2011初二上学期数学期末试题精选五
- 格式:doc
- 大小:446.00 KB
- 文档页数:14
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
八年级数学期末试卷第一学期班级_________姓名________ 学号_________一、填一填.(本大题共6个小题,每小题3分,共21分) 1. 8的立方根是 .2. 如果一次函数y =k x +b 经过点A(0,3),B(-3,0),那么这个一次函数解析式为 .3. 写出一个解为⎩⎨⎧-==12y x 的二元一次方程组是4.如图,在等腰梯形ABCD 中,腰BC 的长为2cm ,对角线AC ⊥BC 于点C ,若梯形的高,则∠CAD= . 5.当12s t =+时,代数式222s st t -+的值为 . 6.2(16)0y +=,则x +y =7.已知,3,5==+xy y x 则22y x +=二、选择题:(本大题共10小题,每小题3分,共30分)8.若正比例函数的图像经过点(-1,2),则这个图像必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)9.下列图形是轴对称图形的是( )A .B .C .D .10.如图,△ACB ≌△A ’CB ’,∠BCB ’=30°,则∠ACA ’的度数为A .20°B .30°CABB 'A '(第4题)C .35°D .40°11.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限12.下列函数中,属于反比例函数的是( ) A .3xy =B .13y x=C .52y x =-D .21y x =+ 13.在Rt △ABC 中,∠C=90°,a =4,b =3,则cosA 的值是( )A .45 B .35 C .43 D .5414.下列运算正确的是 ( )A.x 2+x 2=2x 4B.a 2·a 3= a 5C.(-2x 2)4=16x 6D.(x+3y)(x -3y)=x 2-3y 215.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分 为△EBD ,那么,下列说法错误的是( ) A .△EBD 是等腰三角形,EB =ED B .折叠后∠ABE 和∠CBD 一定相等 C .折叠后得到的图形是轴对称图形 D .△EBA 和△EDC 一定是全等三角形16.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC •的周长为9cm ,则△ABC 的周长是( )A .10cmB .12cmC .15cmD .17cm17.一次函数y ax a =-(0a ≠)的大致图像是………………………【 】A B C D三、解答题(共49分)18、.计算(每小题4分,共8分)(1)分解因式6xy 2-9x 2y -y 3 (2)223(2)()()a b ab b b a b a b --÷-+-AB D19.(本小题6分)如图,在△ABD 中,C 是BD 上的一点,且AC ⊥BD ,AC=BC=CD .(1)求证:△ABD 是等腰三角形.(2)求∠BAD 的度数.20.(本小题8分)如图所示,课外活动中,小明在离旗杆AB 的10米C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆AB 的高.(精确到0.1米)(供选用的数据:sin 400.64≈ ,cos 400.77≈ ,tan 400.84≈21.(本小题8分)某商店四月份的营业额为40万元,五月份的营业额比四月份有所增长,六月份比五月份又增加了5个百分点,即增加了5%,营业额达到了50.6万元。
(第1题图)第6题图FGE D BCAD.C.B.A.2011学年第一学期期末考试八年级数学考生须知:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分. 2.答题前,请在答题卷的左上角填写学校、班级、姓名和考试编号. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应. 试题卷一、 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1. 如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是 A .同位角 B.内错角 C .对顶角 D.同旁内角2.下列函数中,y 的值随着x 值的增大而增大的是A .y =x+1B .y =-xC .y =1-xD .y =-x -13.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是4.某皮鞋厂为提高市场占有率而对鞋码进行调查时,他最应该关注鞋码的 A.平均数 B.中位数 C.众数 D.方差 5.直角三角形两条直角边长分别是5和12,则第三边上的中线长为 A.5 B.6 C.6.5 D.12 6.如图,已知DC ∥EF,点A 在DC 上,BA 的延长线交EF 于点G ,AB=AC,∠AGE=130°,则∠B 的度数是A.50°B.65°C.75°D.55°图甲图乙第3题图2)第10题图t(小时)S7.若a>b ,则下列各式中一定成立的是A .ma>mbB .c 2a>c 2b C .1-a>1-b D .(1+c 2)a>(1+c 2)b8.为了了解某路口每天在学校放学时段的车流量,有下面几个样本,统计该路口在学校放学时段的车流量,你认为合适的是A.抽取两天作为一个样本B. 春、夏、秋、冬每个季节各选两周作为样本C. 选取每周星期日作为样本D. 以全年每一天作为样本 9.如图,直线y 1=ax+b 与直线y 2=mx+n 相交于点(2,3),则不等式ax+b >mx+n 的解是A.x >2B.x <2C.x >3D.x <310.