采用朗肯土压力理论计算主动
- 格式:doc
- 大小:237.00 KB
- 文档页数:8
主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。
被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。
上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。
由图可知P p >P o >P a 。
朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中,首先作出以下基本假定。
(1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平;(3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。
土体中产生的两组破裂面与水平面的夹角为245ϕ-︒。
朗肯主动土压力的计算根据土的极限平衡条件方程式σ1=σ3tg 2(45°+2ϕ)+2c ·tg(45°+2ϕ) σ3=σ1tg 2(45°-ϕ)-2c ·tg(45°-ϕ)当z=H 时p a =γHK a -2cK a在图中,压力为零的深度z 0,可由p a =0的条件代入式(6-3)求得a0K c 2z γ=(6-4)在z 0深度范围内p a 为负值,但土与墙之间不可能产生拉应力,说明在z 0深度范围内,填土对挡土墙不产生土压力。
朗肯主动土压力计算公式朗肯主动土压力计算公式是用于计算土体在活动土压下的土压力的一种计算方法。
该公式是根据土体在活动土压下的应力分布特点而推导出来的,可以用于分析土体在不同深度下的土压力变化情况,以及土体的总土压力和侧向土压力。
Qa=(Ka*γ*H^2)/2其中,Qa为土体的主动土压力(kN/m^2),Ka为活动土压系数,γ为土体的体积重(kN/m^3),H为土体的高度(m)。
在使用朗肯主动土压力计算公式时,需要先确定土壤的活动土压系数和体积重。
活动土压系数是指土体在活动状态下的土压力和土体重量之比,它反映了土体的内摩擦角、孔隙水压力等因素对土压力的影响。
体积重是指土体的单位体积重量,它是土体的物理性质之一,可以通过试验或者经验确定。
通过朗肯主动土压力计算公式,可以计算出土体在不同深度下的主动土压力大小。
主动土压力是指土体由于受到外力作用而产生的土压力,它具有水平分布的特点,随着土体深度增加而递减。
主动土压力的大小对于土体的稳定性和承载力有着重要的影响,因此准确计算主动土压力是土力学分析和工程设计中的一个重要问题。
朗肯主动土压力计算公式的使用范围较广,适用于各种土质条件和土压力计算要求。
但是需要注意的是,该公式只适用于土质均匀且无阻力的情况,对于土体中存在水平分层、斜面、岩层等特殊情况,需要根据具体情况进行修正。
此外,在使用公式计算土压力时,还需要考虑土体的稳定性和强度,以确保工程的安全和可靠。
总之,朗肯主动土压力计算公式是一种常用的土压力计算方法,通过该公式可以计算出土体在不同深度下的主动土压力大小。
在工程设计和土力学分析中,合理使用并正确计算土压力,对于工程的稳定性和承载力有着重要的影响。
主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。
被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。
上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。
由图可知P p >P o >P a 。
朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中,首先作出以下基本假定。
(1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平;(3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。
土体中产生的两组破裂面与水平面的夹角为245ϕ-︒。
朗肯主动土压力的计算根据土的极限平衡条件方程式σ1=σ3tg 2(45°+2ϕ)+2c ·tg(45°+2ϕ) σ3=σ1tg 2(45°-ϕ)-2c ·tg(45°-ϕ)a0K c 2z γ=(6-4)在z 0深度范围内p a 为负值,但土与墙之间不可能产生拉应力,说明在z 0深度范围内,填土对挡土墙不产生土压力。
墙背所受总主动土压力为P a ,其值为土压力分布图中的阴影部分面积,即γ+-γ=--γ=22c 2K cH 2K H 21)z H )(K c 2HK (21P a a 0a a a (6-5)2)填土为无粘性土(砂土)时根据极限平衡条件关系方程式,主动土压力为a a zK )245(ztg p 2γ=ϕ-︒γ= (6-6)上式说明主动土压力P a 沿墙高呈直线分布,即土压力为三角形分布,如图6-6所示。
[ 指南] 土体主动、主动土压力概念及计算公式主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。
a被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。
上述三种土压力的移动情况和它们在相同条件下的数值比较,p可用图6-2 来表示。
由图可知P,P,P。
poa朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin)1857 年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中, 首先作出以下基本假定。
(1) 挡土墙是刚性的墙背垂直;(2) 挡土墙的墙后填土表面水平;(3) 挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过Z 值,ZXZ当土墙挤压土体使Z增大到使土体达到被动极限平衡状态时,如图6-4的应力园O, Z x3z变为小主应力,Z变为大主应力,即为朗肯被动土压力(p) 。
