有理数基础训练(有答案)
- 格式:docx
- 大小:45.52 KB
- 文档页数:4
苏科版2019-2020七年级数学第二章有理数自主学习基础训练题B(附答案)1.2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12 050 000枚,用科学记数法表示正确的是( )A.1.205×107B.1.20×108C.1.205×104D.1.21×1072.因为,所以()A.是倒数B.是倒数C.和互为倒数D.以上都不对3.若,则的值为()A.6 B.﹣6 C.8 D.﹣84.如果a+b=0,那么a、b两个有理数一定是()A.都等于0 B.一正一负C.互为相反数D.互为倒数5.下列说法正确的是().A.一个数的前面添上一个“-”,一定是负数B.有理数的绝对值一定是正数C.互为相反数的两个数的绝对值一定相等D.如果一个数的绝对值是它本身,则这个数一定是正数6.一个有理数的相反数与自身绝对值的和()A.可能是负数B.必为正数C.必为非负数D.必为7.−3的相反数是()A.13B.−3 C.−13D.38.运用乘法分配律计算“(﹣24)×(﹣+﹣)”,不正确的是()A.(﹣24)+(﹣24)×(﹣)+(﹣24)×+(﹣24)×(﹣)B.(﹣24)×﹣(﹣24)×(﹣)+(﹣24)×﹣(﹣24)×(﹣)C.(﹣24)×﹣(﹣24)×+(﹣24)×﹣(﹣24)×D.×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24)9.近似数 0.450精确到________位,有____个有效数字.10.已知|﹣x|=|﹣4|,则x=.11.计算:﹣10﹣6的结果为_____.12.数轴上有A、B、C三个点,B点表示的数是1,CAB=BC,则A点表示的数是____________.13.,,的和的绝对值与这三个数的绝对值的和的差是________.14.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为_____.15.若互为相反数,互为倒数,则________.16.计算:﹣33=_____.17.﹣2的相反数的值等于_____.18.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.19.把下列各数填入相应的大括号里:正分数集合{…};整数集合{…};非正数集合{…};有理数集合{…}20.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.21.如图,这是一个数值转换机的示意图.(1)若输入x 的值为﹣2,输入y 的值为5,求输出的结果;(2)若输入x 的值为4,输出的结果为8,求输入y 的值.22.计算题:(1)23-37+3-52;(2);(3);(4).23.在下面给出的数轴中,点A 表示1,点B 表示-2,回答下面的问题:(1)A、B 之间的距离是;(2)观察数轴,与点A 的距离为5 的点表示的数是:;(3)若将数轴折叠,使点A 与-3 表示的点重合,则点B 与数表示的点重合;(4)若数轴上M、N 两点之间的距离为2018(M 在N 的左侧),且M、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M :;N:.24.计算:(1)(-2)2×5-(-2)3÷4; (2)-24×531 6812⎛⎫-+-⎪⎝⎭;(3)527763122⎛⎫⎛⎫-+÷-⨯⎪ ⎪⎝⎭⎝⎭;(4)[-33×2+(-3)2×4-5×(-2)3]÷214⎛⎫-⎪⎝⎭.25.计算:...(4)26.随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤;(1)根据记录的数据可知前三天共卖出______ 斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______ 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?参考答案1.A【解析】【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】根据科学计数法的表示方法得:12050000=1.205×107.故选A【点睛】本题考查科学计数法,将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.确定a、n的值是解题关键.2.C【解析】【分析】根据倒数的意义,乘积是1的两个数互为倒数.据此解答即可.【详解】因为,所以和互为倒数,故选C.【点睛】本题考查了倒数的意义,熟知乘积为1的两个数互为倒数是解题的关键.3.D【解析】【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【详解】由题意得:m﹣1=0,n+3=0,解得:m=1,n=﹣3,则(m+n)3=-8.故选D.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.C【解析】【分析】根据有理数的加法,可得a、b的关系,可得答案.【详解】∵a+b=0,∴a、b是互为相反数.故选C【点睛】本题考查了相反数,互为相反数的两个数的和为0是解题关键.5.C【解析】【分析】根据负数的定义,绝对值的性质,整数的定义对各选项分析判断后利用排除法求解.【详解】A、一个数前面加上“-”号就是负数不正确,例如-(-2)=2,是正数,故本选项错误;B、∵0的绝对值是0,故本选项错误;C、∵互为相反数的两个数的绝对值相等,故本选项正确;D、0的绝对值也是它本身,故本选项错误.故选C.【点睛】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.6.C【解析】【分析】用字母表示该有理数,按该数为负数和非负数进行分类讨论,分别写出其相反数和绝对值求和即可.【详解】令该有理数为a,则其相反数为-a,当a为负数时,其绝对值为-a,则:-a+(-a)=-2a,结果为正数;当a为非负数时,其绝对值为a,则:-a+a=-0,结果为0;故其和为非负数,故选择C.【点睛】本题一定要理解一个有理数可以分为负数、正数和0,不要遗漏.7.D【解析】解:﹣3的相反数是3.故选D.8.B【解析】【分析】直接运用乘法的分配律来判断即可.【详解】解:运用乘法的分配律可知原式=故选择答案B.【点睛】正确运用乘法的分配律:m(a+b+c)=ma+mb+mc,是解本题的关键.9.千分3【解析】【分析】根据精确度和有效数字的定义直接解答此题.【详解】据精确度的确定方法确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.近似数-0.450精确到千分位,有3个有效数字,分别是4,5,0.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意前面的负号与有效数字的确定无关.【点睛】本题考查了学生对数的精确度和有效数字,掌握精确度的定义和会判别有效数字的个数是解决此题的关键.10.