九年级上数学基础知识巩固训练(一)
- 格式:doc
- 大小:198.50 KB
- 文档页数:5
一元二次方程第2节 根的判别式和根与系数的关系【知识梳理】1、一元二次方程根的判别式关于x 的一元二次方程)0(02≠=++a c bx ax ,用配方法可得222442a ac b a b x -=+)(ac b 42-=∆称为根的判别式0>∆,则方程有两个不相等的实数根 0<∆,则方程没有实数根0=∆,则方程有两个相等的实数根反过来也成立。
2、一元二次方程根与系数的关系如果21,x x 是方程)0(02≠=++a c bx ax 的两个根, 则acx x a b x x =-=+2121 【诊断自测】1.一元二次方程的两个根x 1、x 2和系数a 、b 、c 的关系:。
2.若方程3x 2−4x −4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( ) A .−4B .3C .−43D .433.已知x 1、x 2是一元二次方程x 2−4x+1=0的两个根,则x 1•x 2等于( ) A .−4B .−1C .1D .44.已知x 1、x 2是一元二次方程3x 2=6−2x 的两根,则x 1−x 1x 2+x 2的值是( )A .B .83C .−83D 【考点突破】类型一:根的判别式常见题型1、已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).答案:见解析。
解析:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.例2、已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.答案:见解析解析:对于等腰三角形,需要讨论a是腰还是底边。
《一元二次方程的解法》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元二次方程基本概念的理解,掌握一元二次方程的解法,并能够运用所学知识解决实际问题。
通过本课时的作业练习,提高学生的数学逻辑思维能力和解决问题的能力。
二、作业内容(一)基础训练1. 让学生复习一元二次方程的标准形式ax^2 + bx + c = 0(其中a ≠ 0),并能够根据给定的方程判断其是否为一元二次方程。
2. 练习一元二次方程的根的判别式Δ = b^2 - 4ac,并能够根据判别式判断方程的根的情况。
3. 让学生掌握因式分解法解一元二次方程的步骤,并能够独立完成相关练习。
(二)实践应用1. 针对实际生活问题,设计一元二次方程应用题,让学生通过解决实际问题来加深对一元二次方程的理解。
2. 通过画图来辅助解决一元二次方程问题,例如在直角坐标系中表示一元二次方程的图像。
(三)提高题针对学有余力的学生,设计一些复杂的一元二次方程问题,包括含有参数、高次项的方程,提高学生的解题能力。
三、作业要求1. 作业需在规定时间内独立完成,不得抄袭他人答案。
2. 基础训练部分需全部完成,实践应用部分至少完成两道题目,提高题可根据自身能力选择完成。
3. 作业需字迹工整,步骤清晰,答案准确。
4. 对于每一道题目,需写出详细的解题步骤和答案。
四、作业评价1. 教师将根据学生的作业完成情况、解题步骤和答案的准确性进行评价。
2. 对于基础训练部分,教师将重点评价学生对一元二次方程基本概念的理解和掌握情况。
3. 对于实践应用和提高题部分,教师将评价学生的应用能力和解题思路的准确性。
4. 教师将根据学生的作业情况给出相应的鼓励和建议,帮助学生改进学习方法,提高学习效果。
五、作业反馈1. 教师将在课堂上对作业进行讲解和点评,针对学生的错误进行纠正和指导。
2. 对于普遍存在的问题,教师将进行重点讲解和练习,确保学生掌握相关知识点。
3. 教师将鼓励学生相互交流和学习,共同进步。
人教版2021年九年级上册:21.3 实际问题与一元二次方程课时训练知识点一列一元二次方程解应用题的一般步骤及常见问题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是73,则每个支干长出的小分支数是( )A.7B.8C.9D.102.两个相邻偶数的积是48,则这两个偶数的和为________。
3.某商场销售一种商品,每件进货价为190元调查发现,当每件销售价为210元时,平均每天能销售8件;当销售价每降低2元时,平均每天就能多销售4件商场要想使这种商品平均每天的销售利润达到280元,且尽量减少库存,求每件商品的销售价应定为多少元知识点二传播问题4.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有81人患了流感,每轮传染中平均一个人传染的人数为( )A.7B.8C.9D.105.网上流行一个游戏,发起游戏的人首先发出一个“祝福”链接,将这个“祝福”链接发给n个人,收到链接的人也需把链接发给相同数量的新人,经过两轮传播后,共有91人参与了这个“祝福”链接的传播,则n的值为________知识点三平均增长(或降低)率问题6.我市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是( )A.8%B.9%C.10%D.11%7.书香相伴,香满校园,滨州市图书馆“流动服务车”定期送书到校园,让流动的图书沁润人心.某校9月份借阅图书500本,11月份借阅图书720本,该校这两个月借阅图书的月均增长率是________知识点四几何图形面积问题8.如图21-3-1,在长为32m,宽为20m的长方形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m2,则道路的宽为( )A. 1mB.1.5mC.2mD.2.5m9.如图21-3-2,在一块长32米,宽20米的矩形地面上修建三条入口宽度相等的小路,每条小路的两边是互相平行的若使剩余面积为570平方米,则小路的入口宽度为( )A.0.5米B.1米C.2米D.3米10.如图21-3-3,用长为22m的篱笆,一面利用墙(墙的最大可用长度为14m),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造花圃时,在BC上用其他材料做了宽为1m的两扇小门若花圃的面积刚好为45m2,则此时花圃的AB段长为________ m.巩固练习11.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A.6人B.7人C.8人D.9人12.某省加快新旧动能转换,促进企业创新发展某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元若设月平均增长率是x,那么可列出的方程是( )A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=399013.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3月每个月生产成本的下降率都相同,则每个月生产成本的下降率是________14.从前有一个醉汉拿着竹竿进城,横拿竖拿都进不去,横着比城门宽m,竖着比城门高m,一个聪明人告诉他沿着城门的两对角斜着拿杆,这个醉汉一试,不多不少刚好进去了你知道竹竿有多长吗?设竹竿的长度为xm,则可列出方程为________________________________________。
