一元一次不等式的解法 第2课时 在数轴上表示不等式的解集 精品推荐
- 格式:doc
- 大小:209.07 KB
- 文档页数:2
解一元一次不等式今天我说课的内容是冀教版数学七年级下第10章第3节的第2课时《解一元一次不等式》,下面我就分别从教材、教法、学法、教学过程和板书设计五个方面来说明我对这节课的教学设想。
一、教材分析<一> 教材的地位和作用在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。
只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。
同时,学习本节课时涉及的类比思想、化归思想对后继学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。
日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。
可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后继学习打下基础。
<二>教学目标根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:知识与技能1.使学生会一元一次不等式的概念;能解一元一次不等式。
2.在依据不等式的性质探究一元一次不等式的解法过程中,加深化归思想。
过程与方法学生在参与活动过程中,通过联系一元一次方程的解法,自主探索解一元一次不等式的一般步骤,体会数学学习中类比和化归的数学思想。
在数轴上正确表示不等式的解集,加深对数形结合思想方法的理解。
情感态度和价值观在积极参与数学活动的过程中,通过小组之间的竞争,培养学生集体主义情感;通过讨论发言,培养学生勇于发言、合作交流和团结协作的意识和尊重他人的态度以及独立思考的习惯。
<三>教学重难点和教学关键根据上面的教材分析和《课标》要求,确定本节课的教学重点是:正确求一元一次不等式的解集。
第8讲用数轴表示不等式的解集及一元一次不等式组知识精要一、不等式的解集1、不等式解的全体叫做不等式的解集。
(注:一般情况下一元一次方程的解只有一个,一元一次不等式的解可以有无数个。
)2、不等式的解集可以再数轴上直观的表示出来。
如:在数轴上表示大于3的数的点应该数3所对应点的左边还是右边?(右边)因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈).如图所示:同样,如果某个不等式的解集为x≤-2,那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画实心圆点.如图所示:引导学生总结出在数轴上表示不等式解集的要点:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点。
2、一元一次不等式组1、有几个含有同一个未知数的一次不等式组成的不等式组,叫做一元一次不等式组。
2、不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。
3、求不等式组的解集的过程叫做解不等式组。
4、解一元一次不等式组的一般步骤是:(1)求出不等式组中各个不等式的解集;(2)在数轴上表示各个不等式的解集;(3)确定各个不等式解集的公共部分,就得到这个不等式组的解集。
【典型例题】例1. 解不等式3(1)5182x x x +-+>-【思路点拨】不等式中含有分母,应先根据不等式的基本性质2去掉分母,再作其他变形.去分母时,不要忘记给分子加括号.【答案与解析】解:去分母,得8x+3(x+1)>8-4(x -5), 去括号,得8x+3x+3>8-4x+20, 移项,得8x+3x+4x >8+20-3,合并同类项,得15x >25,系数化为1.得.53x >∴不等式的解集为.53x >【总结升华】解一元一次不等式与解一元一次方程的步骤异同见下表:ax =bax >bax <b解:当a ≠0时,;b x a=当a =0,b ≠0时,无解;当a =0,b =0时,x为任意有理数.解:当a >0时,;b x a>当a <0时,;b x a<当a =0,b ≥0时,无解;当a =0,b <0时,x 为任意有理数.解:当a >0时,;b x a<当a <0时,;b xa>当a =0,b ≤0时,无解;当a =0,b >0时,x 为任意有理数.【变式】(湖南益阳)解不等式,并把解集在数轴上表示出来.5113x x -->解:去分母得5x -1-3x >3,移项、合并同类项,得2x >4, 系数化为1,得x >2,解集在数轴上的表示如图所示.例2.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x (单位:度)电费价格(单位:元/度)0<x≤200a 200<x≤400b x >4000.92(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a ,b 的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?【思路点拨】(1)根据题意即可得到方程组,然后解此方程组即可求得答案;(2)根据题意列不等式,解不等式.【答案与解析】解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x 度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.【总结升华】考查了一元一次方程组与一元一次不等式的应用.注意根据题意得到等量关系是关键.例3. 解不等式组: ,并求出正整数解。