如图在一次越野赛跑中,当小明跑了9千米时,小强跑了5千米,此后两人匀速跑的路程S(千米)和时间t(小时)的关系如图所示,则由图上的信息可知S 1的值为A. 21千米B. 29千米C.15千米D.18千米二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.球的表面积S 与半径R 之间的关系是24R S π=.对于各种不同大小的圆,请指出公式24R S π=中常量是 ▲ ,变量是 ▲ .12.用不等式表示:“a 的2倍与1的和是非负数”是 ▲ . 13.把点A(-1,3)先向右平移3个单位,再向下平移2个单位,则最后所得的像的坐标是 ▲ .14. 在某公用电话亭打电话时,需付电话费y (元)与 通话时间 x (分钟)之间的函数关系用图象表示如图. 则小明打了6分钟需付费 ▲ 元.15.若一组数据x 1, x 2,……x n 的平均数是x ,则数据2x 1-1, 2x 2-1,……2x n -1的平均数是 ▲ .2011学年第一学期八年级数学期末试卷 第 3 页 共 7 页CBA第19题图B 1第20B1B第16题图GFE DCBA 16. 如图,正方形(正方形的四边相等,四个角都是直角)ABCD 中,AB =6,点E 在边CD 上,且CD =3DE.将△ADE 沿对折至△AFE ,延长EF交边BC 于点G ,连结AG 、CF.则ΔFGC 的面积是 ▲ .三、全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17. (本小题满分10分)解不等式(组):出来并将解集在数轴上表示()(⎪⎩⎪⎨⎧-+≥-+≤-131325135)132x x x x 18.(本小题满分6分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A ,B 两点. 请你用两种不同方法表述点B 相对点A 的位置.19. (本小题满分9分)一个蔬菜大棚(四周都是塑料薄膜)的形状如图. (1)它可以看成是怎样的棱柱?(2)若它的底面是边长为AB=3米的正三角形,大棚总长BC=10米,那么搭建这个蔬菜大棚需要多少的塑料薄膜?20. (本小题满分9分)在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转得到ΔA 1B 1C ,设A 1B 1与BC 相交于点D .(1)如图1,当AB ∥CB 1时,说明△A 1CD 是等第18题图Bxx 211411≤-)(边三角形;(2) 如图2,当点A1正好在边AB上时,判别A1B1与BC的位置关系,并说明理由.21. (本小题满分10分)某校从两名优秀选手中选一名参加全市中小学运动会的男子100米跑项目,该校预先对这两名选手测试了8次,测试成绩如下表(1)为了衡量这两名选手100米跑的水平,你选择哪些统计量?请分别求出这些统计量的值.(2)你认为选派谁比较合适?为什么?22. (本小题满分10分)为了抓住世博会的商机,某商店决定购进甲、乙两种玩具.其中甲种玩具是每件5元,乙种玩具是每件10元.(1)若该商店决定拿出1000元钱全部用来购进这两种玩具,考虑市场需要,要求购进甲种玩具的数量不少于乙种玩具数量的6倍,且不超过乙种玩具数量的8倍,那么该商店有几种不同购进方案?(2)若销售每件甲种玩具可获利3元,销售每件乙种玩具可获利4元,在第(1)问的各种进货方案中,哪种进货方案获利最大?最大利润为多少?23. (本小题满分12分)如图,点O是坐标系原点,直线y=kx+b与x轴交于点A,与直线y=-x+5交于点B,点B 的纵坐标是3,且AB=5,直线y=-x+5与y轴交于点C.(1)求直线y=kx+b的解析式;(2)求ΔABC的面积;(3)在直线BC上是否存在一点P,使ΔPOC的面积是ΔBOC面积的一半,若不存在,请说明理由,若存在,求出点P的坐标.42011学年第一学期八年级数学期末试卷 第 5 页 共 7 页-----图2分2011年第一学期期末考试八年级数学参考答案一.选择题 (每小题3分, 共30分)二.填空题 (每小题4分,共24分)11. 4π , S,R; 12. 2a+1≥0 ; 13. (2,1) ; 14. 1.8 ; 15. 12-x ; 16.518. 三.解答题 (本大题有7个小题,共66分) 17.(本题满分10分)(1)解:不等式两边同乘4得: (2)由①解得x ≥-3---------1分x-4≤2x---------1分 由①解得x ≤31---------1分 -x ≤4----------1分 所以不等式组的解集是-3≤x ≤31------2分X ≥-4----------2分18. (本题满分6分) 解:有两种:(1)用坐标(或有序实数对)来表示点B 相对于A 的位置,------ -1 如图建立坐标系后,------ -1分 B 点的坐标是(3,3)------ -1分(2)用方向和距离来表示点B 相对于A 的位置--------- 1分点B 在点A 的东北方向的23个单位处-----------2分(若此答案对,则上面的1分可以不扣,第一种方法也一样) 19. (本题满分9分) 解:(1)它可以看成是直三棱柱------3分(2)分分分分侧底侧底16023912223010324393432----------------------------------------+=+==⨯==⨯=S S S S S6B 1第20B1B 20. (本题满分9分) 证明:(1)当AB ∥CB 1时,∠BCB 1=∠B=∠B 1=30°∴∠A 1DC=∠BCB 1+∠B 1=60°(或∠A 1DC=60°) ----------------2分又因为∠A 1=60°∴∠A 1DC=∠A 1=∠A 1CD=60°------------2分 所以△A 1CD 是等边三角形(3)A 1B 1⊥BC ----------1分∵A 1C=AC, ∠A=60° ∴△A 1CA 是等边三角形----------2分∴∠A 1CA=60°= ∠CA 1D ∴∠A 1CD=30°----------1分 ∴∠A 1DC=90°---------1分 ∴A 1B 1⊥BC21. (本题满分10分) 解:(1)为了衡量这两名选手100米跑的水平,应选择平均数、方差、中位数这些统计量.…1分(2) 分,秒,乙成绩的中位数是甲成绩的中位数是分,分秒秒乙甲乙甲2----45.1255.122------085.0125.02------5.126.1222====S S(3)应选择乙参赛.-----------1分因为乙比较稳定,从平均数和中位数来看,也是乙的成绩比较好,故选乙参赛。