±4.【解析】试题解析:∵|-x|=|-4|,∴x=±4,故答案为:±4.11.-16【解析】【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】﹣10﹣6=﹣10+(﹣6)=﹣16.故答案为:﹣16.【点睛】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.12.2【解析】∵B点表示的数是1,C AB=BC,∴BC=AB1,∴A点表示的数是:.故答案为:点睛:本题考查的是数轴,熟知数轴上两点之间的距离公式是解答此题的关键.13.-18【解析】【分析】根据题意列出算式,然后利用有理数的运算法则进行计算即可.【详解】由题意可得,|-7.5+9+(-2.5)|-(|-7.5|+|9|+|-2.5|)=1-19=-18.故答案为:-18.【点睛】本题考查了绝对值的性质及有理数的加减混合运算,根据题意正确列出算式是解决本题的关键.14.2或﹣8.【解析】【分析】设此点表示的数是a,再根据数轴上两点间的距离公式求解即可.【详解】∵设此点表示的数是a,则|a+3|=5,∴当a≥3时,原式=a+3=5,解得:a=2;当a<3时,原式=﹣a﹣3=5,解得:a=﹣8.故答案为:2或﹣8.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.-1【解析】【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【详解】根据题意得:,,则原式=0﹣1=﹣1.故答案为:﹣1.【点睛】此题考查了代数式求值,相反数,倒数,熟练掌握运算法则是解本题的关键. 16.-27【解析】解:原式=﹣33=﹣27.故答案为:﹣27.17.2【解析】分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数,进行作答即可. 详解:-2的相反数的值等于 2. 故答案是:2.点睛:考查了相反数的概念:只有符号不同的两个数叫做互为相反数. 18.53.0510⨯【解析】试题解析:305000用科学记数法表示为: 53.0510.⨯ 故答案为: 53.0510.⨯ 19.见解析. 【解析】 【分析】分别根据正分数、整数、有理数、非正数的定义进行判断填写即可. 【详解】解:正分数集合{ 0.618,,0. …}; 整数集合{ 0,260,-2015,-|-2|,-{+[-(-2)]} …}; 非正数集合{0,-,-3.14,-2015,-|-2|,-{+[-(-2)]} …}; 有理数集合{ …}【点睛】本题主要考查实数的分类,注意无限不循环小数是无理数,分数中包括小数是解答此题的关键.20.(1)a=﹣2,b=±3,c=﹣1;(2)24; 【解析】 【分析】(1)根据相反数、绝对值、倒数的定义解答即可;(2)把所给的整式去括号合并同类项化为最简后,再代入求值即可.【详解】(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点睛】本题考查了代数式求值,相反数的定义,绝对值的性质,倒数的定义,是基础题,比较简单,但要注意b的两种情况.21.(1)7;(2)y=±4.【解析】【分析】(1)根据给出的运算方法转化为有理数的混合运算,利用运算方法和顺序计算即可;(2)根据给出的运算方法转化为方程求得y的数值即可.【详解】解:(1)[(﹣2)×2+]÷3=(﹣4+25)÷3=21÷3=7.(2)(4×2+)÷3=88+=24=16y=±4.【点睛】此题考查有理数的混合运算,理解题意,搞清规定的运算顺序与计算方法是解决问题的关键. 22.(1);(2);(3);(4)【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】(1)23-37+3-52=-14+3-52=-11-52=-63;(2)=-9-5025-1=-9-2-1=-12;(3)=-49+29-54=-49+18-54=-85(4)=-4(-64)+0.2=+=【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算. 23.(1)3;(2)6或-4;(3)0;(4)M :-1010 ;N:1008 .【解析】【分析】(1)(2)观察数轴,直接得出结论;(3)A点与-3表示的点相距4单位,其对称点为-1,由此得出与B点重合的点;(4)对称点为-1,M点在对称点左边,离对称点2018÷2=1009个单位,N点在对称点右边,离对称点1009个单位,由此求出M、N两点表示的数.【详解】(1)A、B之间的距离是1+|−2|=3.故答案为:3;(2)与点A的距离为5的点表示的数是:−4或6.故答案为:−4或6;(3)则A点与−3重合,则对称点是−1,则数B关于−1的对称点是:0.故答案为:0;(4)由对称点为−1,且M、N两点之间的距离为2018(M在N的左侧)可知,M点表示数−1010,N点表示数1008.故答案为:−1010,1008.【点睛】本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.24.(1)原式=22,(2)原式=13.(3)原式=1,(4)原式=352【解析】试题分析:(1)根据有理数的混合运算顺序依次计算即可;(2)利用分配律计算即可;(3)据有理数的混合运算顺序依次计算即可;(4)据有理数的混合运算顺序依次计算即可.试题解析:(1)原式=4×5-(-8)÷4=20-(-2)=22(2)原式=531 2424246812⎛⎫-⨯--⨯+⨯⎪⎝⎭=20-9+2 =13(3)原式=(16-)×12772⎛⎫-⨯⎪⎝⎭=1(4)原式=[-27×2+9×4-5×(-8)]÷116=(-54+36+40)×16=22×16=35225.;;-3 ;(4) .【解析】【分析】(1)根据有理数的加减法进行计算即可;(2)根据有理数的加减法进行计算即可;(3)根据乘法分配律进行简便计算即可;(4)先把除法转化成乘法,再根据有理数的乘法法则进行计算即可.【详解】(1)原式;(2)原式;(3)原式= -3;(4)= -18=.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.;;本周实际销量达到了计划数量;小明本周一共收入3585元.【解析】【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)先将各数相加求得正负即可求解;(4)将总数量乘以价格差解答即可【详解】,答:根据记录的数据可知前三天共卖出296斤;(斤);,答:本周实际销量达到了计划数量;元.答:小明本周一共收入3585元.【点睛】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.。
