初一数学上册第四章易错难点整理卷
- 格式:rtf
- 大小:200.96 KB
- 文档页数:1
人教版七年级数学上册第四章几何图形初步必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠BOD=118°,∠COD是直角,OC平分∠AOB,则∠AOB的度数是()A.48°B.56°C.60°D.32°C D E,则图中共有线段()2、如图,已知线段AB上有三点,,A.7条B.8条C.9条D.10条3、下列说法:(1)两条射线组成的图形叫做角;(2)角的两边是两条线段;(3)平角的两边组成一条直线;(4)周角就是一条射线.其中正确的有()A.1个B.2个C.3个D.4个4、用一个平面去截一个几何体,截面可能都是圆的几何体是()A .球、棱柱B .球、圆锥、圆柱C .球、正方体D .圆锥、棱柱5、 “枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线6、下列说法中,正确的是()①已知40A ∠=︒,则A ∠的余角是50°②若1290∠+∠=︒,则1∠和2∠互为余角.③若123180∠+∠+∠=︒,则1∠、2∠和3∠互为补角.④一个角的补角必为钝角.A .①,②B .①,②,③C .③,④,②D .③,④ 7、一副直角三角板有不同的摆放方式,图中满足∠α与∠β相等的摆放方式是( )A .B .C .D .8、已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒9、如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .110、下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“功”字所在面相对面上的汉字是_______2、如图,在数轴上有A、B、C、D四个点,且BC=2AB=3CD,若A、D两点表示的数分别为-5和6,那么B点所表示的数是______.3、如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为_____cm.4、将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体,其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n等分,如果得到各面都没有涂色的小正方体216个,那么n的值为_____.5、一个角的余角为3527'︒,则这个角的补角为_______________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知点A 、B 、C 在同一直线上,M 是BC 的中点.(1)图中共有多少条线段;(2)若AC =20,BC =8.①求AB 的长;②求AM 的长.2、如图所示,一个无盖的长方体纸盒,其长宽高分别为5cm ,4cm ,3cm .请你画出一种表面展开图(大概示意图),并计算其表面积.3、我们规定,如果两个角的差是一个直角,那么这两个角互为足角. 其中的一个角叫做另一个角的足角.(1)如图,直线经过点O ,OE 平分,COB OF OE ∠⊥.请直接写出图中BOF ∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数.4、已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°)(1)若∠AOB =60°,∠COD =40°,①当α=0°时,如图1,则∠POQ = ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).5、如图1,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°,将一直角三角板的直角项点放在O 处,一直角边OM 在射线O 上,另一直角边ON 在直线AB 的下方.(1)将图1中的三角形绕点O 逆时针旋转至图2,使边OM 在BOC ∠的内部,且恰好平分BOC ∠,问:此时直线ON 是否平分AOC ∠?计算出图中相关角的度数说明你的观点;(2)将图1中的三角板以每秒5°的速度绕点O 逆时针方向旋转一周,在旋转过程中,第n 秒时,直线ON 恰好平分AOC ∠,则n 的值为____________(直接写出答案);(3)将图1中三角板绕点O 旋转至图3,使ON 在AOC ∠的内部时,求AOM ∠与NOC ∠的数量关系,并说明理由.-参考答案-一、单选题1、B【解析】【分析】根据角平分线的定义可知,∠AOB=2∠AOC=2∠BOC,由∠COD是直角可得∠COD=90°,根据已知条件可求∠BOC,进一步得到∠AOB的度数.【详解】解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.故选:B.【考点】本题主要考查了角的计算,准确应用角平分线的性质计算是关键.2、D【解析】略3、A【解析】根据角的定义,平角,周角的定义,逐项分析即可,具有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边.一条射线绕它的端点旋转,当始边和终边在同一条直线上,方向相反时,所构成的角叫平角;平角等于180°,是角的两边成一条直线时所成的角;周角,即一条射线绕着它的端点旋转一周所形成的角,周角等于360°,是角的一边绕着顶点旋转一周与另一边重合时所形成的角.【详解】(1)具有公共端点的两条射线组成的图形叫做角,故(1)不正确;(2)角的两边是两条射线,故(2)不正确;(3)平角的两边组成一条直线,故(3)正确;(4)周角是一条射线绕着它的端点旋转一周所形成的角,故(4)不正确,故正确的有(3)共1个.故选A.【考点】本题考查了角的定义,平角与周角的定义,理解定义是解题的关键.4、B【解析】【分析】根据圆柱、正方体、棱柱、球、圆锥、长方体的形状特点:如果截面的形状是圆,那么原来的几何体有可能是圆锥、圆柱、球体,由此判断即可.【详解】解:A、D中棱柱截面一定不是圆,此选项错误;C、正方体截面一定不是圆,此选项错误;B、球、圆锥、圆柱都有曲面,所以截面可能都是圆.【考点】本题考查用一个平面去截一个几何体;一般的,截面与几何体的几个面相交,就得到几条交线,截面与平面相交就得到几边形;截面与曲面相交,得到曲线,截面是圆或不规则图形.5、A【解析】【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【考点】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.6、A【解析】【分析】根据余角及补角的定义进行判断即可.【详解】∵和为180度的两个角互为补角,和为90度的两个角互为余角,∴①已知∠A=40°,则∠A的余角=50°,正确,②若∠1+∠2=90°,则∠1和∠2互为余角,正确,③∠1、∠2和∠3三个角不能互为补角,故错误,④若一个角为120°,则这个角的补角为60°,不是钝角,故错误,∴正确的是:①②.故选:A.【考点】本题考查了余角及补角,掌握余角和补角的定义是解题的关键.7、B【解析】【分析】根据题意分别求出∠α、∠β关系,做出判断即可.【详解】解:A. ∠α、∠β互余,不合题意;B.根据根据同角的余角相等可得∠α=∠β,符合题意;C. ∠α=60°,∠β=75°,不合题意;D. ∠α=45°,∠β=60°,不合题意.故选:B.【考点】本题考查了互为余角的意义.掌握同角的余角相等是解题的关键. 8、A【解析】【分析】根据余角的定义、角度的四则运算即可得.【详解】和为90︒的两个角互为余角,且6032α'∠=︒,α∴∠的余角为909060322928α''︒-∠=︒-︒=︒,故选:A .【考点】本题考查了余角、角度的四则运算,熟练掌握余角的定义是解题关键.9、C【解析】【分析】由AB =10cm ,BC =4cm .于是得到AC =AB +BC =14cm ,根据线段中点的定义由D 是AC 的中点,得到AD ,根据线段的和差得到MD =AD ﹣AM ,于是得到结论.【详解】解:∵AB =10cm ,BC =4cm ,∴AC =AB +BC =14cm ,∵D 是AC 的中点,∴AD =12AC =7cm ;∵M 是AB 的中点,∴AM =12AB =5cm ,∴DM =AD ﹣AM =2cm .故选:C .【考点】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.10、C【解析】【详解】分析:根据平面图形的定义逐一判断即可.详解:A.圆锥和球不是平面图形,故错误;B. 