2016湘教版七年级上册数学教案
- 格式:doc
- 大小:4.29 MB
- 文档页数:188
湘教版七年级数学上册教案教案标题:湘教版七年级数学上册教案教案目标:1. 熟悉湘教版七年级数学上册的教学内容和教学目标。
2. 设计适合七年级学生的教学活动和教学方法,帮助学生理解和掌握数学知识。
3. 培养学生的数学思维能力和解决问题的能力。
教学内容:本教案主要包括湘教版七年级数学上册的以下内容:1. 数与式2. 分式与小数3. 整式的加减4. 整式的乘法5. 整式的除法6. 一元一次方程7. 图形的初步认识教学步骤:第一课:数与式1. 导入:通过生活实例引导学生认识数与式的概念。
2. 概念解释:解释数与式的定义和区别。
3. 实际运用:通过练习题,让学生巩固数与式的概念并能够运用到实际问题中。
第二课:分式与小数1. 导入:通过分数的实际应用引导学生了解分式与小数的概念。
2. 概念解释:解释分式与小数的定义和转换方法。
3. 实际运用:通过练习题,让学生掌握分式与小数的转换和运算方法。
第三课:整式的加减1. 导入:通过生活实例引导学生认识整式的概念。
2. 概念解释:解释整式的定义和加减法则。
3. 实际运用:通过练习题,让学生掌握整式的加减法则并能够应用到实际问题中。
第四课:整式的乘法1. 导入:通过实际问题引导学生了解整式的乘法概念。
2. 概念解释:解释整式的乘法定义和运算法则。
3. 实际运用:通过练习题,让学生掌握整式的乘法法则并能够应用到实际问题中。
第五课:整式的除法1. 导入:通过实际问题引导学生了解整式的除法概念。
2. 概念解释:解释整式的除法定义和运算法则。
3. 实际运用:通过练习题,让学生掌握整式的除法法则并能够应用到实际问题中。
第六课:一元一次方程1. 导入:通过实际问题引导学生了解一元一次方程的概念。
2. 概念解释:解释一元一次方程的定义和解法。
3. 实际运用:通过练习题,让学生掌握一元一次方程的解法并能够应用到实际问题中。
第七课:图形的初步认识1. 导入:通过实际图形引导学生了解图形的基本概念。
Do what you say,say what you do.精品模板助您成功!(页眉可删)湘教版七年级数学上册教案数学教案是数学教学的设计方案。
下文是湘教版七年级数学上册教案,希望你能从中得到感悟!湘教版七年级数学上册教案【1】教学内容:1.2数轴、相反数与绝对值(1)教学目标:1、知识与技能(1)掌握数轴的三要素,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。
(2)理解任何有理数都可以用数轴上唯一的一个点表示出来。
(3)初步理解数形结合的数学思想。
2、过程与方法通过游戏,得出本节课所要学习的内容-数轴,感受把实际问题抽象成数学问题,激发学生的学习兴趣。
重点、难点1、重点:数轴的概念及其画法。
2、难点:数轴的画法以及有理数与数轴上的点的对应关系。
教学过程:一、创设情景,导入新课1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、合作交流,解读探究让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。
具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的'原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。
湘教版七年级上册数学教案5篇数学是科学的那是学生的思维之剑,数学是一个万花筒,演绎着实用、真理、情性的大千气象。
你有在数学课后写七年级数学教案?来学习它的写法吧。
#447225湘教版七年级上册数学教案1教学目的通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程一、复习1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数本利和=本金×利息×年数+本金2.商品利润等有关知识。
利润=售价-成本 ; =商品利润率二、新授问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?利息-利息税=48.6可设小明爸爸前年存了x元,那么二年后共得利息为2.43%×X×2,利息税为2.43%X×2×20%根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得2.43%x·2·80%=48.6解方程,得 x=1250例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?大家想一想这15元的利润是怎么来的?标价的80%(即售价)-成本=15若设这种服装每件的成本是x元,那么每件服装的标价为:(1+40%)x每件服装的实际售价为:(1+40%)x·80%每件服装的利润为:(1+40%)x·80%-x由等量关系,列出方程:(1+40%)x·80%-x=15解方程,得 x=125答:每件服装的成本是125元。
湘教版七年级上册数学教学教案5篇湘教版七年级数学上册教案1教学目的:掌握坐标变化与图形平移的关系;发展学生的形象思维能力和数形结合意识。
教学重点:掌握图形平移前后的坐标变化规律,教学难点:利用图形平移解决相关问题。
教学过程:复习引入1、什么叫平移?把一个图形整体沿某一方向移动一定的距离,这种移动叫做平移。