1.2 有理数【基础训练】一、单选题1.-2021的相反数是()A.2021B.-2021C.12020D.12020-【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:-2021的相反数是:2021.故选:A.【点睛】本题主要考查了相反数,正确掌握相关定义是解题关键.2.-2的相反数是()A.-2B.-12C.12D.2【答案】D【分析】根据相反数的意义,只有符号不同的两个数互为相反数.【详解】解:根据相反数的定义,-2的相反数是2.故选:D.【点睛】本题考查了相反数的意义.注意掌握只有符号不同的两个数互为相反数,0的相反数是0.3.﹣2的相反数是()A.12-B.12C.2D.﹣2【答案】C【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣2的相反数是2,故选:C .【点睛】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.4.2021年1月8日,安徽多地气温创20年来最低,其中最低气温合肥-11℃、安庆-8.5℃、蚌埠-11.5℃、池州-8.9℃,在以上四个城市中最低气温中最高的是( )A .合肥B .蚌埠C .安庆D .池州【答案】C【分析】根据有理数大小比较的法则得出-11.5<-11<-8.9<-8.5,求出即可.【详解】解:℃-11.5<-11<-8.9<-8.5,℃以上四个城市中最低气温中最高的是安庆.故选:C .【点睛】本题考查了有理数大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小. 5.12021-的倒数的相反数是( ) A .2021- B .12021 C .2021 D .12021- 【答案】C【分析】 利用倒数和相反数的定义分析得出答案.乘积为1的两个数互为倒数;只是符号不同的两个数叫做互为相反数。
规定0的相反数为0.【详解】 ℃12021-的倒数是2021-, 又℃2021-的相反数是2021, ℃12021-的倒数的相反数是2021 .【点睛】本题主要考查了倒数和相反数,正确把握倒数和相反数的定义是解题的关键.6.若123a=-,则实数a在数轴上对应的点的位置是().A.B.C.D.【答案】A【分析】首先根据a的值确定a的范围,再根据a的范围确定a在数轴上的位置.【详解】解:℃123 a=-℃ 2.3a≈,℃ 2.52a,℃点A在数轴上的可能位置是:,故选:A.【点睛】本题考查有理数与数轴,解题关键是确定负数的大致范围.7.12-的绝对值是()A.2B.2-C.12D.12-【答案】C【分析】直接利用绝对值的定义分析得出答案.【详解】解:-12的绝对值是12.故选:C.此题主要考查了绝对值,正确把握定义是解题关键.8.下列数中值最小的是()A.12B.12-C.2-D.2【答案】C【分析】根据有理数比较大小的方法即可得出答案.【详解】解:112222-<-<<∴最小的数是2-故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:℃正数都大于0;℃负数都小于0;℃正数大于一切负数;℃两个负数,绝对值大的其值反而小.9.2-等于()A.2B.﹣2C.12D.0【答案】A【分析】根据绝对值的意义求解即可.【详解】解:|-2|=2,故选:A.【点睛】本题考查了求一个数的绝对值,理解绝对值的意义是关键.10.5的绝对值是()A.15B.15-C.5D.-5【答案】C根据绝对值的性质即可得.【详解】解:因为正数的绝对值是它本身,所以5的绝对值是5,故选:C.【点睛】本题考查了绝对值,熟练掌握绝对值的性质是解题关键.11.某天,有四个城市的平长气温分别具0℃,20℃,-5℃,10℃,其中最低气温是()A.0℃B.20℃C.-5℃D.10℃【答案】C【分析】根据有理数的大小比较,即可作出判断.【详解】解:℃-5<0<10<20,℃温度最低的是-5℃故选:C.【点睛】本题考查了有理数的大小比较的知识,解答本题的关键是掌握有理数的大小比较法则.12.100的相反数是().A.100B.100-C.1100D.1100-【答案】B【分析】只有符号相反的两个数,互为相反数.所以100的相反数是-100.【详解】解:100的相反数是-100.故选:B.【点睛】本题考查了相反数的定义,解题时注意相反数与倒数,绝对值定义的区别.13.14-的相反数是()A.14-B.14C.4-D.4【答案】B【分析】根据相反数的定义判断即可.【详解】解:14-的相反数是14;故选:B.【点睛】本题考查了相反数的定义,即只有符号不同的两个数互为相反数;解决本题的关键是牢记概念即可,本题考查了学生对概念的理解与应用.14.-6的相反数是()A.-6B.6C.6±D.1 6【答案】B【分析】根据相反数的代数意义℃只有符号不同的两个数,互为相反数,即可得出结论.【详解】-6的相反数是6.故选B.【点睛】本题考查了相反数的意义,理解相反数意义是解题的关键.15.下列数轴表示正确的是()A.B.C.D.【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A、不符合数轴右边的数总比左边的数大的特点,故表示错误;B、不符合数轴右边的数总比左边的数大的特点,故表示错误;C、没有原点,故表示错误;D、符合数轴的定定义,故表示正确;故选D.【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.16.下列各数中,比-2小的数是().A.-3B.-1C.0D.1【答案】A【分析】根据有理数的大小比较法则即可得.【详解】解:有理数的大小比较法则:正数大于0,负数小于0,负数绝对值大的反而小,-<-<-<<,则32101故选:A.【点睛】本题考查了有理数的大小比较法则,熟练掌握有理数的大小比较法则是解题关键.17.3-的相反数是()A.3-B.0C.3D.π【答案】C【分析】根据相反数的概念求解即可.【详解】-(-3)=3,即-3的相反数是3,【点睛】本题主要考查相反数.只有符号不同的两个数叫做互为相反数,在任意一个数的前面填上“-”号,新的数就表示原数的相反数.18.6的相反数是()A.16-B.16C.6-D.6【答案】C【分析】根据相反数的定义即可解答。
2.1、有理数的加法 (1)1.选择题(1)如果两个数的和是正数,那么[ ]A .这两个加数都是正数B .一个加数为正,另一个加数为0C .这两个加数一正一负,且正数的绝对值较大D .必属于上面三种情况之一(2)两数相加,其和小于每一个加数,那么[ ]A .这两个加数必有一个数是0B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不能确定(3).一个数是5,另一个数比5的相反数大2,则这两个数的和为[ ]A .2B .-2C .7D .12(4).若|A |=3,|B |=2,则|A +B |等于[ ]A .5B .1C .5或1D .±5或±1(5).下列运算结果的符号是正的个数有[ ]①(-3.2)+(-2.8) ②(+0.5)+(-0.7) ③(-51)+(-52) ④(-91)+(+95) A .1 B .2 C .3 D .42.绝对值小于5的所有整数的和是_____.3.计算:(1)(-10)+(-5); (2)(-54)+43 (3)0+(-6.6);(4)(-2103)+(+353) (5)(-4.8)+5.2; (6)17+(-17)2.1有理数的加法(2)一.选择题1.下列各式适宜用加法运算律简化计算的是 ( )A .)3(--B .432+-C .)2.8()4()2.1()6(-+-+++-D .)711()5()41(-+++-2.绝对值大于1且小于5的所有整数和是( )A .15B .-15C .5D .0二.填空题3.某天股票A 开盘价17元,上午跌3.4元,下午又涨了1.5元,则股票A 这天收盘价为 。