-21O yx人教版数学八上期末测试2011.12(时间:90分钟 满分:100分)班级 姓名一、选择题(每小题3分,共24分,每小题给出的四个选项中,只有一个选项是正确的.) 1.4的平方根是( )A. -2B. 2C. ± 2D. 2±2.全球可被人类利用的淡水总量仅占地球上总水量的0.00003,因此珍惜水、保护水,是我们每一位公民义不容辞的责任.其中数字0.00003用科学记数法表示为 A .4103-⨯ B .5103-⨯ C .4103.0-⨯ D .5103.0-⨯ 3. 下列计算正确的是A .325x x x += B .44x x x ÷= C .325x x x ⋅= D .325()x x = 4. 分式||22x x --的值为零,则x 的值为 A .0 B .2 C .-2 D .2或-2 5. 下列各式从左到右的变形是因式分解的是 A.)(222y x y x -=-B.22))((y x y x y x -=-+C.2)1(3222++=++x x x D.ay ax y x a +=+)(6. 已知点(-4,1y ),(2,2y )都在直线221+-=x y 上,则1y 、2y 大小关系是 A. 1y >2y B. 1y =2y C. 1y <2y D.不能比较7. 已知一次函数y kx b =+的图象如图所示,当y 0>时,x 的取值范围是( ) A .x>-2 B .x>1 C .x<-2 D .x<18. 如图,直线l 是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l 上滑动,使A ,B 在函数xky =的图象上,那么k 的值是 A .3 B .6 C .12 D .415 二、填空题(每小题3分,共12分) 9. 函数2-=x xy 中自变量x 的取值范围是10. 如图,已知函数y ax b =+和y kx =的图象交于点P,则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是___________.11. 在2011,,4,3,2,1 中,共有 个无理数. 12.已知n 是正整数,11122(,),(,),,(,),nnn P x y P x yP x y 是 反比例函数ky x=图象上的一列点,其中 121,2,,,n x x x n ===.记112A x y =,223A x y =,1n n n A x y +=,,若1A a =(a是非零常数),则A 1·A 2·…·A n 的值是___________(用含a 和n 的代数式表示). 三、解答题(共64分)13.分解因式:33ax y axy - 14.分解因式:22882n mn m +-15.计算:0119(π4)22---+-- 16.计算:29631a a --+ 17.解方程:423532=-+-xx x 18.计算:2)2()3)(2()2)(2(y x y x y x y x y x ---+--+19.已知210x x +-=,求222(1)(1)(1)121x x x x x x x --÷+---+的值. 20.某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元. 根据以上信息,原来报名参加的学生有多少人? 21.设22113-=a ,22235-=a ,22357-=a …… (1)写出n a (n 为大于0的自然数)的表达式;(2)探究n a 是否为8的倍数,并用文字语言表述你所获得的结论;(3)若一个数的算术平方根是一个自然数,则这个数是“完全平方数”,试找出1a ,2a ,3a ,……,n a 这一列数中从小到大排列的前4个完全平方数;并说出当n 满足什么条件时, n a 为完全平方数(不必说明理由).22.如图,已知A(n ,-2),B(1,4)是一次函数b kx y +=的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式;(2)求△AO B 的面积; (3)求不等式0<-+xmb kx 的解集(直接写出答案).23.某蒜薹生产基地喜获丰收收蒜薹200吨。
D CA BD C B A 2011-2012学年度第一学期八年级期末数学训练试卷本试卷120分 考试用时120分钟一、选一选(本大题共1 2小题,每小题3分,共36分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答寒的代号在答题卡上将对应的答案标号涂黑。