2021年九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)1.下列说法正确的是()A.直线AB和直线BA是同一条直线B.直线是射线的2倍C.射线AB与射线BA是同一条射线D.三条直线两两相交,有三个交点2.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM 等于()A.38°B.104°C.140°D.142°3.如图,OA⊥OB,若∠1=55°16′,则∠2的度数是()A.35°44′B.34°84′C.34°74′D.34°44′4.如图,AC⊥BC于点C,点D是线段BC上任意一点,若AC=6,则AD的长不可能是()A.5.5B.6C.7D.85.已知点P在直线MN外,点A、B、C均在直线MN上,P A=2.5cm,PB=3cm,PC=2.2cm,则点P到直线MN的距离()A.等于3cm B.等于2.5cmC.不小于2.2cm D.不大于2.2cm6.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线7.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.38.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②9.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°10.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)11.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.12.如图,直线a,b相交于点O,若∠1+∠2=220°,则∠3=.13.如图,已知AO⊥BC于O,∠BOD=120°,那么∠AOD=°.14.如图,为了把河中的水引到C处,可过点C作CD⊥AB于D,然后沿CD开渠,这样做可使所开的渠道最短,这种设计的依据是.15.如图,AB⊥l1,AC⊥l2,已知AB=4,BC=3,AC=5,则点A到直线l1的距离是.16.如图,∠B的内错角是.17.在同一平面内,不重合的两条直线的位置关系是.18.若直线a∥b,a∥c,则直线b与c的位置关系是.19.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.20.如图,AB∥CD,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为度.21.为了解决“经过平面上的100个点中的任意两点最多能画出多少条直线”这个问题,数学课外兴趣小组的同学们讨论得出如下方法:当n=2,3,4时,画出最多直线的条数分别是:过两点画一条直线,三点在原来的基础上增加一个点,它与原来两点分别画一条直线,即增加两条直线,以此类推,平面上的10个点最多能画出1+2+3+…+9=45条直线.请你比照上述方法,解决下列问题:(要求作图分析)(1)平面上的20条直线最多有多少个交点?(2)平面上的100条直线最多可以把平面分成多少个部分?平面上n条直线最多可以把平面分成多少个部分?22.如图,直线AB,CD相交于点O,∠AOC=120°,OE平分∠BOC.(1)求∠BOE的度数;(2)若OF把∠AOE分成两个角,且∠AOF:∠EOF=2:3,判断OA是否平分∠DOF?并说明理由.23.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.24.如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l 上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.25.已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(以(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.答题纸为测量依据,结果精确到0.1cm).26.如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG ∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的角,根据,可判断角平分线EG、FH的位置关系是.27.(1)补全下面的图形,使之成为长方体ABCD﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.28.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?29.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30.如图,AO∥CD,OB∥DE,∠O=40°,求∠D的度数.(1)请完成下列书写过程.∵AO∥CD(已知)∴∠O==40°()又∵OB∥DE(已知)∴=∠1=°()(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=°.参考答案1.解:A、直线AB和直线BA是同一条直线,故本选项说法正确.B、直线和射线不能度量,故本选项说法不正确.C、射线AB与射线BA方向相反,不是同一条射线,故本选项说法不正确.D、三条直线两两相交有三个或一个交点,故本选项说法不正确.故选:A.2.解:∵∠AOD=104°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:D.3.解:∵OA⊥OB,∴∠AOB=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故选:D.4.解:∵AC⊥BC于点C,点D是线段BC上任意一点,AC=6,∴AD≥6,故选:A.5.解:当PC⊥MN时,PC的长是点P到直线MN的距离,即点P到直线MN的距离等于2.2cm,当PC不垂直于MN时,点P到直线MN的距离小于PC的长,即点P到直线MN的距离小于2.2cm,综上所述:点P到直线MN的距离不大于2.2cm,故选:D.6.解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:D.7.解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;故选:B.8.解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.9.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.10.解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.11.解:两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为:45.12.解:∵∠1=∠2,∠1+∠2=220°,∴∠1=∠2=110°,∴∠3=180°﹣110°=70°,故答案为:70°.13.解:∵AO⊥BC,∴∠AOB=90°,∵∠BOD=120°,∴∠AOD=∠BOD﹣∠AOB=120°﹣90°=30°,故答案是:30.14.解:过D点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.15.解:∵AB⊥l1,则点A到直线l1的距离是AB的长=4;故答案为:4.16.解:∠B的内错角是∠BAD;故答案为:∠BAD.17.