地球化学第四章生物标志物
- 格式:ppt
- 大小:8.72 MB
- 文档页数:41
⽯油地球化学考试复习题-提纲⽯油地球化学复习题第⼆章沉积有机质组成及其沉积环境1、名词解释及重要概念1.5种⽣物化学组分:蛋⽩质、碳⽔化合物、脂类、⽊质素、⾊素.2. 碳⽔化合物:是由多羟基醛或多羟基酮及它们的衍⽣物构成的有机质。
3. 多醣:由上千个单糖以糖苷键(单糖-O-单糖)相连成的⾼聚体.4. 甾族化合物结构:5、脂肪酸的基本结构6、氨基酸的基本结构7、缺氧环境形成的关键:⽔体分层8. 缺氧湖泊发育的重要条件: 深⽔2、简答题1. 沉积盆地中有机质沉积的控制因素主要有两⽅⾯的控制因素:⽣物⽅⾯和物理⽅⽣物控制因素:原始⽣物产率、微⽣物降解作⽤物理控制因素:有机质的搬运作⽤、沉积速率、沉积环境2. ⽔⽣⽣物产率决定于⽔中养料(磷、氮)含氧量(游离氧)多少⽔体深浅:透光带3. 沉积⽔体中细菌降解有机质的过程1).喜氧细菌活动带:与空⽓接触的表层⽔[O]>1.0ml/l 死亡⽣物可以完全被降解成CO2,H2O2).兼氧细菌活动带:⽔中[O]<1.0ml/l,造氮菌和碳酸盐还原菌降解有机质,但是降解能⼒下降3).硫酸盐还原菌活动带: [O]<0.5ml/l,硫酸盐还原菌降解有机质⽣成有机酸,有H2S⽣成,其它⽣物死亡,4).甲烷⽣成菌活动带: 严格缺氧,有CH4⽣成,温度20-80度。
有效烃源岩沉积环境:⾼⽣物产率与缺氧环境叠加处.1陆相:盐湖环境,⽔体较深的咸⽔半咸⽔环境,淡⽔湖的深⽔沉积部位,沼泽环境(煤系烃源岩)2海相:障壁海、泻湖(⼤陆边缘),封闭海盆(陆架、⼤陆内部),富营养上升流发育区(⼤陆架)缺氧环境类型:1海相:(1)缺氧封闭局限海盆地:有障壁,进⽔量>蒸发量,养料丰富、底部⽔盐度⼤、具有永久分层⽔体的海盆。
(2)上升流形成的缺氧环境:深部海⽔向浅海的运动。
温度,含氧量低,养料丰富,可引起浅海⽣物极其繁盛。
2陆相:(1)盐湖:盐度分层,盐跃层以下为缺氧⽔层(2)淡⽔湖:温度分层(3)沼泽:形成含煤地层第三章成岩演化阶段有机质的演化⼀、名词解释及重要概念1、沉积物成岩作⽤:沉积物沉积以后在埋藏过程中受温度、压⼒等外界因素的作⽤,失⽔、压实、胶结、溶解等固结成岩的过程。
油气地球化学知识框架(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--油气地球化学第一章生物有机质组成与沉积模式第一节有机质的形成与全球碳循环一、生命的起源与演化二、光合作用三、对地球上有机质有主要贡献的生物1、浮游植物(时间长、水体面积高、繁殖率高)2、细菌(时间长、分布广、适应性极强、繁殖快)3、高等植物(出现晚,分布在陆地保存难、可富集演化为煤层)4、浮游动物(食物消费者产率低、低等浮游动物数量较大)四、有机碳的循环1、有机圈2、有机碳的循环 (1)生物化学亚循环 (2)地球化学亚循环第二节生物有机质的组成和性质一、碳水化合物二、蛋白质和氨基酸(一)蛋白质(二)氨基酸(三)酶三、脂类1.脂肪酸2.腊3.萜类和甾类化合物4.甾族化合物四、木质素和丹宁五、色素第三节有机质沉积模式一、有机质沉积的控制因素1、生物控制因素:微生物降解、原始生产速率2、物理控制因素:有机质沉积速率、沉积环境、有机质的搬运作用二、缺氧环境的类型1、大型缺氧湖泊(1)深水是缺氧湖泊发育的重要条件(2)缺氧湖泊的发育与纬度有关(四季变化明显的湖泊底水含氧量大,热带湖泊含氧量少)2、海相缺氧环境(1)缺氧封闭局限海盆(2)由上升流形成的缺氧沉积第二章沉积有机质组成及成岩演化第一节腐殖质的组成、结构和性质1、腐殖质的概念:是指土壤、天然水和现代沉积物中不能水解的、不溶于有机溶剂的暗色有机质。
2、腐殖质的形成、提取及分类(1)形成有机质受细菌作用后剩余的木质素、氨基酸、脂肪酸、酚、纤维素等在微生物作用下缩合而成(在强还原环境下可以不形成腐殖质)(2)提取与分类富啡酸(FA)、胡敏酸(HA)、胡敏素(3)腐殖酸元素组成主要为C、H、O、S、N,其中C、O两项占90%以上3.腐殖酸的结构A富克斯结构模型 B费尔伯克结构模型 C特拉古诺夫结构模型 D库哈连科结构通式4.腐殖酸的物理化学性质(1)胶体性和可溶性(2)明显的酸性(3)亲水性(4)热解性质5.腐殖质的演化第二节可溶有机质一、可溶有机质的定义凡是被中性有机溶剂从沉积岩(物)中溶解(抽取)出来的有机质称为可溶有机质,或可抽提有机质,也成为沥青。
《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。
它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。
2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。
3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。
二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。
2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。
三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。