1.下列运算中,正确的是A . x 2x 3=5x B . x+x 2=x 3 C . 2x 3÷x 2=x D .(2x )3=23x2.若2 x 在实数范围内有意义,则x 的取值范围是( )A. x≥-2B. x≠-2 .C. x≥2D. x≠23.下列各点,不在函数y=2x -1的图象上的是( ) A .(2,3) B .(-9,-5) C .(O ,-1) D .(-1,0)4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )5.估计与28最接近的整数是( )A .4B . 5 C.6 D . 76.下列各式:①XL 一xy';②X2一xy+2y2;③_X2+ y2;④X2—2xy+y2,其中能用 公式法分解因式的有A .1个B .2个C .3个D .4个 7.下列计算:①2+3=5;②2a 3·3a 2= 6a 6;③(2x+y)(x -3y)=2x 2-5xy -3y 2; ④(x+ y)2=x 2+ y 2.其中计算错误的个数是( )A.O 个B.l 个 C .2个 D.3个8.如图,点A 在线段BC 的垂直平分线上,AD=DC ,∠ A=28°, 则∠BCD 的度数为( )A . 76° .B . 62°C . 48°D . 38° 9.已知a+b=2,则a 2-b 2+4b 的值是( )A . 2B . 3C . 4D . 610.如果直线y=ax+2与直线y=bx -3相交于x 轴上的同一点,则a:b 等于 ( )A . -32 B .32 C.-23 D .23 11.甲、乙两人以相同路线前往距离工作单位10km 的培训中心 参加学习.图中l 甲、,l 乙分别表示甲、乙两人前往目的地所走的 路程S (km)随时间t (分)变化的函数图象,以下说法:①乙比甲E D ABCECAEDBAC8km 后遇到甲;④乙出发6分钟后追上甲,其中正确的有( ) A .4个 B .3个 C .2个 D .1个12.如图: △ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD, CE ⊥CD,且CE=CD ,连接BD. DE. BE ,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥ BE;④BDCD=1. 其中正确的是( ) A .①②③ B.①②④ C .①⑧④ D.①②⑧④二、填一填(每题3分,共12分)13.计算:(2a )3=_____, 24x 2y-(-6xy)=_________, ,2)3(- =___14.若1+-b a 与42++b a 互为相反数,则1+b a=______.15.如图,点D 、E 在△ABC 的BC 边上,.∠ BAD=∠CAE ,要推理得出 △ABF ≌△ACD,可以补充的一个条件是__________________. (不添加辅助线,写出一个即可). 16.如图,直线l 1 y 1:= kx+b 与直线l 2:y 2=mx+n 交点为P(1,1),当y 1>y 2>0时,x 的取值范围是________.三、解下列各题(本大题有9小题,共72分)17.(本题6分)计算:(21x 4y 3 -35x 3y 2+7x 2y 2)÷(18.(本题6分)分解因式:9x 2y- 6xy 2+ y 319. (本小题6分)如图,△ABC 中,AB=AC, BD 上AC 于点D , CE ⊥AB 于点E . 求证:BD=CE20.(本题7分)先化简,后求值:[(x 2+y 2)-(x —y)2+2y(x —y)]÷4y,其中2x-y =18.EEx 乙地甲地B 省A 省捐赠省台数(台)调运灾区FA21.(本题7分)(1)点(1,3)沿X 轴的正方向平移4个单位得到的点的坐标是_________(2)直线y=3x 沿x 轴的正方向平移4个单位得到的直线解析式为____________ (3)若直线l 与(2)中所得的直线关于直线x=2对称,试求直线l 的解析式. 22.(本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且BA=BC ,过点C 作BE 的垂线CD ,过E 点作EF 上AE 交∠DCE 的角平分线于F 点,交HE 于P . (1)试判断△PCE 的形状,并请说明理由. (2)若∠HAE=120°,AB=3,求EF 的长. 23.(本题10分)玉树地震发生后,根据救灾指挥中心的信息,甲、乙两个重灾区急需一种 大型挖掘机,甲地需要27台,乙地需要25台;A 、B 两省获知情况后慷慨相助,分别捐赠 该型号挖掘机28台和24台,并将其全部调运往灾区,如果从A 省调运一台挖掘机到甲地耗 资0.4万元,到乙地耗资0.3万元;从B 省调运一台挖掘机到甲地耗资0.5万元,到乙 地耗资0.2万元;设从A 调往甲地x 台挖掘机,A 、B 两省将捐赠的挖掘机全部调往灾区共 耗资y 万元:(1)请完成表格的填空:(2)求出y 与x 之间的函数关系式,并直接写出 自变量x 的取值范围 (3)画出这个函数的图象,结合图象说明若要使总耗资不超过16.2万元,有哪几种调运方案?哪种调运方案的总耗资最少?24.(本题10分)如图1,AD∥BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E 在线段AB 上.(1)填空:∠ADE=____°; 求证: AB=BC;2所示,若F 为线段CD 上一点,∠FBC=30°,求FCDF(3)的25. (本题12分)如图1:直线y= kx+4k (k ≠0)交x 轴于点A ,交y 轴于点C ,点M (2,m)为直线AC 上一点,过点M 的直线BD 交x 轴于点B ,交y 轴于点D . (1)求OAOC的值(用含有k 的式子表示.); (2)若S ∆BOM =3S ∆DOM ,且k 为方程(k+7)(k+5)-(k+6)(k+5=29的根,求直线BD 的解析式. (3)如图2,在(2)的条件下,P 为线段OD 之间的动点(点P 不与点O 和点D 重合),OE 上AP 于E ,,DF 上AP 于F ,下列两个结论:①DF OE AE +值不变;②DFOEAE -值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值,青山区2010—2011学年度第一学期八年级期末测试数学试卷答案二、填空题三、解下列各题(本大题有9小题,共72分)17.