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.18.解:若直线a∥b,a∥c,则直线b与c的位置关系是平行,故答案为:平行.19.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.20.解:∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°.又∵∠CME+∠EMD=180°,∴∠EMD=180°﹣∠CME=180°﹣114°=66°.故答案为:66.21.解:(1)当有2,3,4条直线时最多交点的个数分别是:∴20条直线最多有1+2+3+…+19=190个交点;(2)当有1,2,3条直线时最多可把平面分成的部分分别是:∴100条直线最多可把平面分成1+(1+2+3+…+100)=5051个部分,同理n条直线最多可把平面分成1+(1+2+3+…+n)=1+=.22.解:(1)∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠BOE=∠BOC=×60°=30°;(2)OA平分∠DOF,理由如下:∵∠BOE=30°,∴∠AOE=180°﹣30°=150°,∵∠AOF:∠EOF=2:3,∴∠AOF=60°,∠EOF=90°,∵∠AOD=∠BOC=60°,∴∠AOD=∠AOF,∴OA平分∠DOF.23.解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.24.解:(1)如图,点M即为所示.依据是直线外一点与直线上各点连接的所有线段中垂线段最短(2)如图,点N即为所示.依据是两点之间线段最短;故答案为:直线外一点与直线上各点连接的所有线段中垂线段最短;两点之间线段最短.25.解:(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.26.解:如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据两直线平行,同位角相等可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG =∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的同位角,根据同位角相等,两直线平行,可判断角平分线EG、FH的位置关系是平行.故答案为:两直线平行,同位角相等;=;同位、同位角相等,两直线平行、平行.27.解:(1)如图即为补全的图形;(2)图中与棱AB平行的棱有CD、EF、GH;故答案为:CD、EF、GH;(3)图中棱CG和面ABFE的位置关系是:平行.故答案为:平行.28.解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.29.证明:∵∠DGA=∠FHC=∠DHB,∴AE∥BF,(同位角相等,两直线平行)∴∠A=∠FBC,(两直线平行,同位角相等)又∵∠A=∠F,∴∠F=∠FBC,(等量代换)∴DF∥AC.(内错角相等,两直线平行)30.解:(1)∵AO∥CD(已知),∴∠O=∠1=40°(两直线平行,同位角相等),又∵OB∥DE(已知),∴∠D=∠1=40°(两直线平行,同位角相等).故答案为:∠1,两直线平行,同位角相等,∠D,40°,两直线平行,同位角相等;(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=(40或140)°.故答案为:(40或140)。
人教版九年级数学上册全册教案及作业题(带答案)《人教版九年级上册全书教案》第二十一章二次根式教材内容 1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标 1.知识与技能(1)理解二次根式的概念.(2)理解(a≥0)是一个非负数,()2=a (a≥0), =a(a≥0).(3)掌握• =(a≥0,b≥0),= • ; = (a≥0,b>0), = (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点 1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0); =a(a≥0)•及其运用. 2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算.教学难点 1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及 =a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键 1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键 1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“ (a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y= ,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标(,).问题2:由勾股定理得AB= 问题3:由方差的概念得S= .二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“ ”称为二次根号.(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、- 、、(x≥0,y ≥0).分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,• 才能有意义.解:由3x-1≥0,得:x≥ 当x≥ 时,在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是多少时,+ 在实数范围内有意义?分析:要使 + 在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1 当x≥- 且x≠-1时, + 在实数范围内有意义.例4(1)已知y= + +5,求的值.(答案:2) (2)若 + =0,求a2004+b2004的值.(答案: ) 五、归纳小结(学生活动,老师点评)本节课要掌握: 1.形如(a≥0)的式子叫做二次根式,“ ”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业 1.教材P8复习巩固1、综合应用5. 2.选用课时作业设计. 3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.- B. C. D.x 2.下列式子中,不是二次根式的是()A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是() A.5 B. C. D.以上皆不对二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2.当x是多少时, +x2在实数范围内有意义? 3.若 + 有意义,则 =_______. 4.使式子有意义的未知数x有()个. A.0 B.1 C.2 D.无数 5.已知a、b 为实数,且 +2 =b+4,求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B 二、1.(a≥0) 2. 3.没有三、1.设底面边长为x,则0.2x2=1,解答:x= . 2.