2015年普通高等学校招生全国统一考试(广东卷)数学(理)真题(Word版)
- 格式:doc
- 大小:223.50 KB
- 文档页数:4
更多优质资料请关注公众号:诗酒叙华年2015年高考四川卷理数试题解析(精编版)(解析版)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =U ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x <<【答案】A【考点定位】集合的基本运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答. 2.设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i 【答案】C【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.执行如图所示的程序框图,输出S 的值是( ) (A )32-(B )32(C )-12 (D )12更多优质资料请关注公众号:诗酒叙华年【答案】D【考点定位】程序框图.【名师点睛】程序框图也是高考的热点,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来.4.下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+ ()sin cos D y x x =+【答案】A【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( ) (A)433(B)23 (C)6 (D )43 【答案】D【考点定位】双曲线.【名师点睛】双曲线22221xya b-=的渐近线方程为2222x ya b-=,将直线2x=代入这个渐近线方程,便可得交点A、B的纵坐标,从而快速得出||AB的值.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()(A)144个(B)120个(C)96个(D)72个【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.7.设四边形ABCD为平行四边形,6AB=u u u r,4AD=u u u r.若点M,N满足3BM MC=u u u u r u u u u r,2DN NC=u u u r u u u r,则AM NM⋅=u u u u r u u u u r()(A)20 (B)15 (C)9 (D)6【答案】C【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB=u u u r,4AD=u u u r故可选,AB ADu u u r u u u r作为基底.8.设a,b都是不等于1的正数,则“333a b>>”是“log3log3a b<”的()(A)充要条件(B)充分不必要条件更多优质资料请关注公众号:诗酒叙华年更多优质资料请关注公众号:诗酒叙华年(C )必要不充分条件 (D )既不充分也不必要条件 【答案】B【考点定位】命题与逻辑.【名师点睛】充分性必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考. 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B【考点定位】函数与不等式的综合应用.【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现.10.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24, 【答案】D更多优质资料请关注公众号:诗酒叙华年【考点定位】直线与圆锥曲线,不等式.【名师点睛】首先应结合图形进行分析.结合图形易知,只要圆的半径小于5,那么必有两条直线(即与x 轴垂直的两条切线)满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法”.在本题中利用点差法可得,中点必在直线3x =上,由此可确定中点的纵坐标0y 的范围,利用这个范围即可得到r 的取值范围.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.12.= +οο75sin15sin .【答案】62.【考点定位】三角恒等变换及特殊角的三角函数值.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有22sin cos sin()a b a bαααϕ+=++.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.13.某食品的保鲜时间y(单位:小时)与储存温度x(单位:Cο)满足函数关系bkxey+=(Λ718.2=e为自然对数的底数,k、b为常数)。
2012年普通高等学校招生全国统一考试(广东卷)A数学(理科)本试卷共21题,满分150分。
考试用时120分钟。
参考公式:主体的体积公式V=Sh ,其中S 为柱体的底面积,h 为柱体的高。
锥体的体积公式为13V sh =,其中S 为锥体的底面积,h 为锥体的高。
一 、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,则复数56ii-= A . 65i + B .65i - C .65i -+ D .65i -- 2.设集合U ={1,2,3,4,5,6}, M ={1,2,4 } 则U C M =A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}3.若向量BA=(2,3),CA =(4,7),则BC =A .(-2,-4)B .(2,4)C .(6,10)D .(-6,-10) 4.下列函数中,在区间(0,+∞)上为增函数的是A .ln(2)y x =+ B.y =.y=12x⎛⎫⎪⎝⎭D .1y x x =+5.已知变量x ,y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z =3x +y 的最大值为A .12B .11C .3D .1-6.某几何体的三视图如图1所示,它的体积为 A .12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是A.49 B. 13 C. 29 D. 198.对任意两个非零的平面向量α 和β ,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥> ,a 与b 的夹角(0,)4πθ∈,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =A .12 B.1 C. 32 D. 52二、填空题:本大题共7小题,考生答6小题,每小题5分,满分30分。
(一)必做题(9-13题)9.不等式21x x +-≤的解集为_____。