棱锥、棱柱不是平面图形,故错误;C.角,三角形,正方形,圆都是平面图形,故正确;D.长方体不是平面图形,故错误.故选C.点睛:本题考查了平面图形的定义,一个图形的各部分都在同一个平面内的图形叫做平面图形据此可解.二、填空题1、然【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,找对面的口诀是:“跳一跳,找对面,找不到,拐个弯.”根据这一特点作答即可.【详解】由正方体展开图的性质,可得:“成”与“非”是相对面,“功”与“然”是相对面,“绝”与“偶”是相对面.故答案为:然.此题考查了正方体相对面上的字,解题的关键是掌握正方体展开图的性质.2、-2【解析】【分析】先由A、D表示的数求出AD,再根据所给等式用BC表示出AB、CD,由AB+BC+CD=AD求出BC,进而求得AB,即可求得B点所表示的数.【详解】解:∵A、D两点表示的数分别为-5和6,∴AD=6-(-5)=11,∵BC=2AB=3CD,∴AB= 12BC,CD=13BC,∵AB+BC+CD=AD,∴12BC+BC+13BC=11,解得:BC=6,∴AB=12BC=3,∴B点所表示的数是-5+3=-2,故答案为:-2.【点睛】本题考查数轴、线段的和与差,熟练掌握数轴上两点之间的距离,会利用图形进行线段的和与差是解答的关键.3、1【分析】先根据中点定义求BC的长,再利用线段的差求CD的长.【详解】解:∵C为AB的中点,AB=8cm,∴BC=12AB=12×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为1.【点睛】此题主要考查线段的长度,解题的关键是熟知线段长度的运算关系.4、8【解析】【分析】求出没有涂色的部分的棱长,进而求出原正方体的棱长,确定n的值即可.【详解】解:∵6×6×6=216,∴没有涂色的小正方体所组成的大正方体的棱长为6,∴n=6+1+1=8,故答案为:8.【点睛】本题考查认识立体图形,理解没有涂色的小正方体的棱长与原正方体的棱长之间的关系是正确解答的关键.5、12527'︒【解析】【分析】直接根据余角和补角的概念即可求解.【详解】解:解:由题意得,这个角是90︒-3527'︒=5433︒',则这个角的补角是180°5433-︒'=12527'︒. 故答案为:12527'︒.【点睛】此题主要考查余角和补角的概念,正确理解概念是解题关键.三、解答题1、(1)6条;(2)①AB =12.②AM =16.【解析】【分析】(1)根据线段的定义判断即可.(2)利用线段的和差定义,线段的中点的性质即可解决问题.【详解】解:(1)图中线段有:线段AB ,线段AM ,线段AC ,线段BM ,线段BC ,线段MC ,共6条.(2)①∵AC =20,BC =8,∴AB =AC ﹣BC =20﹣8=12.②∵点M 是BC 的中点,BC =8,∴BM =12BC =4,∴AM =AB +BM =12+4=16.【考点】本题考查两点间距离,线段的和差定义等知识,解题的关键是理解题意,属于中考常考题型.2、表面展开图见解析;74平方厘米.【解析】【分析】按长方体展开图的特征画图即可;分别计算五个面的面积相加即可解答.【详解】解:表面展开图如图所示:表面积=(5×3+4×3)×2+5×4=54+20=74(平方厘米),答:这个纸盒的表面积是74平方厘米.【考点】此题考查的是理解掌握长方体展开图的特征,以及长方体表面积的计算.3、(1)COE BOE ∠∠、;(2)这个角的度数为18或126︒.【解析】【分析】(1)根据题意,得到90FOE ∠=︒,BOE COE ∠=∠,由足角的定义,即可得到答案;(2)设这个角为x ︒,然后分090x <<和90180x <<两种情况进行讨论,列式计算,即可得到答案.【详解】解:(1)∵OE 平分,COB OF OE ∠⊥,∴BOE COE ∠=∠,90FOE ∠=︒,∴90BOF BOE BOF COE FOE ∠-∠=∠-∠=∠=︒,∴BOF ∠的足角为:COE BOE ∠∠、.(2)设这个角的度数为x ︒,当090x <<时,()2901803x x +=- 解得:18x =.当90180x <<时,()2901803x x -=- 解得:126x =.∴这个角的度数为:18︒或126︒.【考点】本题考查了角平分线的性质,解一元一次方程,以及新定义,解题的关键是熟练运用所学知识进行解题.4、(1)①50°;②50°;③130°;(2)12m °+12n °或180°-12m °-12n °【解析】【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB=60°,∠COD=40°,OP平分∠AOC,OQ平分∠BOD,∴∠BOP=12∠AOB=30°,∠BOQ=12∠COD=20°,∴∠POQ=50°,故答案为:50°;②解:∵∠AOB=60°,∠BOC=α=80°,∴∠AOC=140°,∵OP平分∠AOC,∴∠POC=12∠AOC=70°,∵∠COD=40°,∠BOC=α=80°,且OQ平分∠BOD,同理可求∠DOQ=60°,∴∠COQ=∠DOQ-∠DOC=20°,∴∠POQ=∠POC-∠COQ=70°-20°=50°;③解:补全图形如图3所示,∵∠AOB=60°,∠BOC=α=130°,∴∠AOC=360°-60°-130°=170°,∵OP平分∠AOC,∴∠POC=12∠AOC=85°,∵∠COD=40°,∠BOC=α=130°,且OQ平分∠BOD,同理可求∠DOQ=85°,∴∠COQ=∠DOQ-∠DOC=85°-40°=45°,∴∠POQ=∠POC+∠COQ=85°+45°=130°;(2)当∠AOB=m°,∠COD=n°时,如图2,∴∠AOC= m°+ α°,∵OP平分∠AOC,∴∠POC=12(m°+ α°),同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)- n°=12(-n°+ α°),∴∠POQ=∠POC-∠COQ=12(m°+ α°)-12(-n°+ α°)=1 2m°+12n°,当∠AOB =m °,∠COD =n °时,如图3,∵∠AOB =m °,∠BOC =α,∴∠AOC =360°-m °-α°, ∵OP 平分∠AOC ,∴∠POC =12∠AOC =180°12-(m °+ α°),∵∠COD =n °,∠BOC =α,且OQ 平分∠BOD ,同理可求∠DOQ =12(n °+ α°),∴∠COQ =∠DOQ -∠DOC =12(n °+ α°)-n °=12(-n °+ α°),∴∠POQ =∠POC +∠COQ =180°12-(m °+ α°)+ 12(-n °+ α°)=180°-12m °-12n °,综上所述,若∠AOB =m °,∠COD =n °,则∠POQ =12m °+12n °或180°-12m °-12n °. 故答案为:12m °+12n °或180°-12m °-12n °.【考点】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.5、 (1)35°,见解析(2)11或47(3)20AOM NOC ∠-∠=︒,见解析【解析】【分析】(1)如图,作射线,NT 先求解,,BON AOT 再求解,COT 从而可得答案;(2)分两种情况:①如图2,当直线ON 恰好平分锐角∠AOC 时,此时逆时针旋转的角度为55°,②如图3,当NO 平分∠AOC 时,∠NOA =35°,此时逆时针旋转的角度为:180°+55°=235°,再求解时间t 即可;(3)由90A M O A N O =︒-∠∠,70NOC AON ∠=︒-∠,消去AON ∠即可得到答案.(1)解:如图,过点O 作射线,NT∵OM 平分∠BOC ,∴∠MOC =∠MOB ,又∵∠BOC =110°,∴∠MOB =55°,∵∠MON =90°,∴35BON MON MOB ∠=∠-∠=︒,35,1801103535,AOT COT,AOT COT OT ∴平分,AOC ∠ 即直线ON 平分.AOC(2)解:分两种情况:①如图2,∵∠BOC =110°,∴∠AOC =70°,当直线ON 恰好平分锐角∠AOC 时,∠AOD =∠COD =35°,∴∠BON =35°,∠BOM =55°,即逆时针旋转的角度为55°,由题意得,5t =55°解得t =11(s );②如图3,当NO 平分∠AOC 时,∠NOA =35°,∴∠AOM =55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t =235°,解得t =47(s ),综上所述,t =11s 或47s 时,直线ON 恰好平分锐角∠AOC ;故答案为:11或47;(3)解:20AOM NOC ∠-∠=︒.理由:∵90MON ∠=︒,∠AOC =70°,∴90A M O A N O =︒-∠∠,70NOC AON ∠=︒-∠,∴()()907020AOM NOC AON AON ∠-∠=︒-∠-︒-∠=︒,∴∠AOM 与∠NOC 的数量关系为:20AOM NOC ∠-∠=︒.【考点】本题考查的是几何图形中角的和差关系,角的动态定义,角平分线的定义,掌握“几何图形中角的和差关系”是解本题的关键.。