(本题6分)解:原式=y xy y x -+-5322 (对一项得2分) ……6分 18. (本题6分)解:原式=y(9x 2-6xy+y 2) ……3分 =y(3x-y)2 ……6分19. (本小题6分)证明:∵BD ⊥AC ,CE ⊥AB∴∠ADB=∠AEC=90°……1分在△ABD 和△AEC 中⎪⎩⎪⎨⎧=∠=∠∠=∠AC AB AA AEC ADB ∴△ABD ≌△AEC(AAS ) ……4分 ∴BD =CE . ……6分20. (本题7分)解:原式=()[]y y xy yxy x y x 422222222÷-++--+ ……2分=[]y y xy y xy x y x 422222222÷-+-+-+ ……3分2=y x 21-……5分 ∵y x -2 =18∴y x 21-=9 ∴原式=9 ……7分21. (本题7分) 解:(1)(5,3); ……1分 (2)y=3x-12; ……3分 (3)设直线l 的解析式为:y=kx+b∵点(4,0)和(0,-12)在直线y=3x-12上,它们关于直线x=2的对称点为: (0,0) (4,-12) ……5分 将x=0,y=0和x=4,y=-12分别代入y= kx+b 中,得:⎩⎨⎧-=+=1240b k b 解得:⎩⎨⎧=-=03b k∴直线l 的解析式为:y=-3x ……7分22. (本题8分)如图,点A 、C 分别在一个含45°的直角三角板HBE 的两条直角边BH 和BE 上,且,过点C 作BE 的垂线CD ,过E 点作交∠DCE 的角平分线于F 点,交HE 于P.(1)试判断△PCE 的形状,并请说明理由; (2)若,AB=3,求EF 的长.解: (1)△PCE 是等腰直角三角形,理由如下: ……1分∵∠PCE=21∠DCE=21×90°=45° ∠PEC=45°∴∠PCE=∠PE C ……3分 ∠CPE=90°∴△PCE 是等腰直角三角形 ……4分 (2)∵∠HEB=∠H=45°∴HB=BE ∵BA=BC∴AH =CE ……5分 而∠HAE=120°∴∠BAE=60°,∠AEB=30° 又∠AEP=90°∴∠CEP=120°=∠HAE ……6分 而∠H=∠FCE=45°∴△HAE ≌△CEF(ASA)又AE=2AB=2×3=6∴EF=6 ……8分23.(本题10分) (1)(每空1分) ……3分 解:(2)y=0.4x+0.3(28-x )+0.5(27-x )+0.2(x-3)0.221.3x =-+ ……5分 (273≤≤x 且 x 为整数) ……6分(3)如图,当2.16=y 时,2.163.212.0=+-x5.25=x ……7分 函数图象经过点(25.5,16.2) 又∵273≤≤x∴当275.25≤≤x 时,总耗资不超过16.2万元 ……8分∵x 为整数∴有两种调运方案:①当26=x 时,即从A 省调运26台到甲地,2台到乙地,从B 省调运1台到甲地,23台到乙地;②当27=x 时,即从A 省调运27台到甲地,1台到乙地,从B 省调运0台到甲地,24台到乙地. ……9分∵02.0 -∴y 随x 的增大而减小∴27=x ,即第二种方案耗资最少,为9.15=y 万元. ……10分24. (本题10分) 解:(1)45; ……2分 (2)证明:连接AC∵∠DCB=75º,AD ∥BC ∴∠ADC=105º由等边△DCE 可知:∠CDE =60º故∠ADE =45º由AB ⊥BC ,AD ∥BC 可得:∠DAB=90º ∴∠AED=45º∴AD=AE∴点A 在线段DE 的垂直平分线上 ……4分 又CD=CE∴点C 也在线段DE 的垂直平分线上 ……5分 ∴AC 就是线段DE 的垂直平分线 即AC ⊥DE∴AC 平分∠EAD ∴∠BAC=45°∴△ABC 是等腰直角三角形(3)解:连接AF ,延长BF 交AD 的延长线于点G ∵∠FBC=30º,∠ABC=90 º ∴∠ABF=60º,∠DCB=75º ∴∠BFC=75º 故BC=BF由(2)知:BA=BC ∴BA=BF∴△ABF 是等边三角形∴AB=BF=FA ……7分 ∴∠BAC=60 º ∴∠DAF=30 º 又∵AD ∥BC∴∠FAG=∠G=30º∴FG =FA= FB ……8分 又∠DFG=∠CFB∴△BCF ≌△GDF (ASA ) ……9分 ∴DF=CF∴DFFC=1 ……10分25. (本题12分)(1)解:∵A (-4,0) C(0,4k ) ……2分 由图象可知0k∴OA=4 , OC=4k - ……3分∴k kOA OC -=-=44 ……4分(2)解: ∵()()()()295657=++-++k k k k 解得:12k =-……5分 ∴直线AC 的解析式为:122y x =--∴M (2,-3) ……6分 过点M 作ME ⊥y 轴于E ∴ME=2∵DOM BO M S S ∆∆=3 ∴DOM BOD S S ∆∆=4又∵2OB OD S BOD ⋅=∆ 2MEOD S DOM ⋅=∆ ∴422⨯⋅=⋅MEOD OB OD ∴ME OB 4=∴8=OB∴B (8,0) ……7分 设直线BD 的解析式为:b kx y +=则有 ⎩⎨⎧=+-=+0832b k b k解得:⎪⎩⎪⎨⎧-==421b k ……9分∴直线BD 的解析式为:421-=x y ……8分(3)解:②DFOEAE -值不变.理由如下:过点O 作OH ⊥DF 交DF 的延长线于H ,连接EH ……9分 ∵DF ⊥AP∴∠DFP=∠AOP=90º 又∠DPF=∠APO ∴∠ODH=∠OAE ∵点D 在直线421-=x y ∴D(0,-4) ∴OA=OD=4又∵∠OHD=∠OEA=90 º∴△ODH ≌⊿OAE (AAS ) ……10分 ∴AE=DH , OE=OH , ∠HOD=∠EOA∴∠EOH=∠HOD+∠EOD=∠EOA+∠EOD=90º ……11分 ∴∠OEH=45º∴∠HEF=45º=∠FHE ∴FE=FH∴等腰Rt ⊿OH ≌等腰Rt ⊿FHE ∴OE=OH=FE=HF ∴1=-=-DFHFDH DF OE AE ……12分。
2011~2012学年度第一学期期末考试八年级数学试卷一.选择题(3分X 12—36分)下列各题均有四个备这备案,其中只有一个正确答案,将你认为正确的答案一在答题卷中1.有意义,则a的取值范围是2.下列图案中,为轴对称图形的是3,在五个实数中,无理数的个数有A.4个B.3个C.2个D.1个4.下图分别给出了变量x与y之间的对应关系,其中y不是x的函数是5.一次函数y=2x-3的图象大致为6.如自,直线y=mx+n与直线y=kx+b交于点P(-1,1),则关于x的不等式。