2015年普通高等学校招生全国统一考试(卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【1,5分】i 为虚数单位,607i的共轭复数....为( )(A )i (B )i - (C )1 (D )1- 【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .(2)【2015年,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米夹谷,抽样取米一把,数得254粒夹谷28粒,则这批米夹谷约为( )(A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米夹谷约为281534169254⨯=石,故选B . (3)【2015年,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数)(A )122(B )112 (C )102 (D )92【答案】【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)nx +中奇数项的二项式系数和为1091222⨯=,故选D . 以及计算能力.(4)【2015年,理4,5分】设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密 (A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键(5)【2015年,理5,5分】设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L ,则( )(A q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a L 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立; ②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列,所以p 是q 的充分条件,但不是q 的必要(6)【2015年,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e < (C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】【解析】依题意,22211a b b e a a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a ma m ++++⎛⎫==+ ⎪++⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >,当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .(9)【2015年,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .复的元素.(10)【2015年,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年,理11,5分】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r . 【答案】9【解析】因为OA AB ⊥u u u r u u u r ,3OA =u u u r ,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .(12)【2015年,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点, 所以函数()f x 由2个零点.(13)【2015年,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处在西偏北30o 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75o 的方向上,仰角为30o ,则此山的高度CD = m .【答案】1006 【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中, 因为30CBD ∠=︒,3002BC =,所以tan303002CD CDBC ︒==,所以1006CD =m .(14)【2015年,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NB MB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =Q ,且E 为AB 中点,∴()0,21A -,()0,21B +,M Q ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+, ()222121222222NB MA NAMB+=+=++-=-+,【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) (15)【P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______. 【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. (16)【2015年,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得22322x y ⎧=⎪⎪⎨⎪=⎪⎩或22322x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,22A ⎛⎫ ⎪ ⎪⎝⎭,232,22B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 础的计算题.三、解答题:共6题,共75(17)【2015年,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期x ωϕ+ 0π2 π 3π2 2π x π3 5π6sin()A x ωϕ+0 5 5- 0(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 解:(1)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+ 0π2π 3π22πxπ12 π3 7π12 5π6 13π12 sin()A x ωϕ+55-且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律(18)【2015年,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++L L ① 2345113579212222222n n n T -=+++++L L ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-L L ,故12362nn n T -+=-. (19)【2015年,理19,12分】《九章算术》中,将底面为长方形且有如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE . (1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =I ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =I ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =I ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC ,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =I ,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BDDPF PD λ=∠==+=, 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. (1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ, (,1,1)PB λ=-u u u r ,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =u u u r ,于是0PB DE ⋅=u u u r u u u r,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =I ,所以PB DEF ⊥平面. 