第四章几何图形初步(重难易错必考点查漏补缺集)-七年级数学上册单元培优达标强化卷(人教版)解析版1.(2019·河北初一期末)把一副三角板的直角顶点O重叠在一起.(1)问题发现:如图①,当OB平分①COD时,①AOD+①BOC的度数是;(2)拓展探究:如图①,当OB不平分①COD时,①AOD+①BOC的度数是多少?(3)问题解决:当①BOC的余角的4倍等于①AOD时,求①BOC的度数.【答案】(1)180°;(2)180°;(3)60°.解:(1)∵OB平分∵COD,∵∵BOC=∵BOD=45°.∵∵AOC+∵BOC=45°,∵∵AOC=45°,∵∵AOD+∵BOC=∵AOC+∵COD+∵BOC=45°+90°+45°=180°.故答案为180°;(2)∵∵AOB=∵AOC+∵BOC=90°,∵COD=∵BOD+∵BOC=90°,∵∵AOD+∵BOC=∵AOC+∵BOC+∵BOD+∵BOC=90°+90°=180°;(3)∵由(1)、(2)得,∵AOD+∵BOC=180°,∵∵AOD=180°﹣∵BOC.∵∵AOD=4(90°﹣∵BOC),∵180°﹣∵BOC=4(90°﹣∵BOC),∵∵BOC=60°.2.(2019·四川初一期末)如图,点O 为直线AB 上一点,过点O 作射线OC ,使110BOC ∠=°,将一直角三角板的直角顶点放在点O 处(30OMN ∠=︒),一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠,求BON ∠的度数;(2)将图1中的三角板绕点O 以每秒5〫的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,求t 的值;将图1中的三角板绕点O 逆时针旋转至图3,使一边ON 在AOC ∠的内部,请探究AOM NOC ∠-∠的值.【答案】(1)35°;(2)11或47;(3)∠AOM -∠NOC=20°. 解:(1)如图2中, ∵OM 平分∠BOC , ∴∠MOC=∠MOB , 又∵∠BOC=110°, ∴∠MOB=55°, ∵∠MON=90°,∴∠BON=∠MON -∠MOB=35°; (2)(2)分两种情况: ①如图2,∵∠BOC=110° ∴∠AOC=70°,当当ON 的反向延长线平分∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°, 即逆时针旋转的角度为55°, 由题意得,5t=55° 解得t=11;②如图3,当射线ON 平分∠AOC 时,∠NOA=35°, ∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°, 由题意得,5t=235°, 解得t=47,综上所述,t=11s 或47s 时,直线ON 恰好平分锐角∠AOC ; 故答案为:11或47; (3)∠AOM -∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°, ∴∠AOM=90°-∠AON ,∠NOC=70°-∠AON ,∴∠AOM -∠NOC=(90°-∠AON )-(70°-∠AON )=20°, ∴∠AOM 与∠NOC 的数量关系为:∠AOM -∠NOC=20°.3.(2020·全国初一课时练习)已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.【答案】(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠.因为180AEB ︒∠=,所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠.因为180AEB ︒∠=,30FEG ︒∠=,所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=. (3)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=,()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.4.(2020·全国初一课时练习)如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠. (1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)【答案】(1)140︒;(2)2α解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=. ∵OE 平分BOC ∠, ∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-. ∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.5.(2020·河北初一期末)如图,点C 是AB 的中点①D ①E 分别是线段AC ①CB 上的点,且AD ①23AC ①DE ①35AB ,若AB ①24 cm ,求线段CE 的长.【答案】CE ∵10.4cm . 【详解】 ∵AC=BC=12AB=12cm ,CD=13AC=4cm ,DE=35AB=14.4cm , ∵CE=DE ﹣CD=10.4cm.6.(2020·湖北初一期末)如图所示,把一根细线绳对折成两条重合的线段AB ,点P 在线段AB 上,且:2:3AP BP =.(l )若细线绳的长度是100cm ,求图中线段AP 的长;(2)从点P 处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm ,求原来细线绳的长.【答案】(1)20cm ;(2)150cm 或100cm . 解:(1)由题意得1100502AB cm =⨯=, :2:3,AP BP AP BP AB =+=22023ABAP cm ∴=⨯=+ 所以图中线段AP 的长为20cm .(2)如图,当点A 为对折点时,最长的一段为PAP 段,260,30AP cm AP cm ∴=∴=,:2:3AP BP =303452BP cm ∴=⨯= 304575AB AP BP cm ∴=+=+=所以细线长为2275150AB cm =⨯=;如图,当点B 为对折点时,最长的一段为PBP 段,260,30BP cm BP cm ∴=∴=,:2:3AP BP =302203AP cm ∴=⨯= 203050AB AP BP cm ∴=+=+=所以细线长为2250100AB cm =⨯=, 综合上述,原来细线绳的长为150cm 或100cm .7.如图,,C D 是线段AB 上的两点,且满足::3:2:1AC CD DB M N =,,分别为AC 和 C B 的中点.()1若24AB =,求DN 的长度; ()2证明:56()MN CD DN =+.【详解】() 124AB =,且::3:2:1AC CD DB =, 218,466CD AB DB AB ∴====, 12CB CD DB ∴=+=, N 为CB 的中点,162CN CB ∴==,862ND CD CN =∴=--=()2证明:M 为AC 的中点,N 为CB 的中点,11,22MC AC CN CB ∴==, 111222MN MC CN AC CB AB ∴=+=+=, ::3:2:1AC CD DB =,211,636CD AB AB DB AB ∴===, 12CB CD DB AB ∴=+=, 11112224CN CB AB AB ∴==⨯=,1113412DN CD CN AB AB AB ∴=-=-=, ()115()663122CD DN AB AB AB ∴+=⨯+=,又155522MN AB AB =⨯=, ()56MN CD DN ∴=+8.(2020·全国初一课时练习)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.【答案】(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析. 