )人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r=R+h ):r GM v =,r 越大,v 越小;3r GM =ω,r 越大,ω越小;GM r T 324π=,r 越大,T 越大;2n GMa r =,r 越大,n a 越小。
(1)求质量:①天体表面任意放一物体重力近似等于万有引力:= G M m R2→2gR M G = ②当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M ,半径为R ,环绕星球质量为m ,线速度为v ,公转周期为T ,两星球相距r ,由万有引力定律有:2222⎪⎭⎫ ⎝⎛==T mr r mv r GMm π,可得出中心天体的质量:23224GT r G r v M π==求密度34/3M M V R ρπ==2高空物体的重力加速度:mg = G2)(h R Mm + 3、万有引力和重力的关系: 一般的星球都在不停地自转,星球表面的物体随星球自转需要向心力,因此星球表面上的物体所受的万有引力有两个作用效果:一个是重力,一个是向心力。
《高中物理万有引力与航天知识点总结》一、引言从远古时代人类对星空的仰望与好奇,到现代航天技术的飞速发展,万有引力与航天始终是人类探索宇宙的重要基石。
在高中物理中,万有引力与航天这一章节不仅涵盖了丰富的物理知识,还能激发同学们对宇宙奥秘的探索热情。
通过对这部分知识点的学习,我们可以更好地理解天体运动的规律,感受宇宙的宏大与神秘。
二、万有引力定律1. 内容万有引力定律是由牛顿发现的,其内容为:自然界中任何两个物体都相互吸引,引力的大小与这两个物体的质量的乘积成正比,与它们之间距离的平方成反比。
用公式表示为:F = Gm₁m₂/r²,其中F 是两个物体之间的引力,m₁、m₂分别是两个物体的质量,r 是两个物体之间的距离,G 是万有引力常量。
2. 万有引力常量 GG 的值是由卡文迪许通过扭秤实验测定的,其数值为 G =6.67×10⁻¹¹ N·m²/kg²。
万有引力常量的测定在物理学中具有重要意义,它使万有引力定律能够进行定量计算。
3. 适用范围万有引力定律适用于质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,也可以将其视为质量集中于球心的质点,此时两个球体间的万有引力可以用万有引力定律计算。
三、天体运动1. 开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2)开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
用公式表示为:a³/T² = k,其中 a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个与行星无关的常量,只与中心天体(太阳)的质量有关。
常用要有GMm/r^2=mr(2π/t)^2=(mv^2)/r=(mv2π)/T=mrw^2密度=3g/4πRG(R为该星球的半径)mg=GMm/r^2应用变式求天体质量(以地球质量计算为例①知月球绕地球运动的周期T,半径r由GMm/r^2=mr(2π/t)^2得,M=4(π^2)(r^3)/GT^2②知月球绕地球运动的线速度v和半径r由GMm/r^2=(mv^2)/r,得M=(rv^2)/G③知月球绕地球运动的限速的v和周期T由GMm/r^2=(mv2π)/T得M=(2πvr^2)/TG=(Tv^3)/2πG④知地球的半径r和地球表面的重力加速度g由黄金代换(mg=GMm/r^2)知M=gr^2/G做万有引力的题目也就是简单的天体力学记住公式是最基本的许多题都是套公式的非常简单要拿高分看下面下面说一下需要注意的一. 建立两种模型确定研究对象的物理模型是解题的首要环节,运用万有引力定律也不例外,无论是自然天体(如月球、地球、太阳),还是人造天体(如飞船、卫星、空间站),也不管它多么大,首先应把它们抽象为质点模型。
人造天体直接看作质点;自然天体看作球体,质量则抽象为在其球心。
这样,它们之间的运动抽象为一个质点绕另一质点的匀速圆周运动。
二. 抓住两条思路无论物体所受的重力,还是天体的运动,都跟万有引力存在着直接的因果关系,因此,万有引力定律在这些问题中的应用十分广泛。
但解决问题的基本思路实质上只有两条:思路1:利用万有引力等于重力的关系即思路2:利用万有引力等于向心力的关系即式中a是向心加速度,根据问题的条件可以用来表示。