2、平移有什么性质?(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2)新图形中的每一点,都是原图形中某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
(3)问:一个点平移后的坐标会发生变化吗?二、新授1、平面直角坐标系内有一点a(-2,-3)1将点a(-2,-3)向右平移5个单位后,得到点 a1的坐标是什么?2将点a(-2,-3)向上平移4个单位后,得到点 a2的坐标是什么?2、归纳:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移 b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)) 。
简称:横移纵不变,纵移横不变。
3、问:线段ab两个端点的坐标分别是a(-5,3),b(-3,0).将线段ab两个端点的横坐标都加上6,纵坐标不变分别得到点a1 、 b1 , 连接a1 、b1 ,所得线段与原线段的大小和位置上有什么关系?4、例题:三角形abc三个顶点的坐标分别是a(4,3)b(3,1)c(1,2)(1)将三角形abc三个顶点的横坐标都减去6,纵坐标不变,分别得到点a1、b1、c1,依次连接各点,所得三角形a1 b1 c1与三角形a b c的大小、形状和位置上有什么关系?(2)将三角形abc三个顶点的纵坐标都减去5,横坐标不变,分别得到点a2 、b2 、c2 ,依次连接各点,所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?5、归纳:在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下 )平移 a个单位长度.6、思考:如果将三角形abc三个顶点的横坐标都减去6,同时纵坐标都减去5,这时图形在哪儿?把它画出来!(有几种平移方法)7、p53t1:图中三架飞机p、q、r保持编队飞行,分别写出它们的坐标。
1.2.1 数轴【学习目标】:1、掌握数轴概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,利用数轴上的点表示有理数;3、领会数形结合的重要思想方法;【重点难点】:数轴的概念、画法,用数轴上的点表示有理数; 【学习内容】:一、知识产生: 1、在下表适当的空格里画上“√”号2、观察右边的温度计,读出温度.分别是________°C 、_________°C 、__________°C ;3、在一条东西向的马路上,有一个汽车站,汽车站东3m 和7.5m 处分别有一棵柳树和一棵杨树,汽车站西3m 和4.8m 处分别有一棵槐树和一根电线杆,试画图表示这一情境?二、知识发展:1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2、阅读教材第7页,探究可以表示有理数的直线必须满足什么条件?1)画数轴需要三个条件,即__________、___________和________________。
2)画数轴的步骤: ① ② ③ ④三、知识形成: 1、画一条数轴:2、下列所画的数轴是否正确?如果不正确,指出错在哪里?-198是0 ① ② ③④ ⑤⑥23、在第1题所画的数轴上标出表示下列各数的点:215.3312021,,,,,+-- 四、知识应用:1、有理数与数轴上的点的关系:任何一个有理数都可以用数轴上__________的一个__________来表示.(数形结合思想) 例题学习:P8例1(自学),例2(利用前面自己画的数轴描点) 练习: (1)写出数轴上点A,B,C,D,E 所表示的数:(2)P8.第1题;P9.第2题,第3题2、观察思考:(1)观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?(2)每个数表示的点到原点的距离是多少?由此你又有什么发现?【拓展链接】:单位长度与长度单位“长度单位”是不变的量,如1厘米、1米等是不变的量,“单位长度”是可变的量,它的量完全可以视实际需要而“规定”,因此,“单位长度”与“长度单位”是两个不同的概念.【总结反思】:。
湘教版七年级数学上册全册教案(教学设计)第一单元:数的初步认识第一课:数的基本概念教学目标:- 了解数的概念和分类- 掌握自然数、整数、有理数和无理数的定义- 学会使用数轴表示数的相对大小教学内容:1. 了解数的概念和分类- 数的定义- 数的分类:自然数、整数、有理数和无理数2. 自然数和整数- 自然数的定义和表示- 整数的定义和表示- 自然数和整数的关系3. 有理数和无理数- 有理数的定义和表示- 无理数的定义和表示- 有理数和无理数的关系4. 数轴的使用- 数轴的定义和表示- 数轴上数的相对大小教学过程:1. 导入:通过展示一些例子引发学生对数概念的思考,引出本课讨论的话题。
2. 介绍数的概念和分类:依次向学生介绍数的定义和自然数、整数、有理数和无理数的概念,提供相应的示例进行解释。
3. 分组探究:将学生分组,让每个小组分别探究自然数、整数、有理数和无理数的定义和表示,并向全班汇报他们的研究结果。
4. 数轴游戏:组织学生进行数轴游戏,让学生根据题目要求在数轴上标出相应的数,并判断它们的相对大小。
5. 归纳总结:引导学生归纳总结数的分类和数轴的使用方法。
教学评价:1. 在小组探究环节和数轴游戏环节中观察学生的参与度和合作情况,评价他们对数的分类和数轴的使用的掌握程度。
2. 提问学生关于数的基本概念和数轴的相关问题,评价他们对知识的理解和运用能力。