【详解】(1)14-,85t -; (2)分两种情况: ①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =. ②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2; (3)线段MN 的长度不发生变化,其值为11, 理由如下:①当点P 在点A B 、两点之间运动时:11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.9.(2019·全国初一单元测试)我们知道,对于一些立体图形问题,常把它转化为平面图形来研究和处理,棱长为a 的正方体摆成如图所示的形状,问:①1)这个几何体共有几个正方体? ①2)这个几何体的表面积是多少? 【答案】∵1∵10个正方体;∵2∵36a 2∵解:(1)上面一层有1个正方体,中间层有3个正方体,底层有6个正方体,共10个正方体;(2)根据以上分析该物体的表面积为6×6×a 2=36a 2∵10.(2018·全国初一单元测试)图是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把-10,8,10,-3,-8,3分别填入图中的六个小正方形中;(2)若某两个相对面上的数字分别为2-13x和322x+-5,求x的值.【详解】(1)答案不唯一,其中的一种情况如图.(2)依题意得2-13x=-32-52x+⎛⎫⎪⎝⎭,解得x=2.11.(2018·全国初一单元测试)若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.【答案】4.解:这是一个正方体的平面展开图,共有六个面,其中面“z”与面“3”相对,面“y”与面“∵2”相对,“x”与面“10”相对.则z+3=5∵y+∵∵2∵=5∵x+10=5∵解得z=2∵y=7∵x=∵5∵故x+y+z=4∵12.(2019·全国初一单元测试)如图是由7个完全相同是正方体组成的立体图形,画出从不同方向看该几何体得到的平面图形.解:如图所示:。
《易错题》初中七年级数学上册第四章《几何图形初步》测试题(专题培优)一、选择题1.如图,已知点C为线段AB的中点,则①AC=BC;②AC=12AB;③BC=12AB;④AB=2AC;⑤AB=2BC,其中正确的个数是()A.2 B.3 C.4 D.5D 解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.已知线段AB、CD,<AB CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A.∠AOD+∠BOE=60°B.∠AOD=12∠EOCC.∠BOE=2∠COD D.∠DOE的度数不能确定A解析:A【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【详解】A、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述正确;B、∵OD是∠AOC的角平分线,∴∠AOD=12∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立.故本选项叙述错误;C、∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立.故本选项叙述错误;D 、∵OD 、OE 分别是∠AOC 、∠BOC 的平分线,∴∠DOE=12(∠BOC+∠AOC )=12∠AOB=60°. 故本选项叙述错误;故选A .【点睛】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.5.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A .B .C .D . C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A 、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B .主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C .主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D .主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C .【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个. 6.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒A解析:A【分析】根据题意,先求得∠COB 的值;OM 平分∠BOC ,ON 平分∠AOC ,则可求得∠AOM 、∠AON 的值;∠MON=∠AOM+∠AON ,计算得出结果.【详解】∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM 平分∠BOC ,∴∠BOM=12∠BOC=65°, ∴∠AOM=∠AOB-∠BOM=25°,∵ON 平分∠AOC ,∴∠AON=12∠AOC=20°, ∴∠MON=∠AOM+∠AON=45°.∴∠MON 的度数是45°.故选:A .【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.7.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6A 解析:A【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长.【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =.因为点D 是线段AC 的中点,所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=.故选A .【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.8.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD=n,则AB=()A.m﹣n B.m+n C.2m﹣n D.2m+n C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.9.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.10.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A 出发要经过6个车站,所以要制作6种车票,从B 出发要经过5个车站,所以要制作5种车票,从C 出发要经过4个车站,所以要制作4种车票,从D 出发要经过3个车站,所以要制作3种车票,从E 出发要经过2个车站,所以要制作2种车票,从F 出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C .【点睛】本题从A 站出发,逐站求解即可得到所有可能的情况,不要遗漏.二、填空题11.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.12.如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC 平分∠BOD ∴∠解析:40°【解析】【分析】由题意可知∠1+∠2=100°,从而得到∠BOD =80°,由角平分线的定义可得到结论.【详解】∵∠1=28°,∠2=72°,∴∠1+∠2=100°,∴∠BOD=80°.∵OC平分∠BOD,∴∠COD=∠BOC12BOD ∠==40°.故答案为40°.【点睛】本题考查了角平分线的定义,掌握图形间角的和差关系是解题的关键.13.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.14.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.15.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故答案为两点确定一条直线【点睛】本题考查了两点确定一条直线的公理难度适中解析:两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.16.如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两解析:② 两点之间,线段最短【分析】结合“两点之间线段最短”以及图形信息即可解答本题.