mx+n≥kx +b的解集为A.x≥1 B.x≥-1C.x≤l D.x≤-17.甲、乙两人从学校沿相同路线前往距离学校10km的培训中心参加学习,图中后ι甲ι分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以乙下说法:①乙比甲提前12分钟到达;②乙只用10分钟到达培训中心。
③甲出发18分钟后乙才出发。
其中正确的有A.3个B.2个C.1个D.0个8.如图,AD⊥BC,BD=CD,且点C在AE的垂直平分线上,那么下列结论错误的是A.AB=AC B.BC=CE C.AB十BD=DE D.∠B=2∠E9.如图,把R t△ABC放在直角坐标系内,其中∠CAB=90°,点C、B的坐标分别为(1,4)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为A.4 B.8 C.1610.如图是相同长度的小棒换成的一组有规律的图案,图案(1)需要4根,小样,图案(2)需要10根小棒……,按此规律摆下去,第6个图案需要小棒的根数为.11.如图,在△ABC中,点E是BC上一点,点D是AE上一点,下列条件。
①DE⊥BC;②∠BDE=∠CDE;③BE=EC.共有3对组合条件:①②;①③;②③.其中能推出AB=AC的组合条件有A.3对B.2对C.1对D.0对12.如图,△ABD、△BDC都是等边三角形,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点G,下列结论:≌△①△AED≌△DFH ; ②∠BGE=600; ③ GC=GE+GB④若AF=2AE, 则S△GE B-S△DFG=1/3S△BDC其中正确的结论是A①②③B.①②④C.③④D.①②③④二.填空题(3分 ×4=12分)13.9的平方根为;化简的值为;与最接近的整数为。
图3图4图5 ABC图1 DA BC E F DBCA2011年八年级数学上学期期末测试题一、 选择题(每小题3分,共18分)1、 下列说法不正确的是 ( )A 、数轴上的点不是表示有理数,就是表错误!未找到引用源。
无理数;B 、 数轴上的点和实数是一一对应;C 、数轴上的点和有理数是一一对应;D 、数轴上0和1之间有无数个表示无理数的点。
2、下列计算正确的是 ( ) A 、 错误!未找到引用源。
=3; B 、错误!未找到引用源。
=错误!未找到引用源。
; C 、错误!未找到引用源。
=4; D 、错误!未找到引用源。
3、如图1,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是( )A 、18B 、16C 、12D 、8 ① ② ③ ④ ⑤4、下列说法中正确的是 ( )A 、两条对角线相等的四边形是平行四边形;B 、两条对角线相等且互相垂直的四边形是矩形;C 、两条对角线互相平分且相等的四边形是正方形;D 、两条对角线互相垂直平分的四边形是菱形。
5、如图2,平行四边形ABCD 中,∠B=110° ,延长AD 至F ,延长CD 至E ,连接EF ,则∠E+∠F 等于 ( )[来源:学|科|网]A 、110°B 、30°C 、50°D 、70°6、如图3,等腰梯形ABCD 中,对角线AC=BC+AD ,则∠DBC 的度数为 ( )A 、30°B 、45°C 、60°D 、90°二、填空题(每小题3分,共27分)7、8的立方根是 。
8、在①-错误!未找到引用源。
;②0;③错误!未找到引用源。
;④错误!未找到引用源。
;⑤错误!未找到引用源。
;⑥错误!未找到引用源。
;⑦2.错误!未找到引用源。
;⑧2.121121112…(每两个2之间依次多一个1)这8个数中,无理数有 。
(填序号)9、如图4是一个数值转换机,若输入的a 值为错误!未找到引用源。
2010—2011学年度第一学期期末试卷 八年级数学参考答案及评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共8小题,每小题2分,共16分)二、填空题(本大题共10小题,每小题2分,共20分)9.x≥0 10.M17936 11.11 12.k <0 13.(1,-2) 14.菱形 15.2011 16.2.5 17.49 18. 60 三、解答题(本大题共10小题,共64分) 19.(本题8分)(1) 解:原式= 5-(-3)+12………3分= 8.5.………………………4分(2) 解:(x +1)3 =2764. …………………2分 x +1= 34.………………………3分x =-14.……………………4分20.(本题5分)解:∵AB =CD =4 ,AD 是△ABC 的中线 ,BC =6,∴AD ⊥BC ,BD =21BC =3.………………………………2分 由勾股定理,得AD =AB 2-BD 2 =42-32 =7 .………………………4分 ∴这根中柱AD 的长度是7 m .………………………5分21. (本题6分)(1) 二班总人数=6+12+2+5 =25(人).…………………… 1分C 级以上人数=25×(1-16%)=21(人) .…………………… 3分(2)90分 …………………… 4分80分. …………………… 6分22.(本题5分)解:四边形ABCD 是平行四边形.…………………… 1分理由:∵四边形ABCD 是等腰梯形,AD ∥BC , ∴AB=DC ,∠B=∠C .…………………… 2分∵AB=AE ,∴∠AEB=∠B . ∴∠AEB=∠C .…………………… 3分 ∴ AE ∥DC .…………………… 4分 又 ∵AD ∥BC ,∴四边形AECD 是平行四边形.………………………………5分 23.(本题6分) 解:设该一次函数关系式为y =kx +b (k ≠0)∵当x =0时,y =1. 当x =1时,y =0.