其实最主要的公式还是一个也就是F=GMm/R^2=mg =mv^2/R=mw^2R=mR4π^2/T^2.[解题过程]万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r^2 (G=6.67×10^-11N*m^2/kg^2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一、二、三宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r 地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r 地:地球的半径。
万有引力与航天知识点总结一、人类认识天体运动的历史1、 “地心说 ”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、 “日心说 ”的内容及代表人物: 哥白尼(布鲁诺被烧死、伽利略)二、开普勒行星运动定律的内容开普勒第二定律:v 近 v 远开普勒第三定律: K — 与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体a 地 3 = a 火 3 a 水 3 =......才可以列比例,太阳系:T 地 2 T 火 2=T 水 2三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
3F m42mmR K①r②F = 4π2K FFF ③r 2T 2T 2r 2FM FMm FG Mmr 2r 2r 22、表达式: F Gm 1m 2r 23、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2 的乘积成正比,与它们之间的距离r 的二次方成反比。
4.引力常量: G=6.67 ×10-11N/m 2/kg 2,牛顿发现万有引力定律后的 100 多年里, 卡文迪许 在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离 。
③一个均匀球体与球外一个质点的万有引力也适用,其中 r 为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时, 公式也近似的适用, 其中 r 为两物体质心间的距离。
6、推导: GmM4 2R 3GMR 2m2 RT 242T1四、万有引力定律的两个重要推1、在匀球的空腔内任意位置,点受到地壳万有引力的合力零。
2、在匀球体内部距离球心r ,点受到的万有引力就等于半径r 的球体的引力。
五、黄金代若已知星球表面的重力加速度g 和星球半径 R,忽略自的影响,星球物体的万有引力等于物体的重力,有 G Mmmg 所以 MgR2 R2G其中 GM gR2是在有关算中常用到的一个替关系,被称黄金替。
6.3 万有引力定律
一、万有引力定律
要点诠释:
1.内容
自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F 与这两个物体质量的乘积12m m 成正比,与这两个物体间距离r 的平方成反比。
2.公式
122m m F G r
=,其中G 为万有引力常量,11226.6710/G N m kg -=⨯⋅ 3.适用条件
适用于相距很远,可以看作质点的物体之间的相互作用。
质量分布均匀的球体可以认为质量集中于球心,也可以用此公式计算,其中r 为两球心之间的距离。
4.重力与万有引力的关系
在地球(质量为M)表面上的物体所受的万有引力F 可以分解成物体所受的重力mg 和随地球自转而做圆周运动的向心力F ',其中2R
Mm G
F =,而2ωmr F ='。
(1)当物体在赤道上时 F 、mg 、F '三力同向,此时F '达到最大值2max
ωmR F =',重力加速度达到最小值22min ωR R
M G m F F g -='-= (2)当物体在两极的极点时,0F '=,此时重力等于万有引力F mg =,重力加速度达到最大值,此最大值为2
max R M G
g =。
(3)因地球自转角速度很小,22ωmR R
Mm G >>,所以在一般情况下进行计算时认为2R Mm G mg =。
万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容开普勒第二定律:v v >远近开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:333222===......a a a T T T 水火地地水火 三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
K T R =23 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝' 2r MmF ∝2r Mm G F = 2、表达式:221rm m GF = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。