【详解】根据题意,可把家与超市看作两个点,结合“两点之间线段最短”即可得出第②条为最短距离,即数学知识为“两点之间线段最短”.【点睛】本题考查两点之间的最短距离,熟练掌握“两点之间线段最短”的性质是解题关键.17.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算正方体的体积=棱长×棱长×棱长1分米=01米即可解答【详解】棱长为1米的正方体的体积是1立方米棱长为1分米的小正方体的体积是1立方分米解析:100【解析】【分析】根据正方体的体积公式以及长度单位之间的换算,正方体的体积=棱长×棱长×棱长,1分米=0.1米,即可解答【详解】棱长为1米的正方体的体积是1立方米,棱长为1分米的小正方体的体积是1立方分米,1立方米=1000立方分米,所以1000÷1=1000(个),则总长度是1×1000=1000(分米)=100(米).【点睛】此题考查正方体的体积公式以及长度单位之间的换算,掌握换算法则是解题关键18.25°20′24″=______°.34°【分析】此类题是进行度分秒的转化运算相对比较简单注意以60为进制【详解】25°20′24″=2534°故答案为2534【点睛】进行度分秒的转化运算注意以60为进制解析:34°【分析】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.【详解】25°20′24″=25.34°,故答案为25.34.【点睛】进行度、分、秒的转化运算,注意以60为进制.19.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是__和___.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数解析:4【分析】从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【详解】第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,5对应的底面数字为4.故答案为3,4.20.如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为______.65°【解析】∵把一张长方形纸片沿AB折叠∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°解析:65°【解析】∵把一张长方形纸片沿AB折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1) 2=65°.三、解答题21.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.22.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案. 【详解】(1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.23.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒.∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC 与∠AOB 互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP 是∠AOC 的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.24.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.解析:(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.25.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.26.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)连接E 、F 交BC 于点G ;(4)连接AD ,并将其反向延长;(5)作射线BC .解析:见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ;(2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.27.已知线段AB=12,CD=6,线段CD在直线AB上运动(C、A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①PA PBPC+是定值;②PA PBPC-是定值,请作出正确的选择,并求出其定值.解析:(1)MN=9;(2)①PA PBPC+是定值2.【分析】(1)如图,根据“M、N分别为线段AC、BD的中点”,可先计算出CM、BN的长度,然后根据MN=MC+BC+BN利用线段间的和差关系计算即可;(2)根据题意可得:当CD运动到D点与B点重合时,C为线段AB的中点,根据线段中点的定义可得AC=BC,此时①式可变形为()()PC AC PC BCPA PBPC PC++-+=,进而可得结论.【详解】解:(1)如图,∵M、N分别为线段AC、BD的中点,∴CM=12AC=12(AB﹣BC)=12(12﹣4)=4,BN=12BD=12(CD﹣BC)=12(6﹣4)=1,∴MN=MC+BC+BN=4+4+1=9;(2)①正确,且PA PB PC +=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.28.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.。
几何初步易错题训练1.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1 个B.2 个C.3 个D.4 个2.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个B.2个C.3个D.4个3.如图所示的图形中,可用∠AOB,∠1、∠O是三种方法标识同一个角的是()A.B.C.D.4.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是()A.10个B.9个C.8个D.4个5.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.40°B.50°C.140°D.130°6.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.7.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20°B.40°C.20°或40°D.30°或10°8.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4 B.3 C.2 D.19.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是.10.线段AB=8cm.在直线AB上另取一点C,使AC=2cm,P、Q分别是AB、AC的中点,则线段PQ 的长度为cm.解答题训练1.如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=80°,∠BOC =60°,求∠AOD的度数.2.如图OC是∠AOB内部的一条射线,∠BOC=2∠AOC,OD平分∠AOC.(1)若∠AOB=120°,求∠BOC和∠BOD的度数;(2)画出∠BOC的平分线OE,说明∠DOE=∠AOB.3.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.14.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.参考答案与试题解析一.选择题(共8小题)1.下列说法正确的个数是()①射线AB与射线BA是同一条射线;②两点确定一条直线;③两条射线组成的图形叫做角;④两点之间直线最短;⑤若AB=BC,则点B是AC的中点.A.1 个B.2 个C.3 个D.4 个【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两条端点重合的射线组成的图形叫做角,故③错误;④两点之间线段最短,故④错误;⑤若AB=BC,则点B不一定是AC的中点,故⑤错误.故选:A.