9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x C. 方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x ,所以-a ≥1,解得a ≤D. 方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证第2课时 余弦和正切【知识与技能】1.理解余弦、正切的概念,了解锐角三角函数的定义;2.能运用余弦、正切的定义解决问题. 【过程与方法】逐步培养学生观察、分析、类比、概括的思维能力. 【情感态度】在探索结论的过程中,体验探索的乐趣,增强数学学习的信心,感受成功的快乐.【教学重点】掌握余弦、正切的概念,并能运用它们解决具体问题.【教学难点】灵活运用三角函数的有关定义进行计算.一、情境导入,初步认识问题我们知道,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是一个固定值.试问:∠A的邻边与斜边的比、∠A的对边与邻边的比是否分别也是一个固定值呢?为什么?【教学说明】这种设置问题的方式既是对上节课重要知识的回忆,又为引入本节知识做好铺垫,同时也暗示着解决问题的方法与上节课利用相似获得结论的方法完全类似,让学生有法可依.学生可相互交流,教师巡视,听取学生的看法、见解,随时参与讨论,帮助学生获取正确认知.二、思考探究,获取新知问题如图,在Rt △ABC和Rt △A B C''',中,∠C=∠C'=90°∠A =∠A'.求证:〔1〕ACAB=A CA B'''';〔2〕BCAC=B CA C''''【教学说明】这个问题可由学生自主探究,得出结论.教师在学生探讨过程中,提出问题∠A确定后,∠A的邻边与斜边的比也确定吗?它的对边与邻边的比呢?在学生得出结论后,应与学生一道进行总结归纳.余弦:在Rt△ABC中,∠C=90°,我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA ,即cosA =A bc ∠的对边=斜边正切:在RtAABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,tanA =A aA b∠的对边=∠的邻边.锐角A的正弦、余弦、正切叫做∠A的锐角三角函数.三、典例精析,掌握新知例1 在Rt△ABC中,∠C = 900,BC= 6,sinA = 35,求 cosA,tanB的值.分析与解由正弦函数定义及sinA = 35知,sinA =BCAB=35,又BC = 6,故AB = 10,所以AC = 22AB BC- = 8,从而 cosA = ACAB=810=4 5,tanB =8463ACBC==.【教学说明】此题可先让学生独立完成,教师巡视指导,时时关注学生解题时是否能紧扣定义,即sinA = BCAB,cosA =ACAB,tanB= ACBC的运用是否得当,有没有出现混淆情形.例2在△ABC中,AB = AC = 20,BC = 30,试求 tanB,sinC 的值.【分析】由于∠B和∠C都不是直角三角形中的锐角,而题意却要求出tanB,sinC的值,这样迫使我们要将∠B,∠C放到直角三角形中去,这时,过A作AD丄BC于D可到达这一目的,问题可逐步解决.解过A作AD丄BC于D. AB = AC,∴BD = CD = 12BC=12⨯30 = 15.又 AB = AC = 20,∴AD = 57,因此tanB = BCAC= 577153=,sinC =AD577AC204==.四、运用新知,深化理解1.分别求出以下直角三角形中两个锐角的正弦值、余弦值和正切值.2.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求cosB,sinA,tanB的值.△ABC中,∠C=90°,cosB=〔1〕求cosA和tanA的值;〔2〕假设AB=5,求BC和AC的长.△ABC中,∠C=90°,AC=b,BC=a,AB=c.〔1〕sinA与cosB的关系如何?为什么?〔2〕sin2A与cos2A的关系如何?说说你的理由〔sin2A=(sinA)2).〔3〕找出tanA与tanB的关系;〔4〕由〔1〕,〔2〕,〔3〕,你能发现什么有趣的结论?【教学说明】让学生通过对上述问题的思考,稳固所学知识,增强运用解决问题的能力.其中第2题在学生探究交流后,教师应予以评讲,让学生的分析能力和解决问题能力得到进一步开展.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.