4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。
③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。
6、推导:2224mM G m R R T π= ⇒ 3224R GMT π=四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。
2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。
五、黄金代换六、 双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
万有引力与航天知识点总结万有引力是指任何两个物体之间都存在着一种相互吸引的力,这种力的大小与两个物体的质量和它们之间的距离有关。
在航天领域,对于万有引力的理解和应用至关重要。
本文将从万有引力的基本概念出发,结合航天知识点,对其进行总结和探讨。
首先,我们来看一下万有引力的公式,F=G(m1m2)/r^2。
其中,F代表物体之间的引力,G代表万有引力常量,m1和m2分别代表两个物体的质量,r代表它们之间的距离。
这个公式揭示了万有引力与质量和距离的关系,也为航天领域的计算和设计提供了重要的理论基础。
在航天领域,我们经常要面对的一个问题就是轨道计算。
万有引力的公式为我们提供了计算轨道的重要依据。
通过对引力大小的计算,我们可以确定航天器在空间中的轨道,从而实现对航天任务的精确控制和计划。
除了轨道计算,万有引力还对航天器的发射和返回轨道有着重要的影响。
在发射阶段,我们需要考虑地球的引力对航天器的影响,以确保航天器能够顺利进入预定轨道。
而在返回阶段,我们也需要精确计算出地球的引力,以保证航天器能够准确着陆或返回地面。
另外,对于天体探测任务来说,万有引力也是一个重要的考虑因素。
在执行探测任务时,我们需要精确计算出天体之间的引力,以便准确预测探测器的运动轨迹和目标天体的特征。
只有充分理解和利用万有引力,我们才能够更好地执行航天任务,实现科学探索的目标。
总的来说,万有引力作为一种普遍存在的物理现象,对航天领域有着重要的影响和应用。
通过对万有引力的深入理解,我们可以更好地规划和执行航天任务,实现对宇宙的探索和认识。
同时,万有引力也为航天技术的发展提供了重要的理论支持,促进了航天领域的不断进步和发展。
综上所述,万有引力与航天知识点的总结,对我们加深对宇宙物理学的理解,提高航天技术的水平,具有重要的意义和价值。
希望本文能够对读者有所启发,促进对万有引力与航天知识的深入学习和探讨。
让我们共同努力,探索未知的宇宙,为人类的航天事业作出更大的贡献。
一、行星的运动——开普勒三定律 (察看到的,不是实验定律)(环绕,中心天体可视为不动)1、开普勒第必定律——轨道定律(圆周模型)全部的行星环绕太阳运行的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2、开普勒第二定律——面积定律(v 1r 1 v 2 r 2 )对于任意一个行星而言, 太阳和行星的连线在相等的时间内扫过相等的面积。
依据开普勒第二定律可得,行星在远日点的速率较小,在近期点的速率较大。
3、开普勒第三定律——周期定律(a 3 k )T 2全部行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
( a 表示椭圆的半长轴, T 代表公转周期, 同一中心天体 k 是定值 r 3GM T2k42)明显 k 是一个与行星自己没关的量,只与中心体有关 。
开普勒第三定律对全部行星都合用。
对于同一颗行星的卫星,也切合这个运动规律。
二、万有引力定律1、定律的推导。
2、定律的内容:自然界中任何两个物体都互相吸引,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比。
3、定律的公式: F Gm 1m 2(× 10-112/kg 2. )r 24、万有引力定律公式的合用条件:①质点间 (对于相距很远因此可以看作质点的物体)思虑:在公式中,当 r →0 时, →∞能否有意义?F②对平均的球体 ,可以看作是质量会合于球心上的质点,这是一种等效的简化办理方法。
③不是质点也不可以视为质点的 不可以直接 用公式,但可采纳 微积分 的思想间接求!5、万有引力定律说明①引力的方向 ——两质点的连线上。
②为引力常量 G ——在数值上等于两个质量都是1kg 的物体相距 1m 时的互相作用力, 其数值与单位制有关。
在 SI 制中, G = 6.67 × 10-11N · m 2/kg 2,1687 年牛顿宣布规律,而 1798 年英卡文迪许完成实验之时测定。