依题意得:,∴当x>- 且x≠0时,+x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-421.1 二次根式(2) 第二课时教学内容 1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重难点关键新|课|标|第|一|网 1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用. 2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0).教学过程一、复习引入(学生活动)口答 1.什么叫二次根式? 2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2= ,()2= ,()2=0,所以()2=a(a≥0)例1 计算 1.()2 2.(3 )2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2 = ,(3 )2 =32•()2=32•5=45,()2= ,()2= .三、巩固练习计算下列各式的值:X|k |b| 1 . c|o |m ()2 ()2 ()2 ()2 (4 )2 四、应用拓展例2 计算 1.()2(x≥0) 2.()2 3.()2 4.()2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0 ()2=x+1 (2)∵a2≥0,∴()2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1 (4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2 又∵(2x-3)2≥0 ∴4x2-12x+9≥0,∴()2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结本节课应掌握: 1.(a≥0)是一个非负数; 2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业 1.教材P8 复习巩固2.(1)、(2) P9 7. 2.选用课时作业设计. 3.课后作业:《同步训练》第二课时作业设计一、选择题 1.下列各式中、、、、、,二次根式的个数是(). A.4 B.3 C.2 D.1 2.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0 二、填空题 1.(- )2=________. 2.已知有意义,那么是一个_______数.三、综合提高题 1.计算(1)()2 (2)-()2 (3)()2 (4)(-3 )2 (5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)(4)x(x≥0)3.已知 + =0,求xy的值. 4.在实数范围内分解下列因式: (1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)()2= ×6= (4)(-3 )2=9× =6 (5)-6 2.(1)5=()2 (2)3.4=()2 (3) =()2 (4)x=()2(x≥0) 3. xy=34=81 4.(1)x2-2=(x+ )(x- )(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- ) (3)略优品课件,意犹未尽,知识共享,共创未来!!!。
内容 基本要求略高要求较高要求二次根式的化简和运算 理解二次根式的加、减、乘、除运算法则会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)一、二次根式概念及化简二次根式的概念:形如a (0a ≥)的式子叫做二次根式.二次根式的基本性质:⑴0a ≥(0a ≥)双重非负性;⑵2()a a =(0a ≥);⑶2 (0)(0)a a a a a a ≥⎧==⎨-<⎩二、分母有理化 分母有理化:把分母中的根号化去叫做分母有理化. 互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.a b +与a b -互为有理化因式;分式有理化时,一定要保证有理化因式不为0.1、从二次根式的定义看出,二次根式的被开方数可以是一个数,也可以是一个式子,且被开方数必须是非负数.重点,难点知识点睛中考要求21.1 二次根式2、二次根式的性质具有双重非负性,即二次根式a 中被开方数非负()0a ≥,算术平方根非负()0a ≥.3、利用()()20a a a =≥得到()()20a a a =≥成立,可以把任意一个非负数或式写成一个数或式的平方的形式.如()222=.一、二次根式的概念及性质【例1】 当x 时,2223xx x --+有意义.【巩固】当x 取何值时,式子2xx +在实数范围内有意义. 【巩固】 求代数式12x x x +-+-的最小值. 【例2】 若332y x x =-+-+,求x y 的值.【巩固】(人大附中初一第2学期期末考试)已知:4322232b a a =-+-+,求11a b+的平方根.【例3】 (2007年成都)已知22(5)0a b -++=,那么a b +的值为 .二、二次根式估算【例4】 ⑴(2007年旅顺口区中考题)如右图,在数轴上A ,B 两点之间表示整数的点有个.⑵(2007年盐城市)30 ) A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间⑶(2007年安徽)55_________.例题精讲【巩固】 (2008192的值( )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间三、二次根式比较大小【例5】 把根号外的因式适当变形后移入根号内:⑴36-; ⑵1a a-- ⑶(4a a +--【例6】 比较下列各组中两个数的大小.⑴327332⑵32-31202【巩固】 比5342【例7】 比较大小:2635四、二次根式中的配方思想【巩固】 已知实数a ,b ,c 满足2122102a b b c c c -++-+=,求()a b c +要点一:二次根式的定义及性质 一、选择题1、(2010·聊城中考)无理数-3的相反数是( )A .- 3B . 3C .13D .-132、(2010·巴中中考)下列各数:21303003.072260cos 32.0902-︒,,,,,,, π中,无理数的个数是( )A 2个B 3个C 4个D 5个3、 (2009·宁波中考)2x -x 的取值范围是( ).A .2x ≠B .2x >C .2x ≤D .2x ≥ 4、(2009·天津中考)若x y ,为实数,且220x y +-=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 5.(2009·济宁中考)已知a 2a -A. aB. a -C. - 1D. 06.(200911x x --2()x y =+,则x -y 的值为( )A .-1B .1C .2D .37、(20082(1)1a a -=-,则a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤8、(2007·内江中考)已知ABC △的三边a b c ,,满足2|12|10422a b c a b ++-=+-,则ABC △为( ) (A )等腰三角形 (B )正三角形 (C )直角三角形(D )等腰直角三角形二、填空题9、(2010·常德中考)函数26y x =-x 的取值范围是_________.