4.三个不同的有理数(不全同号)和为2,请你写出一个算式 。
三.解答题5.计算:(1))5.5()72.3(72.15.2-+-++- (2))435()41()812(25.0-+-+-+6.有5个铅球,以2.5千克为准,超过的千克数记为正,不足记为负,称重记录如下: +0.2,-0.1,+0.1,-0.3,0总计超过或不足多少千克?5个铅球的总质量是多少千克?2.1 有理数的加法(3)◆基础训练一、选择题1.如果两个数的和为正数,那么( ).A .两个加数都是正数B .一个数为正,另一个为0C .两个数一正一负,且正数绝对值大D .以上三种情况都有可能2.下列结论不正确的是( ).A .若a>0,b>0,且a+b>0B .若a<0,b<0,且a+b<0C .若a>0,b<0,且│a│>│b│,则a+b>0D .若a<0,b>0,且│a│>│b│,则a+b>03.一个数是10,另一个数比10的相反数小2,则这两个数的和为( ).A .18B .-2C .-18D .2二、填空题4.在题后的括号内填上变形的根据:(a+b )+c=a+(b+c ) ( )=a+(c+b ) ( )=(a+c )+b ( )5.某校储蓄所办理了7笔业务:取出9.5元,存进5元,取出8元,存进12元,•存进25元,取出10.25元,取出2元,这时,储蓄现款增加了______元.6.已知:两数5和-3,则这两个数的和是______,这两个数的和的相反数是_____,这两个数的相反数的和是_____,这两个数的和的绝对值是______,这两个数的绝对值的和是______.三、解答题7.利用运算律计算:(1)(-1.9)+3.6+(-10.1)+1.4;(2)(-7)+(+11)+(-13)+9;(3)33311+(-2.16)+9811+(-32125);(4)491921+(-78.21)+27221+(-21.79).◆能力提高一、填空题8.如图的程序中,若输入的数x是2,则输出的结果是______.(1)最小正整数,绝对值最小的数与最大的负整数的和是_______;(2)绝对值不大于3的整数有______个,它们的和是______.二、计算题9.(1)(+15)+(-20)+(+28)+(-5)+(-7)+(-10);(2)(1-12)+(12-13)+(13-14)+…(12005-12006).◆拓展训练10.10名同学参加数学竞赛,以80分为准,超过的记为正数,不足的记为负数,•评分记录如下:+10,+15,-10,-9,-8,-1,+2,-1,-2,+1.问:(1)10名同学的总分超过或不足标准多少分?(2)总分是多少?11.一辆货车从货场A 出发,向东走了2千米到达批发部B ,继续向东走1.5•千米到达商场C ,又向西走了5.5千米到达超市D ,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,•画出数轴并在数轴上标明货场A ,批发部B ,商场C ,超市D 的位置;(2)超市D 距货场A 多远?(3)货车一共行驶了多少千米?2.1有理数的加法(4)一.选择题1.下列计算正确的是 ( )A .7)4()3(-=-+-B .9)9(4=-+C .29)7(-=+-D .63)3(=+-2.在数轴原点的左边2个单位处有一点P ,向数轴正方向移动了1.5个单位.则点P 最后所在的数为( )A .-0.5B .-3.5C .2.5D .3.5二.填空题3.计算:①(+ 2.7)+(-6.7 )= ,②( -0.5 )+( -0.6 )= ,4.林林家开了个小商店,前两天盈亏情况如下:(亏为负,单位:元):28.3、-29.6,则小商店这两天的盈亏情况是 。
第一章有理数基础训练测试姓名: 卷面分:(100分) 得分:一选择题:(每小题3分,共36分)1、 的相反数是 ( ) A 2 B -2 C D -2、下列各组数中,不是互为相反意义的量是( ) A 收入200元与支出400元。
B 向东10米和向北7米C 超过0.06与不足0.07D 水位上升3米与水位下降9米3、在1,2,-1,-2四个数中,最大的一个数是( )A 1B 2C -1D -2 4、在 ,-(-2),3--,2)3(-, -12中,负数共有( ) A 2个 B 3个 C 4个 D 5个 5、下列算式中,积为负数的是( )A (-3)×0B -4×0.5×(-10)C -1.5×(-5)D 2)4(-×(-2) 6下列各组中,相等的是( )A -1与(-2)+(-1)B 3--与+(-3)C 与D (-3)2与-97一个数的它的倒数相等,则这个数是( )A 1B -1C ±1D ±1和08、下面说法正确的有( )①π的相反数是-3.14;②符号相反的数是互为相反数;③-(-3)的相反数是3;④一个数和它的相反数不可能相等;⑤正数和负数互为相反数。
21 432169212121A 0个B 1 个C 2个D 3个9、有理数a、b在数轴上的对应位置如图所示:( )A a+b<0B a+b>0C a-b>0D a-b=010、表示的意义 ( ) A 3个-5相乘的积 B -5乘以3C 5个-3相乘的积D 3个-5相加11、我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65 000用科学记数法表示为( )A 6.5×10-4B 6.5×104C -6.5×104D 65×10412、1米长的小棒,第1次截止一半,第2次截止剩下的一半,如此下去,第6次后剩下的小棒长为( ) A B C D二填空题:(每小题3分,共18分)13、 -5的倒数是 ,-2的绝对值是 。
专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。