卡被称为称出地球质量的人 . 精度不高,可取来运算③一致单位 ——在运用万有引力定律计算时,公式中各量的单位须一致使用国际单位制。
高中物理必修二第六章万有引力与航天知识点概括与要点题型总结一、行星的运动1、开普勒行星运动三大定律①第必定律(轨道定律):全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对随意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近期点速度比较快,远日点速度比较慢。
③第三定律(周期定律):全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
a3即:T 2k此中k是只与中心天体的质量相关,与做圆周运动的天体的质量没关。
推行:对环绕同一中心天体运动的行星或卫星,上式均成立。
K 取决于中心天体的质量例 . 有两个人造地球卫星,它们绕地球运行的轨道半径之比是1: 2,则它们绕地球运行的周期之比为。
二、万有引力定律1、万有引力定律的成立F G Mm①太阳与行星间引力公式r 2②月—地查验③卡文迪许的扭秤实验——测定引力常量 GG 6.67 10 11N2/ kg22、万有引力定律m①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和 m2的乘积成正比,与它们之间的距离 r 的二次方成反比。
即:F G m1m2r 2②合用条件(Ⅰ)可当作质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量散布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般状况下,可以为重力和万有引力相等。
忽视地球自转可得:mg G MmR2例 . 设地球的质量为 M ,赤道半径 R ,自转周期 T ,则地球赤道上质量为 m 的物体所受重力的大小为(式中 G 为万有引力恒量)(2)计算重力加快度G Mm地球表面邻近( h 《R ) 方法:万有引力≈重力mgMmR 2地球上空距离地心 r=R+h 处 mg ' G2 方法:( R h)在质量为 M ’,半径为 R ’的随意天体表面的重力加快度g ' ' 方法:mg''G M ' ' mR '' 2(3)计算天体的质量和密度Mm利用自己表面的重力加快度:GR 2mgMm v 2 24 2利用环绕天体的公转:G r 2m m rm 2 r 等等rT(注:联合 M4 R 3 获得中心天体的密度)3例 . 宇航员站在一星球表面上的某高处,以初速度 V 0 沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为 V. 已知该星球的半径为 R ,引力常量为G ,求该星球的质量 M 。
6.4 万有引力理论的成就一、万有引力与重力要点诠释:地球对物体的引力是物体受到重力的根本原因,但重力又不完全等于引力.这是因为地球在不停地自转,地球上的一切物体都随着地球的自转而绕地轴做匀速圆周运动,这就需要向心力.这个向心力的方向是垂直指向地轴的,它的大小是2F mr ω=向,式中的r 是物体与地轴的距离,ω是地球自转的角速度.这个向心力来自哪里?只能来自地球对物体的引力F ,它是引力F 的一个分力,如图所示,引力F 的另一个分力才是物体的重力mg .在不同纬度的地方,物体做匀速圆周运动的角速度ω相同,而圆周的半径r 不同,这个半径在赤道处最大,在两极最小(等于零).纬度为α处的物体随地球自转所需的向心力2cos F mR ωα=向(R 为地球半径).由公式可见,随着纬度的升高,向心力将减小,作为引力的另一个分量,重力则随纬度的升高而增大,在两极处r =Rcos90°=0,0F =向,所以在两极,引力等于重力.在赤道上,物体的重力、引力和向心力在一条直线上,方向相同,此时重力等于引力与向心力之差,即2Mm mg G F R =-向.此时重力最小.从图中还可以看出重力mg 一般并不指向地心,只有在南北两极和赤道上重力mg 才指向地心.(1)重力是由万有引力产生的,重力实际上是万有引力的一个分力,物体的重力随其纬度的增大而增大,并且除两极和赤道上外,重力并不指向地心.(2)物体随地球自转所需的向心力一般很小,物体的重力随纬度的变化很小,因此在一般粗略计算中,可以认为物体所受的重力等于物体所受地球的万有引力,即2Mm mg G R=. 二、天体质量计算的几种方法要点诠释:万有引力定律从动力学角度解决了天体运动问题.天体运动遵循与地面上物体相同的动力学规律.行星(或卫星)的运动可视为匀速圆周运动,由恒星对其行星(或行星对其卫星)的万有引力提供向心力.