巩固训练10.(2009·黔东南中考)=-2)3(___________. 11、(2010·黄冈中考)2的平方根是_________.12. (2009·黄冈中考)当x __________时,二次根式4x -有意义. 13、(2009·黔东南中考)2x =___________14、(2009·崇左中考)当x ≤0时,化简21x x --的结果是 . 三、解答题15、(2008·广州中考)实数a 、b 在数轴上的位置如图所示.化简222()a b a b -+-..16、(2008·凉山中考)阅读材料,解答下列问题.例:当0a >时,如6a =则66a ==,故此时a 的绝对值是它本身 当0a =时,0a =,故此时a 的绝对值是零当0a <时,如6a =-则66(6)a =-==--,故此时a 的绝对值是它的相反数∴综合起来一个数的绝对值要分三种情况,即0000aa a a a a >⎧⎪==⎨⎪-<⎩当当当这种分析方法渗透了数学的分类讨论思想.问:(12a (22a a 的大小关系.要点二、二次根式的乘除及化简 一、选择题1、(2010·嘉兴中考)设a >0,b >0,则下列运算错误的是( )A ab a b a b +a b .a )2=a D a b ab2、(2009·贺州中考)下列根式中不是最简二次根式的是( ).A .2B .6C .8D . 10 3、(2009· 8( )A.2 B.22.22-.22±4.(2009·绵阳中考)已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .3 5、(2009·衡阳中考)下面计算正确的是( )A . 3333=+B . 3327=÷C . 532=⋅D .24±= 6、(2008211a aa --=,则a 的取值范围是( ) A .0a ≤B .0a <C .01a <≤D .0a >7.(2010·金华中考) 在 -33 -1, 0 这四个实数中,最大的是( )A. -3B.3-1 D. 08、(200720n n 为( )(A )2 (B )3(C )4 (D )59、(2007112753483的结果是( )(A )6 (B )3 (C )236 (D )12 二、填空题10、(2010483= . 12、(20072613-= .13、(2010·聊城中考)化简:27-12+43=______________. 三、解答题14、(2010·成都中考)计算:()121126.330tan 6-⎪⎭⎫⎝⎛+--+︒π15、(2009·乌鲁木齐中考)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝⎭.16、(2008·长春中考)计算要点三、二次根式的混合运算 一、选择题1、(20091123). A .733 B 332- C 3.5332、(2009·安顺中考)下列计算正确的是:( ).A 822=B 321C 325=.2363、(2009·新疆中考)若x m n y m n ==,xy 的值是( ).A .2mB .2nC .m n +D .m n -4、(200912718123的结果是( )5、(2009·十堰中考)下列运算正确的是( ). A .523=+B .623=⨯C .13)13(2-=-D .353522-=-6、(2007·南京中考)下列各数中,与23-的积为有理数的是( )(A)23+ (B)23- (C)23-+ (D)3 二、填空题7、(2010·杭州中考)先化简)12232461(32--, 再求得它的近似值为 . (精确到0.01)8、(2009·大连中考)计算)13)(13(-+=___________. 9、(2009·襄樊中考)计算:118232+-= _________.10、(2009·泸州中考)计算:=+-3)23(2 。
21.2.1 解一元二次方程——配方法一、温故知新 1.解方程:(1)(x -2)2-9=0;(2) x 2-6x+9=52.我们把形如222b ab a ++或222b ab a +-的二次三项式称为完全平方....式..已知下列各式均为完全平方式,请填空:(1)x 2+ 6x+ =(x+3)2(2)x 2-12x+ =(x- )2二、设问导读问题1: 怎样解方程x 2+6x+4=0?自学课本6页7页内容,可尝试独立完成框图问题2:典例解下列方程: (1)0182=+-x x(2)x x 3122=+(3)04632=+-x x归纳1:配方法解一元二次方程的步骤: 归纳2:一般地,如果一个一元二次方程通过配方转化成(x+n )²=p 的形式,那么就有: (1)当p>0时,方程有________实数根; (2)当p=0时,方程有________实数根; (3)当p>0时,方程________ ___.三、巩固训练1.用配方法解下列方程(1) 09102=++x x(2)0472=--x x(3) 04632=-+x x(4)112942-=-+x x x(5) 128)4(+=+x x x2..用配方法解下列方程时,配方正确的是( )A.方程x2-6x-5=0,可化为(x-3)2=4B.方程y2-2y-5=0,可化为(y-1)2=5C.方程a2+8a+9=0,可化为(a+4)2=25D.方程2x2-6x-7=0,可化为(x-32)2=2343.把一元二次方程x2-6x +4=0化成(x+n)2=m的形式时,m+n的值为( )A.8 B.6 C.3 D.24.若方程4x2-(m-2)x+1=0的左边是一个完全平方式,则m等于(B)A.-2 B.-或6C.-2或-6 D.2或-6四、拓展延伸当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( ) A .1 B .3C .14-D .74【答案】D【解析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解. 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型.2.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个【答案】B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B .3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm 【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A 、3+4<8,不能组成三角形; B 、8+7=15,不能组成三角形; C 、13+12>20,能够组成三角形; D 、5+5<11,不能组成三角形. 故选:C . 【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.4.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac- ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42bx a=-= ,即可得8a+b=0,选项D 正确,故选C. 点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中. 5.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3【答案】D【解析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可. 