因(0,1,1)PC =-u u u r , 0DE PC ⋅=u u u r u u u r, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =u u u r是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--u u u r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+u u u r u u u r u u ur u u u r , 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 于难题.(20)【2015年,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶210001吨B 产品需鲜牛奶1.51.5小时,获利 1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过 12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为W 12 15 18 P 0.3 0.5 0.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.故最大获利Z 的分布列为Z8160 10200 10800 P0.3 0.5 0.2 因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.问题解决问题的能力.(21)【2015年,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆MN 通过N 处铰链与ON 连接,MN D AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 作往复运动时,带动..N 绕O 转动一周(D 不动时,N C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 OPQ 的面积是否存在最小值?若存在,求出该最小值; 解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,(2②8.【点评】本题的关键.综合性较强,运算量较大.(22)【2015年,理22,14(((解:(1①(2②(3运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A ∩B=( )A .{}|11x x -<<B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x << 1.D .【解析】A ∩B =2.若复数11z i =+,23z i =-,则12z z ⋅=( )A .42i +B .2i +C .22i +D .3i + 2.A .【解析】12(1)(3)1311(31)42z z i i i i ⋅=+⋅-=⨯+⨯+-=+3.若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则 ( ) A .()()f x g x 与均为偶函数 B .()f x 为偶函数,()g x 为奇函数 C .()()f x g x 与均为奇函数 D .()f x 为奇函数,()g x 为偶函数 3.B .【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.4.已知数列{}n a 为等比数列,n S 是是它的前n 项和,若2312a a a ⋅=,且4a 与27a 的等差中项为54,则5S = ( )A .35B .33C .3lD .294.C .【解析】设{n a }的公比为q ,则由等比数列的性质知,231412a a a a a ⋅=⋅=,即42a =。
绝密★启用前 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1z-=i ,则|z|=( ) A .1B .2C .3D .2 2.sin20cos10cos160sin10︒︒︒︒-=( )A .32-B .32C .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2n n n ∀∈N 2,>B .2n n n ∃∈N 2,≤C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212x C y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A .33()33-, B .33()66-, C .2222()33-, D .2323()33-, 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________A .3[)21,e-B .43[,)23e -C .3[,)234e D .3[,)21e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数2()=()ln f x x a x x ++为偶函数,则a =________. 14.一个圆经过椭圆22=1164x y+的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω28i=1()ixx -∑28i=1()iωω∑-8i=1()()iiy x x y-∑-8i=1()()ii y y ωω--∑46.65636.8289.8 1.6 1 469108.8表中i ω=i x ,ω=188i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】由1=i 1z z+-,得1i (1i)(1i)=i 1i (1i)(1i)z -+-+-===++-,故1z =,故选C . 【提示】先化简复数,再求模即可. 【考点】复数的运算. 2.【答案】D【解析】原式1sin 20cos10cos20sin10sin302=+==,故选D . 【提示】直接利用诱导公式以及两角和的正弦函数,化简求解即可. 【考点】三角函数的运算. 3.【答案】C【解析】命题的否定是:22n n n ∀∈≤N ,.【提示】根据特称命题的否定是全称命题即可得到结论. 【考点】命题. 4.【答案】A【解析】根据独立重复试验公式可得,该同学通过测试的概率为2233C 0.60.40.6=0.648.⨯+【提示】判断该同学投篮投中是独立重复试验,然后求解概率即可.【考点】概率. 5.【答案】A【解析】由题知12(F F ,,220012x y -=,所以222120000000(3,)(3,)331MF MF x y xy x y y =-----=+-=-<,解得0y <<,故选A . 【提示】利用向量的数量积公式,结合双曲线方程,即可确定0y 的取值范围. 【考点】双曲线. 6.【答案】B【解析】设圆锥底面半径为r ,则116238,43r r ⨯⨯=⇒=所以米堆的体积为 2111632035,4339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭故堆放的米约为320 1.6222,9÷≈故选B . 【考点】圆锥体积.【提示】根据圆锥的体积公式计算出对应的体积即可. 7.【答案】A【解析】由题知1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+【提示】将向量AD 利用向量的三角形法则首先表示为AC CD +,然后结合已知表示为AC AC ,的形式.【考点】向量运算. 8.【答案】D【解析】由五点作图知,1π42,53π42ωϕωϕ⎧+=⎪⎪⎨⎪+=⎪⎩解得ππ,4ωϕ==,所以π()cos π,4f x x ⎛⎫=+ ⎪⎝⎭令2ππ2ππ,,4k x k k π<+<+∈Z 解得1322,,44k x k k -<<+∈Z故()f x 的单调递减区间为132,2,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,故选D .