【答案】 1.〔1〕sinA =513,sinB =1213,cosA =1213,cosB =513,tanA=5 12tanB = 125.31313=21313=21313=, cosB =313 13=,tanA = 32,tanB = 23.2.解:tanA =BCAC = 34,AC = 8. ∴BC = 6,在△ABC 中,AB = 22AC BC += 10. ∴ cosB =63105=,tanB = 8463=. 3.解:〔1〕由于cosB = BC 1AB 3=,设BC = x,那么AB = 3x.∴AC =22AB BC - = 22(3x)2x x -=2.∴cosA = AC AB= 223,tanA =BC AC= 24.(2) 假设AB = 5,即3x = 5, ∴x = 53,∴BC = 53,AC = 1023.4.解:〔1〕sinA = cosB (2)sin 2A + cos 2A = 1 (3)tanA ·tanB = 1 (4)略五、师生互动,课堂小结通过本节课的学习你有哪些收获?你还有哪些疑虑,请与同伴交流. 【教学说明】 教师应与学生一起进行交流,共同回忆本节知识,理清例题思路方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材P 68~70习题28.1中选取.“课时作业〞局部.本节课的引入可采用探究的形式.首先引导学生认知特殊角直角三角形的余弦、正切,进而引出锐角三角函数的定义.其次利用一个联系生活实际的问题,让学生对三角函数有关定义能够灵活运用.最后,应注重让学生用自己的语言归纳和表达经由探索得出的结论,引导学生对知识与方法进行回忆总结,形成良好的反思习惯,掌握高效的学习方法.。
一元一次不等式的解集求解一元一次不等式是数学中常见的关于未知数的不等式表达式,其求解解集是解决不等式的关键。
下面将介绍一元一次不等式的求解方法及求解步骤。
一、一元一次不等式的定义及形式一元一次不等式是指只含有一个未知数的一次方程,其常见形式为:ax + b > 0 (或ax + b < 0),其中a和b为已知常数。
这种不等式以不等号(>、<、≥、≤)连接左右两边的表达式。
二、一元一次不等式的求解步骤求解一元一次不等式的一般步骤如下:1.将不等式转化为等价的形式:将不等式中的不等号改为等号,得到对应的一元一次方程。
2.求解方程:根据方程求解的方法,求出方程的解。
3.绘制数轴:将数轴绘制出来,并在数轴上标记出方程解的位置。
4.确定解集:根据不等式的要求,确定解的范围,并表示出解集。
三、一元一次不等式求解示例以不等式2x + 3 > 7为例,下面将按照上述步骤进行求解:1.将不等式转化为等价的形式:2x + 3 = 72.求解方程:2x = 7 - 32x = 4x = 4 / 2x = 23.绘制数轴:绘制数轴,并在数轴上标记出x = 2的位置。
4.确定解集:由于原不等式中不等号为大于号,故解集为x > 2。
在数轴上用箭头表示解集,箭头指向大于2的方向。
综上所述,一元一次不等式2x + 3 > 7的解集为x > 2。
根据这样的求解步骤,可以求解一元一次不等式的解集。
四、一元一次不等式的注意事项在求解一元一次不等式时,需要注意以下几点:1.在转化不等式为等价的形式时,需要根据不等式的类型选择适当的转化方法,如乘除、加减等。
2.在求解方程的过程中,要遵循方程求解的基本原则,逐步化简方程,求得唯一的未知数的值。
3.在绘制数轴时,要确定好方程解在数轴上的位置,并准确标记出来。
4.在确定解集时,要根据不等号的类型(大于、小于、大于等于、小于等于)确定解的范围,并在数轴上用箭头表示。
一元一次不等式组解集数轴表示全文共四篇示例,供读者参考第一篇示例:一元一次不等式组是数学中常见的问题,通过解不等式组可以得到一个或多个解集,这些解集常常用数轴表示。
本文将介绍一元一次不等式组的概念、解的求法以及如何用数轴来表示解集。
一、一元一次不等式组的概念一元一次不等式组是由若干个一元一次不等式组成的集合,形式如下:ax + b < cdx + e <= fgx + h > i其中a、b、c、d、e、f、g、h、i为实数,且a、d、g不全为0。
不等式组的解是使得所有不等式同时成立的实数的集合。
1. 逐个不等式求解法:首先分别解每一个不等式,得到它们的解集,然后取所有解集的交集即为不等式组的解。
2. 图像法:将每个不等式表示在坐标系中,然后考虑它们的交集部分即为不等式组的解。
3. 系数比较法:通过比较不等式的系数大小关系,消去变量,从而得到更简单的一元一次不等式。
再通过解这个简单的不等式来得到原不等式组的解。
三、数轴表示解集数轴是一种用于表示数值大小和相对位置的图形工具,一维数轴上通常有一个原点和正、负两个方向。
我们可以使用数轴来表示一元一次不等式组的解集,具体步骤如下:1. 首先解出不等式组的解,得到形如[x1, x2]或(x1, x2)的解集。
2. 画出一条水平的数轴,数轴上标出各个解的值。
如果解是开区间,则在对应的点上画一个空心圆;如果解是闭区间,则在对应的点上画一个实心圆。