3. 收集学生在课堂练中的答题情况,评价他们的数学计算和推理能力。
教学延伸:1. 让学生通过实际生活中的例子,深入理解不同类型的数的应用场景。
2. 引导学生从常见的数的问题中发现问题背后的数学规律和问题解决的方法。
第二单元:代数基础第一课:代数表达式教学目标:- 理解代数表达式的概念和基本要素- 掌握变量、系数、常数项和指数的定义和表示方法- 学会化简代数表达式和计算表达式的值教学内容:1. 代数表达式的概念和基本要素- 代数表达式的定义- 代数表达式的基本要素:变量、系数、常数项和指数2. 变量和常数项- 变量的定义和表示- 常数项的定义和表示- 变量和常数项在代数表达式中的作用3. 系数和指数- 系数的定义和表示- 指数的定义和表示- 系数和指数在代数表达式中的作用4. 化简代数表达式- 合并同类项- 移项和合并同类项结合5. 计算代数表达式的值- 根据给定的变量值计算代数表达式的值教学过程:1. 导入:通过举例解释代数表达式的概念和基本要素,激发学生的兴趣和思考。
湘教版七年级上册数学教案教案一:有理数的加减教学目标:1. 理解有理数的概念,能够将有理数进行分类。
2. 学会有理数的加减运算,掌握有理数的加减运算法则。
3. 能够运用有理数的加减运算解决实际问题。
教学准备:1. 课件和教学素材:有理数分类表、实际问题的教学案例等。
2. 教辅工具:白板、彩色笔等。
教学过程:Step 1 引入新知识(时间:5分钟)通过展示有理数分类表,让学生观察和回答问题,引导学生认识有理数的概念。
Step 2 讲解有理数的加法与减法规则(时间:10分钟)针对有理数的加法和减法规则,通过示例和解题,逐步讲解和引导学生掌握有理数的加减规则。
Step 3 练习与讨论(时间:15分钟)分配练习题,让学生独立完成和解答。
然后以小组为单位进行讨论,互相交流解题思路和方法。
Step 4 实际问题解答(时间:10分钟)通过实际生活问题,引导学生运用有理数的加减法解答问题。
Step 5 反思与总结(时间:5分钟)让学生回顾本节课的学习内容,进行总结,了解自己的学习情况。
教案二:数轴上的定位与表示教学目标:1. 理解数轴的概念,能够正确使用数轴进行定位和表示。
2. 能够将有理数在数轴上进行表示和定位,通过数轴理解有理数的大小关系。
3. 能够运用数轴进行有理数的加减运算及其规律。
教学准备:1. 教具:数轴模型、有理数练习题。
教学过程:Step 1 引入(时间:5分钟)通过展示数轴的图片,引导学生思考数轴的用途和作用。
Step 2 讲解数轴的表示方法(时间:10分钟)通过示范和解题,讲解数轴的表示方法,包括正数、负数和零的位置。
Step 3 运用数轴进行定位(时间:15分钟)通过示例和练习,引导学生利用数轴进行有理数的定位和表示。
Step 4 数轴上的加减运算(时间:10分钟)通过示例和解题,讲解和引导学生理解数轴上的加减运算规律。
Step 5 实际问题解答(时间:10分钟)通过实际生活问题,引导学生利用数轴解决实际问题。
湘教版数学七年级上册3.2《等式的性质》教学设计1一. 教材分析《等式的性质》是湘教版数学七年级上册3.2节的内容,主要介绍等式的性质,包括等式的两边同时加减同一个数、等式的两边同时乘除同一个数(0除外)等。
这部分内容是学生进一步学习代数式、方程等知识的基础,对于学生理解和掌握数学知识体系具有重要意义。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和基础知识,但对于等式的性质的理解还需要通过具体实例和操作来加深。
在学习过程中,学生需要从实际问题中发现等式的性质,并通过自主探究和合作交流来理解和掌握。
三. 教学目标1.知识与技能:学生能理解并掌握等式的性质,会运用等式的性质进行简单方程的求解。
2.过程与方法:学生通过自主探究、合作交流等方法,培养解决问题的能力。
3.情感态度价值观:学生能感受到数学与生活的紧密联系,增强学习数学的兴趣和信心。
四. 教学重难点1.重点:等式的性质及应用。
2.难点:等式性质的理解和运用。
五. 教学方法1.情境教学法:通过生活实例引入等式的性质,让学生在实际问题中发现和理解等式的性质。
2.自主探究法:引导学生自主探索等式的性质,培养学生的独立思考和解决问题的能力。
3.合作交流法:学生进行小组讨论,分享学习心得,互相学习和提高。
六. 教学准备1.教学PPT:制作包含生活实例、问题探究、知识讲解、练习题等环节的PPT。
2.学习材料:为学生准备相关的生活实例和练习题。
3.教学设备:电脑、投影仪等。
七. 教学过程1.导入(5分钟)通过一个生活实例引入等式的概念,如“某商店进行打折活动,原价100元的商品打8折后售价是多少?”让学生思考并解答,引出等式的性质。
2.呈现(10分钟)呈现等式的性质,包括等式的两边同时加减同一个数、等式的两边同时乘除同一个数(0除外)等,并通过具体实例进行讲解和演示。
3.操练(10分钟)学生根据等式的性质,对给出的实例进行操作,如改变等式两边某个数的值,观察等式的变化等。
湘教版数学七年级上册教案一、教材简介湘教版数学七年级上册是湖南人民出版社根据《普通高中课程标准(实验)》编写的教材。
本教材以培养学生的逻辑思维、分析问题和解决问题的能力为目标,紧密结合了学生日常生活和实际问题,力求通过数学的学习提升学生的数学素养和综合能力。
二、教学目标本教材的教学目标主要包括以下几个方面:1. 熟练掌握数的读法与写法,运算符和全等图形的表示方法;2. 能够运用所学知识解决包括整数、小数在内的实际问题;3. 具备解决简单的线性方程和解答应用问题的能力;4. 培养学生的逻辑思维和创造性思维能力,提高问题分析和解决问题的能力。