【提示】由周期求出ω,由五点法作图求出ϕ,可得()f x 的解析式,再根据余弦函数的单调性,求得()f x 的减区间. 【考点】三角函数运算. 9.【答案】C【解析】执行第1次,0.01,1,t S ==10,0.5,2n m === 0.5,0.25,2mS S m m =-===1,0.50.01n S t ==>=,是,循环,执行第2次, 0.25,0.125,2mS S m m =-===2,0.250.01n S t ==>=,是,循环,执行第3次,0.125,0.0625,2mS S m m =-===3,0.1250.01n S t ==>=,是,循环,执行第4次,0.0625,0.03125,2mS S m m =-===4,0.06250.01n S t ==>=,是,循环,执行第5次,0.03125,0.015625,2mS S m m =-===5,0.031250.01n S t ==>=,是,循环,执行第6次,0.015625,0.0078125,2mS S m m =-===6,0.0156250.01n S t ==>=,是,循环,执行第7次,0.0078125,S S m =-=2mm =0.00390625=, 7,0.00781250.01n S t ==>=,否,输出7,n =故选C .【提示】由题意依次计算,当7,0.00781250.01,n S t ==>=停止由此可得结论. 【考点】程序框图. 10.【答案】C【解析】在25()x x y ++的五个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为212532C C C 30,=故选C .【提示】利用展开式的通项进行分析,即可得出结论. 【考点】二项式展开式. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱和球的半径都是r ,圆柱的高为2r ,其表面积为222214ππ2π225π41620π2r r r r r r r r ⨯+⨯++⨯=+=+,解得r=2,故选B .【提示】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可. 【考点】空间几何体的表面积. 12.【答案】D【解析】设()()e 21,,xg x x y ax a =-=-由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()e (21)xg'x x =+,所以当12x <-时,'()0g x <,当12x >-,()0,g'x >所以当12x =-时,12min [()]2e g x -=-.当0x =时(0)1g =-,(1)e 0g =>,直线y ax a =-恒过(1,0)且斜率a ,故(0)1a g ->=-,且1(1)3e g a a --=-≥--,解得312ea ≤<,故选D .【提示】设()()e 21,,xg x x y ax a =-=-,问题转化为存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,由导数可得函数的极值,数形结合可得(0)1a g ->=-且1(1)3e g a a --=-≥--,解关于a 的不等式组可得.【考点】带参函数.第Ⅱ卷二、填空题 13.【答案】1【解析】由题知ln(y x =是奇函数,所以22ln(ln(ln()ln 0x x a x x a +-=+-==,解得 1.a =【提示】由题意可得,()()f x f x -=,代入根据对数的运算性质即可求解 【考点】函数奇偶性.14.【答案】2232524x y ⎛⎫±+= ⎪⎝⎭【解析】设圆心为(,0)a ,则半径为4a -,则222(4)2,a a -=+解得32a =±, 故圆的标准方程为2232524x y ⎛⎫±+= ⎪⎝⎭.【提示】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程. 【考点】圆的标准方程. 15.【答案】3【解析】做出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点(1,3)与原点连线的斜率最大,故yx的最大值3.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定y x的最大值.【考点】线性规划问题.16.【答案】【解析】如下图所示:延长BACD ,交于点E ,则可知在△ADE 中,105DAE ∠=︒,45ADE ∠=︒,30,E ∠=︒∴设12AD x =,2AE x =,4DE x =,CD m =,2BC =,sin151m ⎫∴+︒=⎪⎪⎝⎭⇒m +=∴04x <<,而2AB m x +-,2x∴AB的取值范围是.【提示】如图所示,延长BACD ,交于点,设12AD x =,2AE x =,4DE x =,CD m =m +=AB 的取值范围. 【考点】平面几何问题. 三.解答题17.【答案】(Ⅰ)21n + (Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{}n a 是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(1)知,1111(21)(23)22123n b n n n n ⎛⎫==- ⎪++++⎝⎭,所以数列{}n b 前n 项和为121111111=235572123n b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫+++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=11646n -+. 【提示】(Ⅰ)根据数列的递推关系,利用作差法即可求{}n a 的通项公式:(Ⅱ)求出11n n n b a a +=,利用裂项法即可求数列{}n b 的前n 项和.【考点】数列前n 项和与第n 项的关系,等差数列定义与通项公式. 18.【答案】(Ⅰ)答案见解析 【解析】(Ⅰ)连接BD ,设,BDAC G =连接EG FG EF ,,,在菱形ABCD 中,不妨设1GB =,由∠ABC=120°,可得AG GC ==由BE ⊥平面ABCD ,AB BC =,可知AE EC =, 又∵AE EC ⊥,∴EG EG AC =⊥,在Rt EBG △中,可得BE,故DF =在Rt FDG △中,可得FG =在直角梯形BDEF 中,由2BD =,BE,2DF =,可得2EF =, ∴222EG FG EF +=, ∴EG FG ⊥, ∵ACFG G =,∴EG ⊥平面AFC , ∵EG ⊂平面AEC , ∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得0,A (,(E,2F ⎛- ⎝⎭,C ,∴AE =,1,CF ⎛=- ⎝⎭.故cos ,3||||AE CFAE CF AE CF <>==-,所以直线AE 与CF .【提示】(Ⅰ)连接BD ,设BD AC G =,连接EG EF FG ,,,运用线面垂直的判定定理得到EG ⊥平面AFC ,再由面面垂直的判定定理,即可得到.(Ⅱ)以G 为坐标原点,分别以GB GC ,为x 轴,y 轴,GB 为单位长度,建立空间直角坐标系G xyz -,求得AE F C ,,,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【考点】空间垂直判定与性质,异面直线所成角的计算.19.【答案】(Ⅰ)答案见解析 (Ⅱ)答案见解析 (Ⅲ)(i )66.32 (ii )46.24【解析】(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =先建立y 关于w 的线性回归方程,由于81821()()108.8=68,16()iii ii w w yy d w w ==--==-∑∑ ∴56368 6.8100.6.