【详解】把11(,)3A y ,2(3,)B y 代入反比例函数1y x =,得:13y =,213y =, 11(,3),(3,)33A B ∴,在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大, 设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩,解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+,当0y =时,103x =,即10(,0)3P ,故选D. 【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.6.如图,某小区计划在一块长为31m ,宽为10m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 1.若设道路的宽为xm ,则下面所列方程正确的是( )A .(31﹣1x )(10﹣x )=570B .31x+1C .(31﹣x )(10﹣x )=31×10﹣570D .31x+1【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 1,即可列出方程:(31−1x)(10−x)=570, 故选A.7.﹣3的绝对值是( ) A .﹣3 B .3C .-13【答案】B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1. 故选B . 【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折C .8折D .9折【答案】B【解析】设可打x 折,则有1200×10x-800≥800×5%,解得x≥1. 即最多打1折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.9.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+1【答案】A 【解析】观察日历中的数据,用含a 的代数式表示出b ,c ,d 的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b =a+1,c =a+7,d =a+1.A 、∵a ﹣d =a ﹣(a+1)=﹣1,b ﹣c =a+1﹣(a+7)=﹣6,∴a ﹣d≠b ﹣c ,选项A 符合题意; B 、∵a+c+2=a+(a+7)+2=2a+9,b+d =a+1+(a+1)=2a+9,∴a+c+2=b+d ,选项B 不符合题意; C 、∵a+b+14=a+(a+1)+14=2a+15,c+d =a+7+(a+1)=2a+15,∴a+b+14=c+d ,选项C 不符合题意; D 、∵a+d =a+(a+1)=2a+1,b+c =a+1+(a+7)=2a+1,∴a+d =b+c ,选项D 不符合题意. 故选:A . 【点睛】考查了列代数式,利用含a 的代数式表示出b,c,d是解题的关键.10.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=【答案】D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.二、填空题(本题包括8个小题)11.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 200501000200A出芽种子数96 1654919841965 发芽率0.960.830.980.980.98B出芽种子数96 1924869771946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).【答案】②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 12.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.【答案】-1【解析】∵关于x,y的二元一次方程组23{+2=1①②+=-x y kx y的解互为相反数,∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案为-113.⊙O的半径为10cm,AB,CD是⊙O 的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.【答案】2或14【解析】分两种情况进行讨论:①弦AB 和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm. 故答案为:2或14.14.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________. 【答案】2【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】解:2012xxx-≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.如图,直线y=x+2与反比例函数y =kx的图象在第一象限交于点P.若OP=10,则k的值为________.【答案】1【解析】设点P(m,m+2),∵OP=10,∴()222m m ++ =10,解得m 1=1,m 2=﹣1(不合题意舍去), ∴点P (1,1), ∴1=1k,解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键.16.分解因式:a 3-a= 【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+ 17.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x≥0)与y 2=23x (x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=______.【答案】3﹣3【解析】首先设点B 的横坐标,由点B 在抛物线y 1=x 2(x≥0)上,得出点B 的坐标,再由平行,得出A 和C 的坐标,然后由CD 平行于y 轴,得出D 的坐标,再由DE ∥AC ,得出E 的坐标,即可得出DE 和AB ,进而得解.【详解】设点B 的横坐标为a ,则()2,B a a∵平行于x 轴的直线AC ∴()()220,,3,A aC a a又∵CD 平行于y 轴 ∴()23,3Da a又∵DE ∥AC∴()23,3E a a∴()33,DE a AB a =-= ∴DEAB=3﹣3 【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.18.已知A (0,3),B (2,3)是抛物线上两点,该抛物线的顶点坐标是_________.【答案】(1,4).【解析】试题分析:把A (0,3),B (2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.三、解答题(本题包括8个小题)19.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB 于B,DA=30km,CB=20km,那么基地E 应建在离A站多少千米的地方?【答案】20千米【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.20.