三、教学内容本教材一共分为五个单元,主要内容如下:1. 数的基本概念本单元主要介绍整数的概念、整数的范围、整数的比较大小、绝对值等内容。
通过讲解和练习,能够帮助学生掌握整数的基本概念和运算技巧,培养学生独立思考和解决问题的能力。
2. 整数的加减法本单元主要介绍整数的加法和减法,包括整数的加法法则和减法法则,以及运算规律的应用。
通过大量的练习和实例分析,使学生能够对整数的加减法有一个全面的认识,并能够熟练运用加减法解决实际问题。
3. 整数的乘除法本单元主要介绍整数的乘法和除法,包括运算法则、运算规律和应用技巧。
通过练习和实例分析,培养学生运用乘除法解决实际问题的能力,并学会掌握运算的规律和技巧。
4. 分数与小数本单元主要介绍分数的概念、运算法则和应用技巧,以及小数的概念、读法与写法、运算和应用。
通过练习和实例分析,培养学生对分数和小数的理解和运用能力,提高解决实际问题的能力。
5. 百分数与比例本单元主要介绍百分数和比例的概念、转化与运算,以及相关应用。
通过讲解和练习,使学生能够掌握百分数和比例的基本概念和运算技巧,提高解决实际问题的能力。
四、教学步骤本教材的教学步骤主要包括以下几个过程:1. 预习学生在课前预习本课时的内容,了解学习目标和基本知识点,可以通过课前讨论、独立思考或小组合作等方式进行。
湘教版七上数学教学设计(带板书设计及教学反思)七年级数学上册第一章《有理数》备课内容:《正数和负数1》教学目标:1.知识与技能:整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2.过程与方法:能区分两种不同意义的量,会用符号表示正数和负数;3.情感态度价值观:体验数学发展的一个重要原因是生活实际的需要,激发学生研究数学的兴趣。
教学重点:两种相反意义的量教学难点:正确区分两种不同意义的量。
教学器材:多媒体教学电脑、演示用投影仪。
教学时间:1课时教学过程:一、设置情境,引入课题上课开始时,教师通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?例如,老师可以介绍自己的身高、体重、年龄以及班级的人数等,让学生思考这些都是数,但是否足够表示所有实际问题中的量呢?问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流教师引导学生思考,将这些数按照整数和分数的分类方法进行分类。
问题2:在生活中,仅有整数和分数够用了吗?请同学们观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性,并进行交流。
例如,教师可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等,让学生思考这些实际问题中是否存在负数的情况。
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。
二、分析问题,探究新知问题3:前面带有“-”号的新数我们应该如何命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生理解。
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。
这阶段主要是让学生学会正数和负数的表示。
强调:用正数和负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量。
§1.1 具有相反意义的量第1课时教学内容:§1.1 具有相反意义的量教学目标:1、知识与技能(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:一、创设情景,导入新课大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。
要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。
“运进”和“运出”,其意义是相反的。
同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。
这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。
并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
2、给出新的整数、分数概念引进负数后,数的范围扩大了。
过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。
3、给出有理数概念整数和分数统称为有理数。
4、有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。
有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。
在有理数范围内,正数和零统称为非负数。
向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、应用迁移,巩固提高例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+617,0.33,0,-53,-9 课堂练习:课本P5练习四、总结反思⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧,,,-,-负分数,如:-,,正分数:如分数、-、-负整数如:-零、、正整数如:整数有理数......733.551......,5.23221: 3......213......21⎪⎩⎪⎨⎧负有理数零正有理数有理数引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。