==c y d w -⨯=-∴y 关于w 的线性回归方程为=100.6+68y w ,y ∴关于x 的回归方程为y (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销量y的预报值576.6y =, 年利润z 的预报值=576.60.249=66.32z ⨯-(ii )根据(Ⅱ)的结果知,年利润z 的预报值20.12z x =x +--,∴13.66.8,2=即46.24x =,z 取得最大值,故宣传费用为46.24千元时,年利润的预保值最大.【提示】(Ⅰ)根据散点图,即可判断出.(Ⅱ)先建立中间量w =y 关于w 的线性回归方程,根据公式求出w ,问题得以解决.(Ⅲ)(Ⅰ)年宣传费49x =时,代入到回归方程,计算即可. (ii )求出预报值得方程,根据函数的性质,即可求出.【考点】线性回归方程求法,利用回归方程进行预报预测. 20.【答案】0y a --=0y a ++=(Ⅱ)答案见解析【解析】(Ⅰ)由题设可得)Ma ,()N a -,或()M a-,)N a .∵12yx '=,故24x y =在x =C在)a 处的切线方程为y a x -=-0y a --=,故24x y =在x =-处的导数值为,C 在()a -处的切线方程为y a x -=+,0y a ++=0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设(0,)P b 为符合题意得点,11(,)M x y ,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,.将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴1212121212122()()()=y b y b kx x a b x x k a b k k x x x x a--+-+++=+. 当b a =-时,有12k k + =0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠,所以(0,)P a -符合题意.【提示】(Ⅰ)求出C在)a 处的切线方程,故24x y =在x =-即可求出方程.(Ⅱ)存在符合条件的点(0,)P b ,11(,)M x y,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,直线方程与抛物线方程联立化为2440x kx a --=,利用根与系数的关系,斜率计算公式可得12()=k a b k k a++=即可证明. 【考点】抛物线的切线,直线与抛物线位置关系. 21.【答案】(Ⅰ)34a =- (Ⅱ)答案见解析【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-,因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,)+∞无零点. 当1x =时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x在⎛ ⎝单调递减,在⎫⎪⎪⎭单调递增,故当x =()f x取的最小值,最小值为14f =.①若0f >,即304x -<<,()f x 在(0,1)无零点.②若0f =,即34a =-,则()f x 在(0,1)有唯一零点;③若0f <,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时, ()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.【提示】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=解出即可. (Ⅱ)对x 分类讨论:当(1,)x ∈+∞时,()ln 0g x x =-<,可得函数(1)min{(1),(1)}(1)0h f g g ===,即可得出零点的个数.当1x =时,对a 分类讨论利用导数研究其单调性极值即可得出.【考点】利用导数研究曲线的切线,分段函数的零点. 22.【答案】(Ⅰ)答案见解析 (Ⅱ)60ACB ∠=【解析】(Ⅰ)连接AE ,由已知得,AE BC AC AB ⊥⊥,,在Rt AEC △中,由已知得DE DC =,∴DEC DCE ∠=∠,连接OE ,OBE OEB ∠=∠, ∵90ACB ABC ∠+∠=, ∴90DEC OEB ∠+∠=,∴90OED ∠=,∴DE 是圆O 的切线.(Ⅱ)设1CE AE x ==,,由已知得AB =,BE =,由射影定理可得,2AE CE BE =,∴2x =x = ∴60ACB ∠=.【提示】(Ⅰ)连接AE 和OE ,由三角形和圆的知识易得90OED ∠=,可得DE 是O 的切线.(Ⅱ)设1CE AE x ==,,由射影定理可得关于x的方程2x =,解方程可得x 值,可得所求角度.【考点】圆的切线判定与性质,圆周角定理,直角三角形射影定理. 23.【答案】(Ⅰ)22cos 4sin 40ρρθρθ--+= (Ⅱ)12【解析】(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4θπ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ12=MN ρρ-,因为2C 的半径为1,则2C MN △的面积111sin 45=22⨯.【提示】(Ⅰ)由条件根据cos sin x y ρθρθ==,求得12C C ,的极坐标方程.(Ⅱ)把直线3C 的极坐标方程代入22cos 4sin 40ρρθρθ--+=,求得12ρρ,的值,从而求出2C MN △的面积.【考点】直角坐标方程与极坐标互化,直线与圆的位置关系.24.【答案】(Ⅰ)22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)(2)+∞,【解析】(Ⅰ)当1a =时,不等式()1f x >化为1211x x +-->,等价于11221x x x ≤⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,∴不等式()1f x >的解集为22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,(21,0)B a +,(,+1)C a a ,所以ABC △的面积为22(1)3a +, 由题设得22(1)63a +>,解得2a >,所以a 的取值范围为(2)+∞,. 【提示】(Ⅰ)当1a =时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。
2014年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0222222:11,,60,.2210(1)1(1)0B B =∴++-⋅+-+答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为 . '5'0:530:5,5,35,530.x x x y y e y y x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+, 则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= . 