【点评】本题主要考查了角的定义,中点的定义,直线的性质以及线段的性质,解题时注意:角可以看成一条射线绕着端点旋转而成.2.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个B.2个C.3个D.4个【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.【点评】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.3.如图所示的图形中,可用∠AOB,∠1、∠O是三种方法标识同一个角的是()A.B.C.D.【解答】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故A选项错误;B、能用∠1,∠AOB,∠O三种方法表示同一个角,故B选项正确;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故C选项错误;D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项错误;故选:B.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和判断能力.4.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是()A.10个B.9个C.8个D.4个【解答】解:引出5条射线时,以OA为始边的角有4个,以OD为始边的角有3个,以OC为始边的角有2个,以OE为始边的角有1个,故小于平角的角的个数是4+3+2+1=10(个).故选:A.【点评】本题主要考查角的个数的计算方法,在数角的个数时,能按一定的顺序计算,理清顺序,发现规律是解题的根据.5.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.40°B.50°C.140°D.130°【解答】解:设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°﹣α=3(90°﹣α)+10°,180°﹣α=270°﹣3α+10°,解得α=50°.故选:B.【点评】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.6.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.【解答】解:A、∠AOC=∠BOC能确定OC平分∠AOB,故此选项不合题意;B、∠AOB=2∠AOC能确定OC平分∠AOB,故此选项不合题意;C、∠AOC+∠COB=∠AOB不能确定OC平分∠AOB,故此选项符合题意;D、∠BOC=∠AOB,能确定OC平分∠AOB,故此选项不合题意.故选:C.【点评】此题主要考查了角平分线的性质,正确把握角平分线的定义是解题关键.7.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20°B.40°C.20°或40°D.30°或10°【解答】解:∠BOC在∠AOB内部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB﹣∠BON=30°﹣10°=20°;∠BOC在∠AOB外部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB+∠BON=30°+10°=40°.故选:C.【点评】本题主要考查平分线的性质,知道∠BOC在∠AOB内部和外部两种情况是解题的关键.8.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4 B.3 C.2 D.1【解答】解:∵OE平分∠AOD,∴∠AOE=∠EOD,故①正确;∵∠AOE=∠EOD,∠AOC<∠AOE,∴∠AOC<∠EOD,故②错误;∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,故③正确;∵∠BOD=180°﹣∠AOD=180°﹣2∠AOE=180°﹣2(∠AOC+∠COE)=2(90°﹣∠AOC)﹣2∠COE=2∠BOD﹣2∠COE,∴∠BOD=2∠BOD﹣2∠COE,∴∠BOD=2∠COE,故④正确;即正确的有3个,故选:B.【点评】本题考查了角平分线的定义,邻补角等知识点,能根据知识点进行推理是解此题的关键.二.填空题(共2小题)9.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是41.【解答】解:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故所有线段的和=AC+AD+AB+CD+CB+DB=41.【点评】找出图中所有线段是解题的关键,注意不要遗漏,也不要增加.10.线段AB=8cm.在直线AB上另取一点C,使AC=2cm,P、Q分别是AB、AC的中点,则线段PQ 的长度为3或5cm.【解答】解:当点C在AB之间时,P、Q分别是AB、AC的中点,所以AQ=AC,AP=AB,PQ=AP ﹣AQ=AB﹣AC=3cm.当点C在AB之外时,P、Q分别是AB、AC的中点,所以AQ=AC,AP=AB,PQ=AP+AQ=4+1=5cm.故线段PQ的长为3cm或5cm.【点评】本题难点是找出题中点C的位置,根据分析可得,点C有两个两种情况满足要求,则根据不同的情况分析各线段之间的关系,然后分别得出PQ的长度.三.解答题(共4小题)11.如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=80°,∠BOC =60°,求∠AOD的度数.【解答】解:∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM=∠AOB,∠DON=∠CON=∠COD,∵∠MON=80°,∠BOC=60°,∴∠NOC+∠BOM=80°﹣60°=20°,∴∠DOC+∠AOB=20°×2=40°,∴∠AOD=40°+60°=100°.【点评】此题主要考查了角平分线的定义,关键是掌握角平分线把角分成相等的两部分.12.如图OC是∠AOB内部的一条射线,∠BOC=2∠AOC,OD平分∠AOC.(1)若∠AOB=120°,求∠BOC和∠BOD的度数;(2)画出∠BOC的平分线OE,说明∠DOE=∠AOB.【解答】解:(1)设∠AOC=x,则∠BOC=2x,所以x+2x=120°,则x=40°,即∠AOC=40°,∠BOC=80°,因为OD平分∠AOC,∴∠DOC=20°,所以∠DOB=∠DOC+∠BOC=20°+80°=100°;(2)∠BOC的平分线OE如图所示:因为OD平分∠AOC,∴∠DOC=∠AOC,因为OE平分∠BOC,∴∠EOC=∠BOC,∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠AOB.【点评】本题考查的是角的计算、角平分线的定义,掌握角平分线的定义以及角平分线的画法是解题的关键.13.如图,点O在直线AC上,OD平分∠AOB,∠BOE=∠EOC,∠DOE=70°,求∠EOC.【解答】解:设∠AOB=x,则∠BOC=180°﹣x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠BOE=∠EOC,∴∠BOE=∠BOC=60°﹣x,由题意得,x+60°﹣x=70°,解得,x=60°,∠EOC=(180°﹣x)=80°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.14.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.【解答】解:(1)∵OM平分∠AOB,ON平分∠DOB,∴∠MOB=∠AOB,∠NOB=∠DOB,∴∠MON=∠MOB+∠BON=(∠AOB+∠DOB)=∠AOD=80°;(2)OM平分∠AOC,ON平分∠DOB,∴∠MOC=∠AOC,∠NOB=∠DOB,∴∠MON=∠MOC+∠BON﹣∠BOC=(∠AOC+∠DOB)﹣∠BOC=70°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.。