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a 85b s初中2高中部85 c 100 160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.【答案】(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分75808585100a855++++==,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)222 2+++=5S初中(75-85)(80-85)(85-85)(85-85 =70,∵22S S初中高中<,∴初中代表队选手成绩比较稳定.【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.21.在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.【答案】这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.22.现有一次函数y=mx+n和二次函数y =mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y =mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a 的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h <1,请求出m的取值范围.【答案】(1)y=x﹣2,y=12-x2+32+1;(2)a<12;(3)m<﹣2或m>1.【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n=−2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>1,确定二次函数开口向上,此时当y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n2m-,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围.【详解】(1)将点(2,1),(3,1),代入一次函数y =mx+n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2, 再将点(2,1),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++.(2)∵一次函数y =mx+n 经过点(2,1), ∴n =﹣2m ,∵二次函数y =mx 2+nx+1的对称轴是x =n 2m-, ∴对称轴为x =1,又∵一次函数y =mx+n 图象经过第一、三象限, ∴m >1, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx+1的顶点坐标为A (h ,k ),∴k =mh 2+nh+1,且h =n 2m-, 又∵二次函数y =x 2+x+1也经过A 点, ∴k =h 2+h+1, ∴mh 2+nh+1=h 2+h+1, ∴11h m =-+, 又∵﹣1<h <1, ∴m <﹣2或m >1. 【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.23.观察下列等式:第1个等式:a 1=, 第2个等式:a 2=, 第3个等式:a 3第4个等式:a 4=-2,…按上述规律,回答以下问题:请写出第n 个等式:a n =__________.a 1+a 2+a 3+…+a n =_________.【答案】(1)n a =(2)1.【解析】(1)根据题意可知,1 1a ==,2a ==32a ==-42a ==,…由此得出第n个等式:a n=(2)将每一个等式化简即可求得答案. 【详解】解:(1)∵第1个等式:11a ==,第2个等式:2a ==第3个等式:32a == 第4个等式:42a ==,∴第n 个等式:a n=(2)a 1+a 2+a 3+…+a n =()()(+++++n+11.=11n+-.【点睛】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.24.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F 在边AB上,连接CF交线段BE于点G,CG2=GE•GD.求证:∠ACF=∠ABD;连接EF,求证:EF•CG=EG•CB.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)先根据CG2=GE•GD得出CG GDGE CG=,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故FG EGBG CG=.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.试题解析:(1)∵CG2=GE•GD,∴CG GDGE CG=.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴FG EGBG CG=.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴FE EGBC CG=,∴FE•CG=EG•CB.考点:相似三角形的判定与性质.25.解不等式组22(4)113x xxx-≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解.【答案】﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x xxx⎧-≤+⎪⎨-<+⎪⎩①②,解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0, 26.如图,在Rt △ABC 中,∠C=90°,O 为BC 边上一点,以OC 为半径的圆O ,交AB 于D 点,且AD=AC ,延长DO 交圆O 于E 点,连接AE.求证:DE ⊥AB ;若DB=4,BC=8,求AE 的长.【答案】(1)详见解析;(2)62 【解析】(1)连接CD ,证明90ODC ADC ∠+∠=︒即可得到结论;(2)设圆O 的半径为r ,在Rt △BDO 中,运用勾股定理即可求出结论. 【详解】(1)证明:连接CD,∵O D O C =∴O D C O CD ∠=∠ ∵AD AC =∴ADC ACD ∠=∠90,90,OCD ACD ODC ADC DE AB∠+∠=︒∴∠+∠=∴⊥.(2)设圆O 的半径为r ,()2224+8,3r r r ∴=-∴=,设()22222,84,6,6+662AD AC x x x x AE ==∴+=+∴=∴. 【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-4 【答案】B【解析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键. 2.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A .B .C .D .【答案】A【解析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.3.