运用万有引力定律,不仅可以计算太阳的质量,还可以计算其他天体的质量.下面以地球质量的计算为例,介绍几种计算天体质量的方法.(1)若已知月球绕地球做匀速圆周运动的周期为T ,半径为r ,根据万有引力等于向心力,即222GM m m r r T π⎛⎫= ⎪⎝⎭月地月,可求得地球的质量2324r M GT π=地. (2)若已知月球绕地球做匀速圆周运动的半径r 和月球运行的线速度v ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,得 22M m v G m r r=月地月. 可得地球的质量为2/M rv G =地.(3)若已知月球运行的线速度v 和运行周期T ,由于地球对月球的引力等于月球做匀速圆周运动的向心力,得 2M m G m v r Tπ2=月地月, 22/M m G m v r r=月地月. 以上两式消去r ,解得3/(2)M v T G π=地.(4)若已知地球的半径R 和地球表面的重力加速度g ,根据物体的重力近似等于地球对物体的引力,得 2M m mg G R=地, 解得地球的质量为2R g M G=地.三、天体密度的计算要点诠释:(1)利用天体表面的重力加速度来求天体的自身密度.由2GMm mg R =和343M R ρπ=, 得 34g GR ρπ=. 其中g 为天体表面的重力加速度,R 为天体半径.(2)利用天体的卫星来求天体的密度.设卫星绕天体运动的轨道半径为r ,周期为T ,天体半径为R ,则可列出方程: 2224Mm G m r r Tπ=,343M R ρπ=, 得 232323334/34433M r GT r GT R R R ππρππ===. 当天体的卫星环绕天体表面运动时,其轨道半径r 等于天体半径R ,则天体密度为23GT πρ=. 四、发现未知天体要点诠释:发现海王星天王星的“出轨”现象,激发了法国青年天文学家勒维耶和英国剑桥大学学生亚当斯的浓厚兴趣.勒维耶经常到巴黎天文台去查阅天王星观察资料,并把这些资料跟自己理论计算的结果对比.亚当斯也不断到剑桥大学天文台去,他还得到一份英国皇家格林尼治天文台的资料,这使他的理论计算能及时跟观察资料比较他们两人根据自己的计算结果,各自独立地得出结论:在天王星的附近,还有一颗新的行星!1846年9月23日晚,德国的伽勒在勒维耶预言的位置附近发现了这颗行星,人们称其为“笔尖下发现的行星”.这就是海王星.凭借着万有引力定律,通过计算,在笔尖下发现了新的天体,这充分地显示了科学理论的威力.五、解决天体运动问题的基本思路要点诠释:(1)将行星绕恒星的运动、卫星绕行星的运动均视为匀速圆周运动,所需向心力是由万有引力提供的.根据圆周运动的知识和牛顿第二定律列式求解有关天体运动的一些物理量,有如下关系: 222224Mm v G ma m mr m v mr r r Tπωω=====向. 若已知环绕中心天体运动的行星(或卫星)绕恒星(或行星)做匀速圆周运动的周期为T ,半径为r ,根据万有引力提供向心力可知:2224Mm G mr r Tπ=,得恒星或行星的质量2324r M GT π=. 此种方法只能求解中心天体的质量,而不能求出做圆周运动的行星或卫星的质量.(2)若已知星球表面的重力加速度g ′和星球的半径,忽略星球自转的影响,则星球对物体的万有引力等于物体的重力,有2Mm G mg R'=,所以2g R M G '=.其中2GM g R '=是在有关计算中常用到的一个替换关系,被称为“黄金代换”.。
万有引力与航天知识点总结
一、人类认识天体运动的历史
1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)
2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容
开普勒第二定律:v v >远近
开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:
33
32
22===......a a a T T T 水火地地水
火 三、万有引力定律
1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。
K T
R =23
①
r T
m F 22
4π=
②
2
2π4=r m K
F 2
m F r
∝ F F '= ③
2
r M F ∝
'
2r Mm F ∝
2r Mm G
F =
2、表达式:2
2
1r
m m G F = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的
连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。