七年级上数学第四章平面图形及其位置关系易错题第四章平面图形及其位置关系一、立体图形与平面图形一、立体图形(一)围成图形1、下面图形经折叠后可以围成一个棱柱的有()A、1B、2C、3D、42、如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是()3、如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是()A.甲B.乙C.丙D.丁4、如图是一正方体的平面展开图,若AB =4,则该正方体A,B 两点间的距离为()A.1 B.2 C.3 D.4(二)骰子类1、如图,一个正方体的每个面分别标有数字1,2,3,4,5,6,根据图中该正方体A、B、C三种状态所显示的数字,可推出6的对面和2的对面的两数字之和为________。
3、把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表如下:现将上述大小相同,颜色、花朵分别完全一样的四个立方体拼成一个水平放置的长方体,如图所示,问长方体的下底面共有多少朵花?3、如图所示,一个正方体,六个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,你能看到的面上数分别是7,10,11,求这6个整数的和。
4、如图,线段AB和CD是正方体表面两正方形的对角线,将此正方体沿部分棱剪开,展成一个平面图形后,AB和CD可能出现下列关系中的哪几种?①AB⊥CD;②AB∥CD;③A、B、C、D四点在同一直线上。
正确的结论是()A.①②B.②③C.①③D.①②③(三)立体图形的面、棱1、下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等。
其中正确的有()。
A.2个B.3个C.4个D.5个2、三棱柱的顶点有个,棱条总数是条,面有个;n棱柱的顶点有个,棱条总数是条,面有个;n棱锥的顶点有个,棱条总数是条,面有个。
人教版七年级数学上册第四章几何图形初步综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面内两两相交的6条直线,交点个数最少为m 个,最多为n 个,则m n +等于( )A .12B .16C .20D .222、如图所示,与B 不是同一个角的是( )A .1∠B .ABC ∠ C .DBE ∠D .DAC ∠3、给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④4、若∠1与∠2互补,则∠1+∠2=( )A .90°B .100°C .180°D .360°5、把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是( )A .五棱锥B .五棱柱C .六棱锥D .六棱柱6、若12018'∠=︒,22015'30''∠=︒,320.25∠=︒,则( )A .123∠>∠>∠B .213∠>∠>∠C .132∠>∠>∠D .312∠>∠>∠7、如图,小林利用圆规在线段CE 上截取线段CD ,使CD AB =.若点D 恰好为CE 的中点,则下列结论中错误..的是( )A .CD DE =B .AB DE =C .12CE CD = D .2CE AB =8、下列图形是正方体展开图的个数为( )A .1个B .2个C .3个D .4个9、已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒10、一副直角三角板有不同的摆放方式,图中满足∠α与∠β相等的摆放方式是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、长方体纸盒的长、宽、高分别是10,8,5cm cm cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是_______cm .2、由n 个相同的小正方体堆成的几何体,其主视图、俯视图如图所示,则n 的最大值是________.3、如图,各图中的阴影部分绕着直线l 旋转360°,所形成的立体图形依次是_______.4、如图所示的三个图中,不是三棱柱的展开图的是_____.(只填序号)5、一个几何体的三视图如图所示,则该几何体的表面积为____________.三、解答题(5小题,每小题10分,共计50分)1、如图是由7个大小相同的小立方块搭成的一个几何体,请画出该几何体分别从上面、左面看到的形状图.2、如图,是一个几何体的表面展开图.(1)该几何体是________;A.正方体B.长方体 C .三棱柱 D .四棱锥(2)求该几何体的体积.3、 (1)下面这些基本图形和你很熟悉,试写出它们的名称;(2)将这些几何体分类,并写出分类的理由.4、如图,160AOB ∠=︒,OC 为其内部一条射线.(1)若OE 平分AOC ∠,OF 平分BOC ∠.求EOF ∠的度数;(2)若100AOC ∠=,射线OM 从OA 起绕着O 点顺时针旋转,旋转的速度是20︒每秒钟,设旋转的时间为t ,试求当AOM ∠+MOC ∠+MOB ∠200=时t 的值.5、如图,已知线段AB ,延长AB 到C ,使BC =13AB ,D 为AC 的中点,DC =2,求AB 的长.-参考答案-一、单选题1、B【解析】【分析】根据直线相交的情况判断出m 和n 的值后,代入运算即可.【详解】解:当六条直线相交于一点时,交点最少,则1m =当任意两条直线相交都产生一个交点时交点最多,∵且任意三条直线不过同一点∴此时交点为:6(61)215⨯-÷=∴15n =∴11516m n +=+=故选:B【考点】本题主要考查了直线相交的交点情况,找出交点个数是解题的关键.2、D【解析】【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】解:除了DAC ∠,其他三种表示方法表示的都是同一个角B .故选:D【考点】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.3、C【解析】【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【考点】本题考查了认识立体图形,熟记各种图形的特征是解题关键.4、C【解析】【分析】由补角的概念,如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角,即可得出答案.【详解】解:1∠与2∠互补,∴∠+∠=︒,12180故选:C.【考点】本题主要考查补角的概念,解题的关键是利用补角的定义来计算.5、A【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A .【考点】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.6、A【解析】【分析】由度分秒的换算法则,分别把每个角度化为度分秒形式,再进行判断,即可得到答案.【详解】解:∵12018'∠=︒,22015'30''∠=︒,320252015'∠=︒=︒., ∴123∠>∠>∠.故选:A .【考点】本题考查了角度的单位换算,角度的大小比较,解题的关键是掌握角度的单位进制是60进制.7、C【解析】【分析】根据线段中点的性质逐项判定即可.【详解】解:由题意得:D是线段CE的中点,AB=CDCE=CD=DE,即B、D正确,C错误.∴CD=DE,即选项A正确;AB=12故答案为C.【考点】本题考查了尺规作图和线段中点的性质,其中正确理解线段中点的性质是解答本题的关键.8、C【解析】【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.故选:C.【考点】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.9、A【解析】【分析】根据余角的定义、角度的四则运算即可得.【详解】和为90︒的两个角互为余角,且6032α'∠=︒,α∴∠的余角为909060322928α''︒-∠=︒-︒=︒,故选:A .【考点】本题考查了余角、角度的四则运算,熟练掌握余角的定义是解题关键.10、B【解析】【分析】根据题意分别求出∠α、∠β关系,做出判断即可.【详解】解:A. ∠α、∠β互余,不合题意;B.根据根据同角的余角相等可得∠α=∠β,符合题意;C. ∠α=60°,∠β=75°,不合题意;D. ∠α=45°,∠β=60°,不合题意.故选:B .【考点】本题考查了互为余角的意义.掌握同角的余角相等是解题的关键.二、填空题1、92【解析】【分析】分析长方体展开图所得的平面图形得到周长最小的情况,画出图形,然后计算,即可得到答案. 【详解】解:根据题意,长方体展开图所得的平面图形周长最小的情况:如下图,∴最小周长为:5884102=92⨯+⨯+⨯cm;故答案为:92.