∴⎩⎨⎧0+b =1,k +b =0………………………2分∴⎩⎨⎧b =1,k =-1………………………4分∴一次函数关系式为y =-x +1.……………5分 ∴当y =-1时,x =2.………………………6分 24.(本题7分)解: (每条线1分)25.(本题6分)解:(1) 设加油前一次函数关系式为Q =kt +b (k ≠0)∵当t =0时,Q =36. 当t =3时,Q =6.∴⎩⎨⎧0+b =36,3k +b =6∴⎩⎨⎧b =36,k =-10………………………2分 ∴一次函数关系式为Q =-10t +36.………………………3分 (2) ∵到达景点需t =20080=2.5(h). ……………………4分∴ 把t =2.5代入Q =-10t +36 中得 Q =11>0. ………5分 ∴要到达景点,油箱中的油够用.………………………6分26.(本题7分)解:(1)AF = CD .……1分可得△AEF≌△DEB .………………………2分 ∴AF = BD .∵BD = CD ,∴AF = CD .………………………3分 (2)四边形ADCF 为矩形.…………4分 ∵AF ∥ CD ,AF = CD ,∴四边形ADCF 为平行四边形.……………………5分 ∵AB = AC ,D 是BC 的中点, ∴∠ADC = 90°.……………6分 ∴四边形ADCF 为矩形.……7分27.(本题7分)解:(1) Q (2,3)表示皇后在棋盘的第2列第3行位置上. ……1分(1,1) (3,1) (4,2) (4,4).……………3分(2)……………7分28.(本题7分)解:(1)如图2,点P 即为所画点(注:点P 只要在AC 或BD 所在直线上除去AC 、BD 交点的任意位置即可). …………………………………………1分(2) 如图3,点P 即为所做(做法不唯一)……………3分 (3) 连接DB .在△DCF 与△BCE 中, ∠DCF =∠BCE ,∠CDF =∠CBE ,CF =CE . ∴△DCF ≌△BCE (AAS). ∴CD =CB . ……………5分 ∴∠CDB =∠CBD .……………7分∴∠PDB =∠PBD . ∴PD =PB . ……………6分∵P A ≠PC ,∴点P 是四边形ABCD 的准等距点.……………7分(第26题)A BCADEFABCP DE F图4图丙。
图2 DA图1m E DCBA 2011-2012学年度上学期期末考试八年级数学试题一、选择题(本大题共12小题, 每小题3分, 共36分)1、计算4的结果是()A.2B.±2C.-2D.42、函数 y =31-x 的自变量x 的取值范围是( )A.x >-3 B.x <3 C.x ≠3 D.x ≠-33、下列不是一次函数的是( ) A .y=x 1-x B. y=21x -1 C. y=21-x D. y=2x 4、 下面哪个点不在函数y=-x +3的图象上( ) A .(-1,2) B .(0,3) C .(3,0) D .(1,2) 5、点(4,5)关于y 轴的对称点的坐标是( ) A .(-4,5) B .(4,-5) C .(-4,-5) D .(4,5)6、如图1, 直线m是多边形ABCDE 的对称轴,其中∠A=130°,∠ABC =110°,那么∠BCD 的度数等于( ) A .50° B .60° C .70° D .80°7如图2,已知∠1=∠2,AC=AD ,增加下列条件之一:①AB=AE ;②BC=ED ; ③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( ) A .1个 B .2个 C .3个 D .4个 8、下列各式由左边到右边的变形中,是因式分解的为( )A .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(22-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-9、已知一次函数(1)y a x b =-+的图象如图3所示,那么a 的取值范围是( ) A.1a > B.1a < C.0a > D.0a <10、如图4,李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )图3图411、如图5,△ABC 是等边三角形,D 是BC 中点,DE ⊥AC 于E ,若CE =1,则AB =( )A .2B ..3 D .412、如图6,Rt △ACB 中,∠ACB =90°,∠ABC 的角平分线BE 和∠BAC 的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D . 过P 作PF ⊥AD 交AC 的延长线于点H ,交BC 的延长线于点F ,连结AF 交DH 于点G .则下列结论:①∠APB =45°;②PF=P A ;③BD-AH=AB ;④DG=AP+GH .其中正确的是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(共4小题,每小题3分,共12分)13、计算: ⎪⎭⎫⎝⎛-⋅23313x x =________;24(2)a --=________;()532x x ÷= . 14、a 的算术平方根为8,则a 的立方根是__________。