2.5 有理数的加法与减法【基础训练】 一、单选题1.俗语:“下雪不冷化雪冷”,温度由2-℃下降6℃后是( ) A .4℃B .8℃C .4-℃D .8-℃2.下列算式中:()220--=①;()()330--+=②;()330---=③;()01 1.--=④其中正确的有( ) A .1个B .2个C .3个D .4个3.比﹣1大2的数是( ) A .3B .1C .﹣1D .﹣34.一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( ) A .-60米B .-80米C .-40米D .40米5.某市2009年元旦的最高气温为12℃,最低气温为-2℃,那么这天的最高气温比最低气温高 ( ) A .-14℃B .-10℃C .14℃D .10℃6.计算(-2)-5的结果是( ) A .-7B .-3C .3D .77.若|m -3|+(n+1)2=0,则m+n 的值是( ) A .-2B .2C .-3D .38.下列各数中,比2-小5的数是( ) A .7-B .3-C .3D .79.气温由-5℃上升了4℃时的气温是( ) A .-1℃B .1℃C .-9℃D .9℃10.绝对值大于2且小于5的所有整数的和是( ) A .7B .-7C .0D .511.某校食堂买了5袋白菜,以每袋20千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为(单位:千克)0.25+,1-,0.5+,0.75-,1-,请大家快速准确的算出5袋白菜的总质量是( ) A .2-千克B .2千克C .98千克D .102千克-+的结果是()12.21A.3B.1-C.3-D.113.武汉市元月份某一天早晨的气温是-3℃,中午上升了8℃,则中午的气温是()A.-5℃B.5℃C.3℃D.-3℃14.有理数a,b在数轴上的位置如图所示,则a+b的值()A.大于0B.小于0C.等于0D.小于a15.比1小2的数是()A.﹣3B.﹣2C.﹣1D.016.若|a|=8,|b|=5,且a+b>0,那么a-b的值是()A.3或13B.13或-13C.3或-3D.-3或-1317.将-3-(+6)-(-5)+(-2)写成省略括号的和的形式是()A.-3+6-5-2B.-3-6+5-2C.-3-6-5-2D.-3-6+5+218.会同县2017年1月份某天的最高气温是6℃,最低气温是-1℃,这一天会同的温差是()A.-7℃B.5℃C.6℃D.7℃19.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.℃6℃D.℃10℃20.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()A.P B.Q C.S D.T21.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有()A.56℃B.℃56℃C.310℃D.℃310℃22.已知|x|=3,|y|=2,且xy>0,则x﹣y的值等于()A.5或﹣5B.1或﹣1C.5或1D.﹣5或﹣123.一个数减去-12等于-5,则这个数是()A .17B .7C .-17D .-724.若规定向东走为正,小明从学校出发先走了+40米,又走了-100米,则此时小明的位置在学校的( ) A .西面40米B .东面40米C .西面60米D .东面60米25.﹣3+(﹣5)的结果是( ) A .﹣2B .﹣8C .8D .226.计算|﹣1|﹣3,结果正确的是( ) A .﹣4B .﹣3C .﹣2D .﹣127.把算式:()()()()5472---+--+写成省略括号的形式,结果正确的是( ) A .5472--+-B .5472+--C .5472-+--D .5472-++-28.已知某冰箱冷冻室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为( ) A .10℃B .-10℃C .20℃D .-20℃29.按照有理数加法法则,计算15+(﹣22)的正确过程是( ) A .+(22+15)B .+(22﹣15)C .﹣(22+15)D .﹣(22﹣15)30.若a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2,则|m |﹣c ×d +a bm +的值( ) A .1B .﹣2C .1或﹣3D .32或5231.当||5,||7a b ==,且||a b a b +=+,则a -b 的值为( ) A .-12B .-2或-12C .2D .-232.有理数a ,b 在数轴上的位置如图所示,则a+b 是 ( )A .正数B .负数C .零D .都有可能33.数轴上,到表示3-的点距离等于5个单位长度的点表示的数是( ) A .5或5-B .2C .8-D .2或8-34.两个数的和是正数,那么这两个数( ) A .都是正数B .一正一负C .都是负数D .至少有一个是正数35.已知|a|=5,|b|=2,且a <0,b >0,则a+b 的值为( ) A .7B .-7C .3D .-336.某地一天早晨的气温是-2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是( ) A .-16℃B .2℃C .-5℃D .9℃37.下列运算正确的有( )℃()()220-+-=﹔℃()1010--=-;℃(){}55⎡⎤⎣-+-⎦-=-;℃512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭; A .1个B .2个C .3个D .4个38.下列说法正确的是( ) A .两个有理数相减,差一定小于被减数B .两个有理数的差是正数,则被减数一定大于减数C .两个有理数相加,和一定大于每一个加数D .符号不同的两个数互为相反数39.天气预报,某月5日的气温是-3℃~5℃.则这天的温差(最高气温减最低气温,单位:℃)是( ) A .8B .2C .2-D .8-40.有理数a , b 在数轴上的对应点的位置如图所示,则下列结论错误的是( )A .a+b<0B .a -b<0C .ab>0D .ab<0 二、填空题41.小王家的冰箱冷冻室现在的温度是8C -︒,调高2C ︒的温度是________C ︒. 42.计算:()32--= ______________________. 43.已知|x |=9,|y |=3,|x+y |=x+y ,则x+y =__________.44.表示有理数a ,b ,c 的点在数轴上的位置如图所示,请化简:c b a a b +---=______.45.用符号[,]a b 表示a ,b 两数中的较大者,用符号(,)a b 表示a ,b 两数中的较小者,则131,0,22⎫⎡⎤⎛--+- ⎪⎢⎥⎣⎦⎝⎭的值为__________. 三、解答题 46.计算:(1)(-2.8)+(-3.6)+3.6;(2)1255()()()6767----++ 47.()()35843-+----+ 48.计算下列各式的值. (1)0.85+(+0.75)﹣(+234)+(﹣1.85)﹣3; (2)(﹣1.5)+414+2.75+(﹣512);(3)27.45﹣(﹣32.39)+72.55+(﹣12.39); (4)113+(﹣25)+415﹣(+43)+(﹣15). 49.计算:()()10596--+-+.50.计算:(﹣20)+(+3)﹣(﹣5)﹣(+7) 51.计算:(1)(﹣13)+(﹣7)﹣(+20)﹣(﹣40)+(+16) (2)(+56)+(﹣23)+(+116)+(﹣13) (3)(+1.9)+3.6﹣(﹣10.1)+1.4 (4)123+212﹣334+13﹣4.25 52.计算: (1)-2-(-9); (2)0-2;(3)13+(-12); (4)-12-(-12);(5)|-213|+|-323|;(6)-1.25+|-38|.53.2020年,全球受到“新冠”疫情的严重影响,我国在这场没有硝烟的战场上取得了阶段性胜利.