土体中产生的两组破裂面与xp,45:, 水平面的夹角为。
2 朗肯主动土压力的计算根据土的极限平衡条件方程式,,2 Z =Z tg(45?+)+2c?tg(45?+) 1322,,2 Z =Z tg(45?-)-2c?tg(45?-) 3122土体处于主动极限平衡状态时,Z = Z = Y Z, Z = Z =p,代入上式得1z3xa1) 填土为粘性土时填土为粘性土时的朗肯主动土压力计算公式为,,2,ap= γztg(45?-)-2c?tg(45?-)= γzK-2c (6-3) aa22由公式(6-3) ,可知,主动土压力p 沿深度Z 呈直线分布,如图6-5 所示。
主动土压力挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a。
被动土压力挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p。
上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。
由图可知P p>P o>P a。
朗肯基本理论朗肯土压力理论是英国学者朗肯(Rankin)1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。
在其理论推导中,首先作出以下基本假定。
(1)挡土墙是刚性的墙背垂直;(2)挡土墙的墙后填土表面水平;(3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。
把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。
如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。
土体中产生的两组破裂面与水平面的夹角为245ϕ-︒。
朗肯主动土压力的计算根据土的极限平衡条件方程式σ1=σ3tg 2(45°+2ϕ)+2c ·tg(45°+2ϕ)σ3=σ1tg2(45°-ϕ)-2c·tg(45°-2ϕ)2土体处于主动极限平衡状态时,σ1=σz=γz,σ3=σx=p a,代入上式得1)填土为粘性土时填土为粘性土时的朗肯主动土压力计算公式为p a=γztg2(45°-ϕ)-2c·tg(45°2-ϕ)=γzK a-2c a K(6-3)2由公式(6-3),可知,主动土压力p a沿深度Z呈直线分布,如图6-5所示。
主动土压力计算库仑、朗肯理论(一)主动土压力计算库仑、朗肯理论主动土压力是指土体对于深基坑、隧道等工程结构所施加的作用力,其大小、方向和分布都对结构工程的安全性和稳定性有着很大的影响。
计算主动土压力的方法有很多种,其中比较常见的是库仑和朗肯理论。
一、库仑理论库仑理论将土体视为由一系列均匀分布的小粒子组成的均质体,认为土体间的剪移力受摩擦支持,并满足下列条件:1. 土体中的每一粒子都与其邻粒子之间相互作用,所有粒子间的力均受到相互约束及反力的作用。
2. 粒子间剪力可以通过过剩水压的变化得到调节,但不能超出土体的内摩擦角。
在库仑理论中,主动土压力的计算主要考虑了土体重力和内摩擦角的影响,其计算公式为:Ka = cos2α / (cosα + sinα)2其中,Ka为土的活动系数,α为土粒子与垂直结构面之间的夹角。
二、朗肯理论朗肯理论是一种根据数学模型来计算土体围压力的方法。
朗肯认为,当土体围挤受到水平面上的挤压力时,土体中的粒子会沿着最小阻力方向移动,同时对邻近的粒子施加弹性力。
根据弹性力的大小,可得到相应的土体围压力。
朗肯理论所计算的主动土压力是以土壤骨架的强度为基础的,不仅考虑了土体的内摩擦角,还考虑了土的屈服特性、颗粒排列特性、颗粒大小和密度等因素。
其计算公式为:Ka = sinφ / (1-sinφ)其中,Ka为土的活动系数,φ为土体内摩擦角。
总结从以上分析可看出,库仑和朗肯理论都是以土体内部的力学特性为基础进行计算的。
库仑理论重视土的摩擦支撑作用,而朗肯理论则更为全面,考虑了土的多种力学特性,因此在某些情况下,朗肯理论更为精确。
在实际工程应用中,需要根据工程的具体情况和需要进行选择。
采用朗肯土压力理论计算主动朗肯土压力理论,是一种用于计算土壤对支护结构施加的侧向土压力的理论方法。
该理论是由美国土木工程师朗肯(Rankine)于1857年首次提出,在之后的发展中,逐渐成为了计算土压力的重要工具。
一般来说,建筑或者基础工程常常会需要支护结构来保证土体的稳定性。
不过,同时也会出现侧向土压力这样的问题。
当支护结构与土体接触时,与土体接触面的一侧会施加侧向土压力,这会导致支护结构产生潜在的稳定性危险。
因此,计算侧向土压力就显得尤为重要。
采用朗肯土压力理论计算侧向土压力,需要先考虑土体的内摩擦角。
内摩擦角指的是土壤锥体与水平面的夹角,可以用来描述土壤自身的力学性质。
内摩擦角的值可以通过试验测定,或者参考土壤分类标准来确定。
然后,需要考虑土体的侧向土压力系数。
该系数反映的是土壤侧向承受能力的大小,通常也需要通过试验测定或者参考经验值来确定。
这些值都可以参考常用的手册或者规范中的数据。
通过以上数据,可以计算出朗肯土压力理论中的土压力公式:P = KaγH,其中P为侧向土压力,Ka为土压力系数,γ为土体容重,H为土体填筑高度。
这个公式可以用于计算不带水平力的土压力值。
然而,实际工程中,土壤往往存在侧向水平力。
因此,为了得到更为精确的侧向土压力计算结果,需要采用修正后的朗肯土压力理论计算侧向土压力。
在修正后的朗肯土压力理论中,需要引入一个水平力系数Kp。
这个系数考虑的是土体受到水平荷载的影响后,侧向土压力的变化情况。
Kp的值可以通过试验测定,也可以参考土壤分类标准和经验数据确定。
修正后的朗肯土压力理论公式:P(水平)= KaγH + Kpσ'H,其中P(水平)是考虑水平荷载后的侧向土压力,σ'是水平应力。
通过这个公式,可以计算出实际工程中的侧向土压力值。
需要注意的是,朗肯土压力理论在实际应用中,也有一些需要注意的地方。
比如,在计算内摩擦角和土压力系数时,需要考虑土层的不同性质。