4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的
100多年里,卡文迪许在实验室里用扭秤实验测出。
5、适用条件:①适用于两个质点间的万有引力大小的计算。
②对于质量分布均匀的球体,公式中的r 就是它们球
心之间的距离。
③一个均匀球体与球外一个质点的万有引力也适用,
其中r 为球心到质点间的距离。
④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。
6、推导:2224mM G m R R T π= ⇒ 322
4R GM T π
=
四、万有引力定律的两个重要推论
1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。
2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。
五、黄金代换
六、 双星系统
两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:
M 1: 2
2121111121
M M v G M M r L r ω==
M 2: 22122
222222
M M v G M M r L r ω==
相同的有:周期,角速度,向心力 ,因为12F F =,所以221122m r m r ωω= 轨道半径之比与双星质量之比相反:12
2
1
r m r m =
线速度之比与质量比相反:122
1
v m v
m =
七、宇宙航行:
1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星…… 3、卫星轨道:可以是圆轨道,也可以是椭圆轨道。
地球对卫星的万有引力提供向心力,所以圆轨道圆心或椭圆轨道焦点是地心。
分为赤道轨道、极地轨道、一般轨道。
2
2
二、1、三个宇宙速度:
第一宇宙速度(发射速度):7.9km/s 。
最小的发射速度,最大的环绕速度。
第二宇宙速度(脱离速度):11.2km/s 。
物体挣脱地球引力束缚,成为绕太阳运行的小行星或飞到其他行星上去的最小发射速度。
第三宇宙速度(逃逸速度):16.7km/s 。
物体挣脱太阳引力束缚、飞到太阳系以外的宇宙空间去的最小发射速度。
7.9km/s <v <11.2km/s 时,卫星绕地球旋转,其轨道是椭圆,地球位于一个焦点上。
11.2km/s <v <16.7 km/s 时,卫星脱离地球束缚,成为太阳系的一颗小行星。
2、(1)人造卫星的线速度、角速度、周期表达式:将不同轨道上的卫星绕地球运动都看成是匀速圆周运动,则有
222
224Mm v G m m r m r r r T
πω===
可得:v =
ω=
2T π
=
同一中心天体的环绕星体(靠万有引力提供向心力的环绕星体,必须是“飘”起来的,赤道上的物体跟同步卫星比较不可以用此结论) R↑T↑a↓v↓ω↓
(2)超重与失重:人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动。
两个过程加速度方向均向上,因为都是超重状态。
人造卫星在沿圆轨道运行时,万有引力提供向心力,所以处于完全失重状态。
三、典型卫星:
1、近地卫星:通常把高度在500千米以下的航天器轨道称为低轨道,500千米~2000千米高的轨道称为中轨道。
中、低轨道合称为近地轨道。
在高中物理中,近地卫星环绕半径R≈R
地
=6400Km ,
7.9/()v km s ==所有卫星中最大速度
285min()T ==所有卫星中最小周期
2、同步卫星:相对地面静止且与地球自转具有相同周期的卫星叫地球同步卫星,又叫通讯卫星。
特点:
(1) 运行方向与地球自转方向一致(自西向东)。
(2) 周期与地球自转周期相同,T=24小时。
(3) 角速度等于地球自转角速度。
(4) 所有卫星都在赤道正上方,轨道平面与赤道平面共面。
(5) 高度固定不变,离地面高度h=36000km 。
(6) 三颗同步卫星作为通讯卫星,则可覆盖全球(两级有部分盲区) (7) 地球所有同步卫星,T 、ω、v 、h 、均相同,m 可以不同。
3、扩展:
(1)变轨问题:从内往外为第Ⅰ、Ⅱ、Ⅲ轨道,左
边切点为A 点,右边切点为B 点。
:A v v >ⅡⅠ(内轨道加速到达外轨道)a a =ⅡⅠ (同
一位置,a 相同)
:B v v >ⅢⅡ(内轨道
加速达到外轨道)a a =ⅢⅡ(同一位置,a 相同)
:A B v v >Ⅱ(v v >远近)A B a a >(离地球越近,g 越大)
v >ⅠⅢⅠ,Ⅲ:v (v =)a a >ⅠⅢ(离地球越近,
g 越大)
(2)赤道上物体与头顶同步卫星比较:2
a r ω=
(3)对接问题:后面卫星,先减速,做向心运动,降低一定高度后,再加速,离心,同时速度减慢,与前面卫星对接。