为做好防护工作,某校7年级6个班计划各采购400只应急口罩.若某班采购到450只,就记作+50;购买380只,就记作-20.各班的采购情况如下:(1)采购量最多的班比采购量最少的班多多少只? (2)这6个班共采购应急口罩多少只?54.快递员骑车从快递公司出发,先向北骑行200m 到达A 小区,继续向北骑行400m 到达B 小区,然后向南骑行1000m 到达C 小区,最后回到快递公司.(1)以快递公司为原点,以向南方向为正方向,用1cm 表示100m 画出数轴,并在该数轴上表示出、、A B C 三个小区的位置;(2)C 小区离B 小区有多远; (3)快递员一共骑行了多少干米?55.老师倡导同学们多读书,读好书,要求每天读课外书30分钟,小伟由于种种原因,实际每天读课外书的时间与老师要求时间相比有出入,下表是小伟某周的读课外书情况(增加记为正,减少记为负).(1)读课外书最多的一天比最少的一天多多少分钟? (2)根据记录的数据可知,小伟该周实际读课外书多少分钟?56.在某次抗洪抢险中,解放军的救生艇从A 地出发,沿东西方向的河流抢救灾民,最后到达B 地,救生艇的航行路程记录如下(单位:千米)5+,8-,3-,4+,5-,1+,11+(约定向东航行为正). (1)求B 地在A 地的什么方向,距离A 地多远? (2)救灾过程中,救生艇离出发地A 最远处有多远?(3)若救生艇每千米耗油0.6升,救生艇当天救灾过程中共消耗多少升油?57.下表是国外几个城市与北京的时差(“+”表示早于北京时间,“-”表示迟于北京时间)如果现在是北京时间2021年1月10日下午5:00. (1)现在悉尼时间是多少?伦敦时间是多少?(2)此时在北京的小明想给在温哥华出差的妈妈打电话,你认为合适吗?请说明理由.58.如图为北京市地铁1号线地图的一部分,某天,小王参加志愿者服务活动,从西单站出发,到从A 站出站时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):4+,3-,6+,-8,9+,2-,7-,1+.(1)请通过计算说明A 站是哪一站?(2)若相邻两站之间的平均距离为1.2千米,求这次小王志愿服务期间乘坐地铁行进的总路程约是多少千米?59.下表是云南某地气象站本周平均气温变化的情况:(记当日气温上升为正).(1)上周星期日的平均气温为15℃,则本周气温最高的是哪一天?请说明理由; (2)本周日与上周日相比,气温是升高了还是下降了?升或降了多少℃?60.李老师进行家访,从学校出发,先向西开车行驶4km 到达A 同学家,继续向西行驶7km 到达B 同学家,然后又向东行驶15km 到达C 同学家,最后回到学校.(1)以学校为原点,以向东方向为正方向,用1个单位长度表示1km 画出数轴,并在数轴上表示出A 、B 、C 三个同学的家的位置.(2)A 同学家离C 同学家有多远? (3)李老师一共行驶了多少km ?61.“地摊经济”刺激了经济的复苏.今年国庆周期间,小王用2000元购进了一批商品,在夜市摆地摊售卖8天,全部销售完毕.每天的收入以300元为标准,超过的钱数记作正数,不足的钱数记作负数,8天的收入记录如下:+62,+40,﹣60,﹣38,0,+34,+8,﹣54.(单位:元) (1)收入最多的一天比最少的一天多多少钱?(2)小王这8天的地摊收入是盈利还是亏损?盈利或亏损多少钱?62.小虫从某点O 出发在一条直线上来回爬行,规定向右爬行的路程记为正,向左爬行的路程记为负,腿的轨迹依次为(单位:cm ):5+,3-,6+,8-,6-,10+,8-.问:(1)小虫最后在点O 的哪一侧?距离O 点多远?(2)在爬行过程中,如果小虫每爬行1cm 奖励三粒芝麻,则小虫共可得到多少粒芝麻?63.在一条不完整的数轴上从左到右有点,,A B C ,其中3AB =,1BC =,如图6所示,设点,,A B C 所对应数的和是p .()1若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? ()2若原点O 在图中数轴上点C 的右边,且10CO =,求p .64.某路公交车从起点经过A ,B ,C ,D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)(1)将表格填写完整;(2)车行驶在哪两站之间车上的乘客最多站和 站;(3)若每人乘坐一站需买票0.8元,问该车出车一次能收入多少钱?(列式并计算)65.某地的国际标准时间是指该地与格林尼治的时差.以下为同一时刻5个城市的国际标准时间(“+”表示当地时间比格林尼治时间早,“-”表示当地时间比格林尼治时间晚):(1)伦敦时间中午10点时,东京的当地时间是几点? (2)北京时间中午12点时,纽约的当地时间是几点.66.十一黄金周期间,淮安动物园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)若9月30日的游客人数记为a万人,请用含a的代数式表示10月2日的游客人数.(2)请判断七天内游客人数最多的是哪天?游客人数是多少(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元.。
1.2有理数课时1有理数知识点1(有理数的概念)1.给出下列说法:①0是整数;②﹣113是分数;③3.3不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的个数是()A.1B.2C.3D.42.在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0B.2C.﹣3D.﹣1.23.下列各数中,既是分数又是负数的是()A.23B.﹣0.2C.﹣3D.﹣π4.已知下列各数:0,﹣418,+1000,18,0.1010010001…(相邻两个1之间依次多一个0).其中为有理数的是____________.5.给出一个数﹣107.987及下列判断:①这个数不是分数,但是有理数;②这个数是负数,也是分数;③这个数与π一样,不是有理数;④这个数是一个负小数,也是负分数.其中正确判断的序号是__________.知识点2(有理数的分类)6.下列说法正确的是()A.3.14不是分数B.正整数和负整数统称为整数C.正数和负数统称为有理数D.整数和分数统称为有理数7.[2017河北秦皇岛青龙期末]下列说法正确的是()A.有理数是指整数、分数、正有理数、0、负有理数这五类数B.—个有理数不是正数就是负数C.一个有理数不是整数就是分数D.以上说法都不对8.已知下列各数:﹣8,50,+9,﹣13,0.8.其中是正整数的数有()A.0个B.1个C.2个D.3个9.请按要求填出相应的两个有理数.(1)既是正数,也是分数:____________;(2)既不是负数,也不是分数:____________;(3)既不是分数,也不是非负数:____________.10.在下表适当的空格里画上“√”.11.把下列各数填人相应集合的括号内:+8.5,﹣3 ,0.35,0,3.14,12,﹣9,0.3,﹣2,10%.