- 1 -2011学年第一学期八年级数学科期末测试题本试卷共6页,25小题,全卷满分100分,考试时间为120分钟. 注意事项:1.答卷时,考生务必用黑色字迹的钢笔或签字笔将自己的学校、班级、姓名和座位号、准考证号填写在答题卡上,并用2B 铅笔将准考证号填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作图题请先用2B 铅笔作图,然后用黑色字迹的钢笔或签字笔将所作线条覆盖.5.本次考试可以使用计算器.一、选择题 (本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出来,填入下表中相对应的表格.) 1.(※). (A )8(B )4(C )4± (D )4-2.下列四个图形中,轴对称图形的个数是(※)个.(A )1 (B )2 (C )3 (D )4 3.下列运算中正确的是(※).(A )325m m m ⋅= (B )235m n mn +=(C )623m m m ÷= (D )22()m n m n 2-=-4.点A (-2,1)关于x 轴对称的点为B ,则点B 的坐标为(※).(A )(21)-,(B )(21), (C )(21)--, (D )(21)-, 5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是(※).(A )0x > (B )0x < (C )2x > (D )2x <x第5题图第2题图- 2 -6.下列判断中错误..的是(※). (A )有两角和一边对应相等的两个三角形全等 (B )有两边和一角对应相等的两个三角形全等 (C )有三边对应相等的两个三角形全等 (D )有一边对应相等的两个等边..三角形全等 7.把多项式3222x x y xy -+分解因式结果正确的是(※).(A )2(2)x x y - (B )2()x x y + (C )2(2)xy x y - (D )2()x x y - 8.如图,已知函数 y x b =+和3y ax =+的图象交点为(1,2)P ,则不等式3x b ax +≤+的 解集为(※).(A )1x ≤ (B ) 1x ≥ (C )2x ≤ (D ) 2x > 9.如图所示,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ',C '的位置. 若65DEF ∠=︒,则AED '∠=(※).(A ) 25° (B ) 50° (C ) 65° (D )70°10.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 (※). (A )203210x y x y +-=⎧⎨--=⎩, (B )2103210x y x y --=⎧⎨--=⎩,(C )2103250x y x y --=⎧⎨+-=⎩, (D )20210x y x y +-=⎧⎨--=⎩,第10题图第8题图- 3 -二、填空题(共6题,每题2分,共12分,直接把最简答案填写在题中的横线上.)11.函数y=的自变量x 的取值范围是 ※ .12.如图,点D 、E 分别在线段AB 、AC 上,BE CD 、相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是 ※ (不添加辅助线,只写一个条件).13.如图,等腰ABC △中,AB AC =,AD 是底边上的高,若5cm 30BD BAD =∠=︒,,则ABC ∆的周长为 ※ cm . 14. 实数127-的立方根是 ※ .15.根据如图所示的流程图中的程序,当输入数值x 为2-时,输出函数值y 为 ※ . 16. 在平面直角坐标系中,将直线21y x =-向上平移动4个单位长度后,所得直线的解析式为 ※ .三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,各题3分)计算: (1) ()23(2)x y xy -+-; (2)32221-7x y x y ÷(). 18.(本小题满分6分)分解因式:(1)225x -; (2)2712a a -+. 19.(本小题满分7分)已知直线1l :45y x =-+和直线2l :142y x =-. (1)在坐标系中作出此两条直线,并求出直线1l 和2l 的交点P 的坐标;(2)判断该交点P 是否在正比例函数2y x =-的图象上.第15题图AC D B第13题图OCEA DB第12题图第19题图- 4 -20.(本小题满分7分)如图所示,BAC ABD AC BD ∠=∠=,,AD BC 、交于点O . (1)判断BAC △与ABD △是否全等,并给出证明;(2)用直尺和圆规作AB 的垂直平分线l (保留作图痕迹, 不写作法),试判断直线l 是否过点O ,并说明理由.21.(本小题满分8分)(1)已知:3,2a +b =ab =,求22a b+ab 的值.(2)先化简,再求值:2228(2)(76)(3)x y x x y x y --+++,其中x y ==.22.(本小题满分8分)如图,在方格纸上建立平面直角坐标系,ABC ∆的顶点都在格点上,直线MN 经过坐标原点O ,且点M 的坐标是(1,2). (1)写出点C 的坐标;(2)分别求直线MN 、AB 所对应的函数关系式, 并说明其函数的名称; (3)作出ABC ∆关于直线MN 的对称图形(保留作图痕迹,不写作法).COEAD第20题图第22题图- 5 -23.(本小题满分8分)如图, 已知C 为AB 的中点,CD CE =,DCA ECB ∠=∠,BD 与AE 交于点M . (1)证明:AD BE =;(2)判断AE 与BD 是否相等, 并对结论加以证明; (3)DMA ∆与EMB ∆是否全等?为什么?24.(本小题满分9分)据羊城晚报报道,为了倡导节约用水,居民生活用水“阶梯式计量水价”制度写入了广州市地方性法规.某自来水公司工作人员设计了一个居民用水以户为单位“分段收费方案”,提交听证会给市民讨论:一月用水不超过15吨的用户,每吨收水费a 元;一月用水超过15吨的用户,15吨水仍按每吨a 元收费,超过15吨的部分,按每吨b 元(b a >)收费,设某户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图所示.按此方案, (1)求a 的值,若某户居民用水10吨,应交水费多少元? (2)求b 的值,并写出当15x >时,y 与x 之间的函数关系式;(3)某户居民每月用水不超过25吨,拟每月水费支出不超过32元,上述方案能否满足要求? 若不满足,请你重新设计一个满足此户居民要求的“分段收费方案”,并用函数关系式表示出来,再画出它的图象。