【点睛】本题考查了几何体的展开图,熟练掌握几何体的几种展开图是解题的关键.2、13【解析】【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,从上往下数,底面最多有 2+2+3=7 个,第二层最多有1+1+2=4 个,第三层最多有1+0+1=2 个,则n的最大值是 7+4+2=13故答案为:13.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.3、圆柱、圆锥、球体(球)【解析】【分析】长方形旋转得圆柱,三角形旋转可得圆锥,半圆旋转得球即可.【详解】解:根据各图中的阴影图形绕着直线I旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点睛】本题考查的是面动成体的知识,掌握圆柱、圆锥与球都是旋转体,是由长方形,三角形半圆旋转一周的几何体.4、③【解析】【分析】根据三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,可得答案.【详解】解:三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,所以不是三棱柱的展开图的是③.故答案为:③.【点睛】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.5、3π+4【解析】【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【详解】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.三、解答题1、见解析【解析】【分析】由题意观察图形可知,从上面看到的图形是3列,从左往右正方形个数依次是2,1,1;从左面看到的图形是2列,从左往右正方形个数依次是3,1;据此即可画图.【详解】解:作图如下:【考点】本题主要考查从不同方向看得到的图形的画法,正确利用观察角度不同分别得出符合题意的图形是解题的关键.2、(1)C;(2)4【解析】【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C.(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2;故该几何体体积=底面积⨯高=22=4⨯.【考点】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.3、 (1)从左向右依次是球、圆柱、圆锥、长方体、三棱柱.(2)按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体【解析】【分析】(1)针对立体图形的特征,直接填写它们的名称即可;(2)按柱体、锥体、球体进行分类即可.【详解】解:(1)从左向右依次是球、圆柱、圆锥、长方体、三棱柱.(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.【考点】本题考查了立体图形的认识和几何体的分类,熟记立体图形的特征是解决本题的关键.4、(1)80EOF ∠=;(2)3t s =或7t s =,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM 在∠AOC 内部时,②当OM 在∠BOC 内部时,③当OM 在∠AOB 外部,靠近射线OB 时,④当OM 在∠AOB 外部,靠近射线OA 时.分别列方程求解即可.【详解】(1)∵OE 平分∠AOC ,OF 平分∠BOC , ∴∠1=12∠AOC ,∠2=12∠BOC ,∴∠EOF =∠1+∠2=12∠AOC +12∠BOC =12(∠AOC +∠BOC )=12∠AOB .∵∠AOB =160°,∴∠EOF =80°.(2)分四种情况讨论:①当OM 在∠AOC 内部时,如图1.∵∠AOC =100°,∠AOB =160°,∴∠MOB =∠AOB -∠AOM =160°-20t .∵∠AOM+∠MOC+∠MOB=∠AOC+∠MOB=200°,∴100°+160°-20t=200°,∴t=3.②当OM在∠BOC内部时,如图2.∵∠AOC=100°,∠AOB=160°,∴∠BOC=∠AOB-∠AOC=160°-100°=60°.∵∠AOM+∠MOC+∠MOB=∠AOM+∠COB=200°,∴2060200t+=,∴t=7.③当OM在∠AOB外部,靠近射线OB时,如图3,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵∠AOM =20t ,∴∠MOB =∠AOM -∠AOB =20160t ︒-︒,∠MOC =20100t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴202010020160200t t t ︒+︒-︒+︒-︒=︒,解得:t =233. ∵∠AOB =160°,∴OM 转到OB 时,所用时间t =160°÷20°=8. ∵233<8, ∴此时OM 在∠BOC 内部,不合题意,舍去.④当OM 在∠AOB 外部,靠近射线OA 时,如图4,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵36020AOM t ∠=︒-︒,∴∠MOC =∠AOM +∠AOC =36020100t ︒-︒+︒=46020t ︒-︒,∠MOB =∠AOM +∠AOB =36020160t ︒-︒+︒=52020t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴()()()360204602052020200t t t ︒-︒+︒-︒+︒-︒=︒,解得:t =19.当t =19时,20t =380°>360°,则OM 转到了∠AOC 的内部,不合题意,舍去.综上所述:t =3s 或t =7s .【考点】本题考查了角的和差和一元一次方程的应用.用含t 的式子表示出对应的角是解答本题的关键.5、AB=3.【解析】【分析】先设BC=x ,则AB=3x ,再根据DC=2,列出等式求出x 的值即可.【详解】设BC=x ,则AB=3x , ∴DC=2AB BC +=2x=2, ∴x=1,∴AB=3.【考点】本题考查了线段的知识点,解题的关键是根据线段中的等量关系列式求值.。
一、解答题1.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.2.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】 ∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
一、判断题
1.代数式1
b a +的意义是b 加1除a 。
( ) 2.用字母表示的法则:a>0,|a|=a ,用文字表示该法则是:一个正数的绝对值等于它本身。
( )
3.若x 表示一个两位数,y 表示个三位数,如果把y 放在x 的左边,则组成的三位数为yx 。
( )
4.x 与211-相乘,写作x 2
11-。
( ) 5.已知n 为正整数,则当a=-1时,2n n a a +的值为0。
( )
二、填空题
1.在式子①2x-y+1 ②2b 1a 1+ ③3x-2=5 ④4
121> ⑤b ⑥3-2=1 ⑦0 ⑧|a+b|=a+b 哪些是代数式 。
(填序号)
2.“a 与-2的差的3倍”表示为 。
a 与b 的平方的和 。
3.当22b a b 2a =-+时,代数式b
2a b 63a b 2a b 2a +-+-+= 。
4.请你规定一种合适任意非零实数a ,b 的运算“a ★b ”使得下列算式成立:
1★2=2★1=3,(-3)★(-4)=(-4)★(-3)=67-,(-3)★5=5★(-3)=15
4-... 则a ★b= 。
(用含a ,b 的代数式表示)
5.一列数字:2,-4,8,-16,32,...。
则第n 个是 。
(用含n 的代数式表示)
6. 102+104+106+...1000= 。
7.在代数式①2n m + ②y x 22 ③x 1 ④-5 ⑤a ⑥1x - ⑦π
y x +中是整式的是 。
8.代数式3
2x 22
π--是 次 项式字母x 的系数是 。
9.当x=-3时,代数式6cx bx ax 35-+-的值为2011,则当x=3时,这个代数式的值为 。
10.一数列:1,3,7,15,31,...则第n 个是 。
11.两个多项式:1a 4a 2A 2+-=,3a 2a 2B 2+-=)(,当a 取任意有理数时,则A B (比较大小)
12.已知三个连续的偶数,中间一个是2n ,将这三个数由小到大的顺序排列,得到一个三位数。
用 整式表示这个三位数是 (化到最简)。
当n 为何值时,这个三位数最大是 。
13.。