正有理数集合:{ …};负分数集合:{ …};非正整数集合:{ …};有理数集合:{ …}.参考答案1.C【解析】3.3是正数,故③错误;0是自然数,但0不是正数,故④错误;易知①②⑤正确.故选C.2.C【解析】①0既不是正数,也不是负数,2是正整数,﹣3是负整数,﹣1.2是小数.故选C.3.B【解析】23是分数,但不是负数;﹣0.2既是分数又是负数;﹣3是负数,但不是分数;﹣1是负数,但不是分数.故选B.4.0,﹣418,+1000,722【解析】0,﹣418,+1000,722都是有理数,因为0.101001000•••(相邻两个1之间依次多一个0)不是整数且不能化成分数,所以它不是有理数.5.②④【解析】﹣107.987是负数,是有限小数,从而也是分数,所以②④正确;因为﹣107.987是分数,也是有理数,所以①③错误.故正确判断的序号是②④.6.D【解析】正分数和负分数统称为分数,3.14属于正分数,故A错误;正整数、0和负整数统称为整数,故B错误;正有理数、0和负有理数统称为有理数,故C错误;整数和分数统称为有理数,故D正确.故选D.7.C【解析】选项A,因为有理数按整数和分数或按正有理数、0、负有理数进行分类,所以A错误;选项B,因为0是有理数,但0既不是正数,也不是负数,所以B错误;选项C,因为整数和分数统称为有理数,所以C正确,D错误.故选C.8.C【解析】在﹣8,50,+9,﹣13,0.8中,是正整数的数有50,+9,共2个.故选C.9.(1)0.3,12;(2)3,50;(3)﹣100,﹣12(此题答案不唯一)10.【解析】填表如下.11.【解析】正有理数集合:{+8.5,0.35,3.14,12,0.3,10%,…};负分数集合:{﹣325,…};非正整数集合:{0,﹣9,﹣2,…};有理数集合:{+8.5,﹣325,0.35,0,3.14,12,﹣9,0.3,﹣2,10%,…}。
2.7有理数的混合运算(一)一、基础训练1.有理数混合运算顺序,先 ,再 ,最后 ,如果有 先进行 . 2.计算:(1) ()()232-⨯-⎡⎤⎣⎦= (2) ()2232-⨯-= (3) 1155-÷⨯= (4) 223---= 二、典型例题 例1计算: ()()331122416⎛⎫--÷-⨯- ⎪⎝⎭分析:减号把算式分为两段,在这两段上分别先乘方,再乘除,然后把所得结果相加减.例2计算: ()()2232121131131323744⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫-⨯-÷-+⨯--⨯-÷⎢⎥⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭分析:有多重括号的混合运算一般先去小括号,再去中括号,最后去大括号.三、拓展提升1. 计算:666666666666+++++ 分析:合并同类项得666⨯.2. 已知a 与b 互为相反数,c 与d 互为倒数,且()210x +=,试求()()200920083x a b cd ++--的值.分析: a +b =0,cd =1,x =-1四、课后作业 1.计算:(1) ()()230332--÷⨯- (2) ()148121549-÷⨯÷-(3) ()221.25 3.20.5233⎛⎫⨯-÷-÷ ⎪⎝⎭ (4) 724987⎛⎫-÷⨯- ⎪⎝⎭(5) ()1535126-⨯-÷⎡⎤⎣⎦ (6) ()112143223232⎛⎫-⨯--÷ ⎪⎝⎭(7) ()21832845-÷--⨯ (8) ()()()222322323⨯-+-⨯+-+(9)()222234113332322⎡⎤⎛⎫⎛⎫⎛⎫-⨯-÷----⨯-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2.当整数n 为 数时, ()11n-=-; 若n 是正整数时,则()()111nn +-+-=3.已知a =2,b =-3,c =1,则代数式222a ba ac c--+=2.7有理数的混合运算(一) 一、基础训练1.乘方,乘除,加减,括号,括号内的运算 2.(1)36 (2)-36 (3)125- (4)-7 二、典型例题 例1 8 例2114三、拓展提升 1. 76 2. -2 四、课后作业 1.(1)24 (2)1615(3)9 (4)16 (5)6 (6)-7 (7)-64 (8)49 (9)- 7 2.奇,0 3.52.7有理数的混合运算(二)一、基础训练1.计算:(1) ()2255--÷-=(2) ()()23250.06-⨯-⨯=(3) 221122⎡⎤⎛⎫⎛⎫---÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2.若()2110x y ++-=,则20082009x y +=二、典型例题 例1 7778812⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭分析: 乘法有分配律,而除法没有分配律,通常把除数化成一个数进行计算.例2 7115117115912636369126⎛⎫⎛⎫-+÷-÷-+⎪ ⎪⎝⎭⎝⎭分析:用乘法的分配律,并利用71151912636⎛⎫-+÷ ⎪⎝⎭与17115369126⎛⎫÷-+ ⎪⎝⎭互为倒数简化计算.三、拓展提升1. 若()22210ab b -+-=, 求()()()()()()1111112220082008ab a b a b a b +++⋅⋅⋅+++++++.2. 31x =-则代数式2311n n x x x x x -++++⋅⋅⋅++=四、课后作业 1.计算: (1) 1111321523411⎛⎫⎛⎫⨯-÷-⨯ ⎪ ⎪⎝⎭⎝⎭ (2) ()()()3232320.110-+---⨯-(3) 5255524757123⎛⎫÷-+⨯-÷ ⎪⎝⎭ (4) ()22418222893⎛⎫⎛⎫-⨯--÷ ⎪ ⎪⎝⎭⎝⎭(5) ()233310.110.22334⎡⎤÷+÷----+--⎣⎦(6) 621847255559⎛⎫⎛⎫⎛⎫-÷---- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(7) 2222227195777⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (8) ()()()2352121720.25832⎛⎫-⨯--÷-- ⎪⎝⎭⨯+-⨯-2.(1)问题:你能比较20092008和20082009的大小吗?为了解决这个问题,写出它的一般形式,即比较1n n+和()1nn +的大小(n 是正整数),然后我们从分析n =1、2、3…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.通过计算,比较下列各组数的大小(在横线上填“>”“=”或“<”).21 12,32 23,43 34,54 45,65 56,…(2)从第(1)题结果经过归纳,可以猜想出1n n +和()1nn +的大小关系是什么?(3)根据上面的归纳猜想,尝试比较20092008和20082009的大小.2.7有理数的混合运算(二) 一、基础训练1.(1)-1 (2)-30 (3)-1 2. 2 二、典型例题 例1 -3 例2 242425三、拓展提升 1.200920102. n 为奇数时值为0,n 为偶数时值为1 四、课后作业1.(1)225- (2)-7 (3)512- (4)18 (5)995 (6)6245(7)-22 (8)-12.(1)< < > > > (2) 1n n +>()1nn +(3n ≥且n 是正整数) (3)20092008>20082009。