正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0。
0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、课后作业:课本P5习题1.1A第1、2、4题。
§1.2数轴、相反数与绝对值(1)第2课时教学内容:§1.2数轴、相反数与绝对值(1)教学目标:1、知识与技能(1)掌握数轴的三要素,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。
(2)理解任何有理数都可以用数轴上唯一的一个点表示出来。
(3)初步理解数形结合的数学思想。
2、过程与方法通过游戏,得出本节课所要学习的内容-数轴,感受把实际问题抽象成数学问题,激发学生的学习兴趣。
重点、难点1、重点:数轴的概念及其画法。
2、难点:数轴的画法以及有理数与数轴上的点的对应关系。
教学过程:一、创设情景,导入新课1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、合作交流,解读探究让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。
具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P 表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P 对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。
三、应用迁移,巩固提高1、组织学生讨论下列所画的数轴是否正确?如果不正确,指出错在哪里?学生活动:学生分组讨论。
图B0O -2-1-31-3归纳:图A所画的数轴缺少单位长度,图B所画的数轴缺少正方向,图D所画的数轴单位长度不一致。
学生讨论:数轴上的点是不是都表示有理数?教师指出:任何有理数都可以用数轴上的唯一的一个点来表示,但数轴上的点不一定都表示有理数。
2、P9第1、2题:例1、指出数轴上的点M、P、Q分别表示哪个有理数?例2、画一条数轴,把有理3,1.5,-1.5用数轴上的点表示来。
学生活动:在练习本上完成这两道题,并与同桌进行交流。
教师活动:任请一位同学说出例1的答案并进行全班交流,然后再请一位同学到黑板演示例2的解答。
师生共同订正,培养学生数形结合的思想。
3、课堂练习:课本P9第1、2、3题最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、总结反思指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
五、课后作业课本P13习题1.2A组第1、2题§1.2数轴、相反数与绝对值(2) 第3课时教学内容:§1.2数轴、相反数与绝对值(2)教学目标:1、知识与技能 :(1)借助数轴理解相反数的概念,会求一个数的相反数。
(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。
2、过程与方法:在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。
重点、难点1、重点: 理解相反数的意义,会求一个数的相反数。
2、难点: 对相反数意义的理解。
教学过程:一、创设情景,导入新课1、[游戏导入]请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。
二、合作交流,解读探究1、(出示小黑板)教师提出问题:上图中数轴上的点B 和点D 表示的数各是什么?有什么关系? 学生活动:分小组讨论,与同伴交流。
教师活动:请几位同学说出他们讨论的结果,指出点B 表示+2.6,点D 表示-2.6,它们只有符号不同,到原点的距离都是2.6。
2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的2.6-2.6相反数,也称这两个数互为相反数。
0的相反数是03、学生活动:在数轴上,表示互为相反数的两个点有什么关系?学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。
4、练习(小黑板)填空:3的相反数是 ; -6的相反数是 ;31-的相反数是 ;-(-3)= ; -(-0.8)= ;-(31-)= ; 学生活动:在练习本上解答,并与同伴交流,师生共同订正。
归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。
三、应用迁移,巩固提高1、课本P10第1、2、3题2、填空: ①312-的相反数是 ; ② 的相反数是191; ③若-x=10,则x 的相反数在原点的 侧。
四、总结反思本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a 的相反数是-a ,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。