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A .55B .255C .12D .2【答案】A【解析】解:在直角△ABD 中,BD=2,AD=4,则AB=22222425BD AD +=+=,则cosB=25525BD AB ==. 故选A .4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3 B .a=-2,b=-3 C .a=-2,b=3 D .a=2,b=-3 【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可. 详解:(x+1)(x-3) =x 2-3x+x-3 =x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 5.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°【答案】A【解析】试题分析:∵AB ∥CD ,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE 的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A .考点:平行线的性质.6.下列交通标志是中心对称图形的为( ) A .B .C .【答案】C【解析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近【答案】D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.8.如图,已知D是ABC中的边BC上的一点,BAD C∠=∠,ABC∠的平分线交边AC于E,交AD于F,那么下列结论中错误的是()A.△BAC∽△BDA B.△BFA C.△BDF∽△BEC D.△BD 【答案】C【解析】根据相似三角形的判定,采用排除法,逐项分析判断. 【详解】∵∠BAD=∠C , ∠B=∠B ,∴△BAC ∽△BDA .故A 正确. ∵BE 平分∠ABC , ∴∠ABE=∠CBE ,∴△BFA ∽△BEC .故B 正确. ∴∠BFA=∠BEC , ∴∠BFD=∠BEA ,∴△BDF ∽△BAE .故D 正确.而不能证明△BDF ∽△BEC ,故C 错误. 故选C . 【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角. 9.若关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是( ) A .m <﹣1 B .m <1C .m >﹣1D .m >1【答案】B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m >0,解之即可得出结论.【详解】∵关于x 的一元二次方程x 2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m >0, 解得:m <1. 故选B . 【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.10.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22【答案】A 【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°. 若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°. 在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3, 由勾股定理得:AD 1=13.故选A.考点: 1.旋转;2.勾股定理. 二、填空题(本题包括8个小题) 11.分解因式:3ax 2﹣3ay 2=_____. 【答案】3a (x +y )(x -y )【解析】解:3ax 2-3ay 2=3a (x 2-y 2)=3a (x+y )(x-y ). 【点睛】本题考查提公因式法与公式法的综合运用.12.分解因式:a 3-a= 【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+13.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.【答案】1【解析】画出图形,设菱形的边长为x ,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm , 在Rt △ABC 中,由勾股定理:x 2=(8-x )2+22, 解得:x=174, ∴4x=1,即菱形的最大周长为1cm . 故答案是:1. 【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.14.如图,是用火柴棒拼成的图形,则第n 个图形需_____根火柴棒.【答案】2n+1.【解析】解:根据图形可得出: 当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.15.同一个圆的内接正方形和正三角形的边心距的比为_____.【答案】2:1【解析】先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【详解】设⊙O的半径为r,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=22R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH 为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=12∠EGF=30°,∴OH=OG×sin30°=12R,∴OQ:OH=2R):(12R)2 1,21.【点睛】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.16.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,则可列方程为__________.【答案】8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决 【详解】解:由题意可设有x 人, 列出方程:8374xx +﹣=, 故答案为8374x x +﹣=. 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.17.如图,已知AB ∥CD ,若14AB CD =,则OAOC=_____.【答案】14【解析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD ,∴14OA AB OC CD ==, 故答案为14.【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.18.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______. 【答案】1【解析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m 的图象经过点P (2,3), ∴3=4-m , 解得m=1, 故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.三、解答题(本题包括8个小题)。