2有理数基础训练题一、填空:1、 在数轴上表示一2的点到原点的距离等于( )。
2、 若 I a I =— a,则 a () 0.3、 任何有理数的绝对值都是( )。
4、 如果a+b=O,那么a 、b 一定是()。
5、 将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。
6 已知 |a| 3,| b| 2,| a b| a b ,则 a b ( )7、 |x 2| |x 3|的最小值是()。
1 18、 在数轴上,点A 、B 分别表示 -,则线段AB 的中点所表示的数是()4 2a b20109、 若a,b 互为相反数,m, n 互为倒数,P 的绝对值为3,则 ------- mn p 2 p ()。
10、若 abc ^0,则 |a| |b|a b|c|的值是( c).11、下列有规律排列的一列数:.32531、 一、 一、一、 一、•…,其中从左到右第100个数是( ) 二、解答问题:1、已知x+3=0,|y+5|+4的值是4, z 对应的点到-2对应的点的距离是7, 求 x 、y 、 z 这三个数两两之积的和。
3、若2x |4 5x| |1 3x| 4的值恒为常数,求x 满足的条件及此时常数的值4、若 a,b,c 为整数,且 |a b |2010 |c a |2010 1,试求 |c a| |a b| |b c| 的值5 7 9 11 13 15 171 5、计算:一—+ _ 一----- 1 --- ——-- 1 --- — ----- 1--- 66 12 20 30 42 56 720 1能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数 b 在原点的左方,那么()2、利用数轴能直观地解释相反数;例2:如果数轴上点 A 到原点的距离为 3,点B 到原点的距离为 5,那么A 、B 两点的距离 为 ________________ 。
拓广训练:1、 在数轴上表示数a 的点到原点的距离为 3,则a 3__________ .2、 已知数轴上有 A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满 足条件的点 B 与原点O 的距离之和等于 _____________________ 。
有理数基础训练
一.选择题
1.下列结论中正确的是()
A.正数、负数统称为有理数B.3.14不是分数
C.正整数和负整数统称为整数D.0是最小的自然数
2.在﹣、3.14、0、﹣0.333…、﹣、﹣0.、2.010010001(相邻两个1之间依次多一个0)…中,有理数的个数是()
A.2B.3C.4D.5
3.下列关于0的说法错误的是()
A.任何情况下,0的实际意义就是什么都没有B.0是偶数不是奇数
C.0不是正数也不是负数D.0是整数也是有理数
4.下列说法中:
①0是最小的整数;②有理数不是正数就是负数;
③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;
⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;
⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.
其中错误的说法的个数为()
A.7个B.6个C.5个D.4个
5.下列说法中正确的是()
A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数D.有最小的自然数,也有最小的整数6.在﹣,,0,﹣1,0.4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n个,分数有k个,则m﹣n﹣k的值为()
A.3B.2C.1D.4
7.下列各数中3,﹣7,﹣,5.6,0,﹣8,15,,非正数有()A.1个B.2个C.3个D.4个
8.如果一对有理数a,b使等式a﹣b=a•b+1成立,那么这对有理数a,b叫做“共生有理数对”,记为(a,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是()A.(3,)B.(2,)C.(5,)D.(﹣2,﹣)
9.若是分母为12的最简真分数,则a可取的自然数个数是()A.1B.2C.3D.4
10.下列说法正确的是()
A.一个数前面加上“﹣”号,这个数就是负数B.零是最小的整数
C.若a是正数,则﹣a不一定是负数D.零既不是正数也不是负数
二.填空题
11.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.
12.三个互不相等的有理数,既可以表示为0,b,的形式,也可以表示为1,a,a+b的形式,那么a=;b=.
13.把列数填在相应的大括号里.+15,﹣6,﹣2,﹣0.9,1,0,0.13,﹣4.95.正数集合:{};
负分数集合:{};
非负数集合:{}.
14.最大的负整数是;最小的自然数是;最小的正整数是.
三.解答题
15.(1)如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2019,﹣15%,﹣0.618,,﹣9,,0,3.14,﹣72
(2)如图中,这两个圈的重叠部分表示什么数的集合?
(3)请再写出一对符合条件的“友好有理数对”为(注意:不能与题目中已有的“友好有理数对”重复).
16.判断下列各数,并把它们填写在相应的数集中:﹣10,﹣6.5,7,0,﹣3,6,﹣6.2%,
3.14159,π,
(1)整数集合:{…};(2)分数集合:{…};
(3)非正数集合:{…};(4)正有理数集:{…}.
参考答案
一.选择题1.D.2.D.3.A.4.B.5.C.6.A.7.D.8.D.9.C.10.D.
二.填空题
11.4,3,4.12.﹣1,1.13.+15,1,0.13;﹣0.9,﹣4.95;+15,1,0,0.13.14.﹣1,0,1.
三.解答题
15.(1)根据题意如图:
(2)这两个圈的重叠部分表示负分数集合.
16.(1)整数集合:{﹣10,0,6…};
(2)分数集合:{﹣6.5,7,﹣3,﹣6.2%,3.14159…};
(3)非正数集合:{﹣10,﹣6.5,0,﹣3,﹣6.2% …};
(4)正有理数集:{ 7,6,3.14159…};
故答案为:﹣10,0,6;﹣6.5,7,﹣3,﹣6.2%,3.14159;﹣10,﹣6.5,0,﹣3,﹣6.2%;7,6,3.14159.。