3. 根据解的相对位置,在相应的区间上用短线段连接起来,形成解集的表示。
4. 最后检查数轴上的解集是否符合原不等式组中每个不等式,如果符合则表示正确。
通过这种方法,我们可以直观地看到不等式组的解集在数轴上的位置关系,更容易理解和分析解的性质。
四、例题和解析解不等式组:x+1 < 32x-5 > 1我们首先通过逐个不等式求解的方法得到x的取值范围分别是(-∞, 2)和(3, +∞),则不等式组的解集为(-∞, 2)∪(3, +∞)。
一元一次不等式的解法一元一次不等式是指只含有一个变量的一次方程不等式。
它在数学中的解法非常重要,因为它涉及到数轴上的区间,对于实际问题的解析具有重要意义。
解一元一次不等式的方法有两种:图像法和代数法。
【图像法】图像法通过在数轴上画出不等式的解集来解决问题。
首先,我们需要了解数轴的表示方法,通常将数轴水平地画在纸上,线的其中一端表示较小的数值,即数轴的原点(通常为0),另一端表示较大的数值。
然后,根据不等式的形式在数轴上标记关键点,例如“<”表示开区间,用空心圆点标记,表示不包括该点;而“≤”表示闭区间,用实心圆点标记,表示包括该点。
最后,将合适的箭头描绘在标记出的点之间,表示不等式的解集。
例如,对于不等式x+2>0,我们首先将数轴画在纸上,然后标记出关键点-2,并在-2的右侧画出箭头,表示解集是大于-2的所有实数。
此时,不等式的解集是x>-2。
【代数法】代数法通过代数运算来求解不等式。
对于一元一次不等式ax+b>0,首先我们需要将不等式转化为等价的形式。
为此,我们可以按照以下步骤进行:1. 如果a>0,那么不等式两边同时减去b,得到ax>-b;2. 如果a<0,那么不等式两边同时减去b,并改变不等式的方向,得到ax<-b。
接下来,我们需要根据不等式的情况进行分类讨论:1. 当a>0时,不等式的解集为x>-b/a。
我们解题的过程就是不等式两边同时除以a,然后改变不等号的方向得到解集;2. 当a<0时,不等式的解集为x<-b/a。
同样地,我们解题的过程就是不等式两边同时除以a,然后改变不等号的方向得到解集;3. 当a=0时,不等式无解。
例如,对于不等式2x+1>5,我们首先将不等式转化为等价形式:2x>5-1,即2x>4。
然后,由于a>0,我们解题的过程是将不等式两边同时除以2,得到x>2。
因此,该不等式的解集是x>2。
第2课时 在数轴上表示不等式的解集
1.让学生进一步熟练掌握一元一次不等式的解法。
2. 掌握一元一次不等式解集在数轴上的表示方法,且能在数轴上正确表示出不等式解集。
3. 通过对不等式解法的学习,提高应用数学思想方法的意识和分析问题、解决问题的能力。
自学指导:阅读课本P141-142,完成下列问题.
1.不等式3x<6的解集是 x<2 ,先在数轴上找出表示2的点,则它左边所有的点表示的数都小于2,如图在数轴上表示为:
-3-2-12
10
把表示2的点画成 空心圆圈 ,表示不等式的解集不包括2.
归纳:在以向右为正方向的数轴上的点,其右边的点表示的数比该点表示的数 大 ,其左边的点表示的数比该点表示的数 小 .
活动1 引导交流
1想一想:把x=8代入不等式3x<18,不等式成立吗?能否因此就说不等式的解是x=8? 生:不是,还有很多。
师:哦,原来还有很多很多的解哦!那请同学们帮老师把他们在数轴上指出来(师画数轴,叫一学生上来指出)
2、得出:不等式解的概念:能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。
3老师讲述怎样用数轴表示不等式解的方法(强调等号取于不取的不同之处)
4、试一试解下列不等式,并把解表示在数轴上;
(1)3x<18 ; (2)5x-3≥7x+1 ;
师:(1)解不等式就是利用不等式的基本性质,把要求解的不等式变形“x<a ”(或x ≥a ),“x >a ”(或X ≤a )的形式。
解:(1) x< 9
(2)两边同加上-7x ,再在不等式两边同加上3得: 5x-7x ≥1+3
合并同类项得:-2x ≥4
两边同除以-2得:x ≤-2(注意学生改写时,不要把不等号的方向弄错)
师:(2)解方程的移项法则对解不等式是否仍然适用?若适用,它的根据是什么 活动2 跟踪训练
1.在数轴上表示-2x+3≥7的解集正确的是( B )
A. B.2-20
C.2
-20 D.2-20 2.当x=2
1-时,代数式x 2-kx-1的值小于0,则k 的取值范围是( D ) A.k <23-
B . k>23- C. k >23 D. k <23 3.解不等式2x -56<3x +14-23
,并把它的解集在数轴上表示出来,并求它的最小整数解. 解:去分母,得2(2x-5)<3(3x+1)-8, 去括号,得4x-10<9x+3-8,
移项,得4x-9x<10+3-8,
化简,得-5x<5,
系数化成1,得x>-1.
解集在数轴上表示如下图所示:
由图可知,满足条件的最小整数解是0.
活动3 课堂小结 1、让学生来总结:这节课你们有什么收获。
2、需要特别注意什么?
(如果乘数或除数是负数,要把不等号方向改变,即必须特别注意不等式基本性质
教学至此,敬请使用《名校课堂》相应部分.。