51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDF AEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 55233:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin coscos sin )3(sin()cos cos()sin )4444323cos sin 6cos 426cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DC DEDF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴=⋅======⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠==12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,19||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<--<<-<-∴-<-<-<--+∴=-∞------+---+-+∞==-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--++>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<-+<--+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii x x x x x k x x k k k g x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-+<---⋃--⋃-+⋃-+-+++<>从而综合题意欲使则即的解集为:上所述。
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2015年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:样本数据1x ,2x ,⋅⋅⋅,n x 的方差2222121()()()n s x x x x x x n⎡⎤=-+-+⋅⋅⋅+-⎣⎦,其中x 表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{1,4}--C .{0}D .{1,4} 2.若复数i(32i)z =-(i 是虚数单位),则z =( )A .32i -B .32i +C .2+3iD .23i - 3.下列函数中,既不是奇函数,也不是偶函数的是( )A .x y x e =+B .1y x x=+C .122x xy =+D.y 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1B .1121C .1021 D .5215.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A.20x y -=或20x y -= B.20x y +或20x y += C .250x y -+=或250x y --=D .250x y ++=或250x y +-=6.若变量x ,y 满足约束条件458,13,02,x y x y +⎧⎪⎨⎪⎩≥≤≤≤≤则32z x y =+的最小值为( )A .315B .6C .235D .47.已知双曲线C :22221x y a b -=的离心率54e =,且其右焦点为2(5,0)F ,则双曲线C 的方程为( )A .22143x y -=B .221169x y-= C .221916x y -=D .22134x y -= 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5B .等于5C .至多等于4D .至多等于3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.在41)的展开式中,x 的系数为 .10.在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += . 11.设ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若a =,1sin 2B =,π6C =,则b = .12.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言(用数字作答).13.已知随机变量X 服从二项分布(,)B n p .若()30E X =,()20D X =,则p = . (二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程)已知直线l的极坐标方程为π2sin()4ρθ-,点A的极坐标为7π)4A ,则点A 到直线l 的距离为 .姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)15.(几何证明选讲)如图,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C ,1BC =.过圆心O 作BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在平面直角坐标系xOy 中,已知向量m (22=,n (sin ,cos )x x =,π(0,)2x ∈. (Ⅰ)若m ⊥n ,求tan x 的值; (Ⅱ)若m 与n 的夹角为π3,求x 的值.17.(本小题满分12分)(Ⅰ)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (Ⅱ)计算(Ⅰ)中样本的均值x 和方差2s ;(Ⅲ)36名工人中年龄在x s -与x s +之间有多少人?所占的百分比是多少(精确到0.01%)?18.(本小题满分14分)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且2AF FB =,2CG GB =.(Ⅰ)证明:PE FG ⊥;(Ⅱ)求二面角P AD C --的正切值; (Ⅲ)求直线PA 与直线FG 所成角的余弦值.19.(本小题满分14分)设1a >,函数2()(1)x f x x e a =+-. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:()f x 在(,)-∞+∞上仅有一个零点;(Ⅲ)若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:1m .20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (Ⅰ)求圆1C 的圆心坐标;(Ⅱ)求线段AB 的中点M 的轨迹C 的方程;(Ⅲ)是否存在实数k ,使得直线L :(4)y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,请说明理由.21.(本小题满分14分)数列{}n a 满足:1212242n n n a a na -+++⋅⋅⋅+=-,*n ∈Ν. (Ⅰ)求3a 的值;(Ⅱ)求数列{}n a 的前n 项和n T ; (Ⅲ)令11b a =,1111(1)(2)23n n n T b a n n n-=++++⋅⋅⋅+≥,证明:数列{}n b 的前n 项和n S 满足22ln n S n <+.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)2015年普通高等学校招生全国统一考试(广东卷)数学(理科)答案解析一、选择题 1.【答案】D【解析】由题意可得{1,4}{1,4}M N M N =--==∅I ,,. 【提示】求出两个集合,然后求解交集即可. 【考点】交集及其运算 2.【答案】B【解析】由题意可得i(32i)23i z =-=-,因此23i z =+. 【提示】直接利用复数的乘法运算法则化简求解即可. 【考点】复数的基本计算以及共轭复数的基本概念 3.【答案】D【解析】A 选项,()()f x f x -===,偶函数;B 选项,()11()f x x x f x x x ⎛⎫-=-+=-+=- ⎪-⎝⎭,奇函数; C 选项,11()22()22x x x x f x f x ---=+=+=,偶函数;D 选项,1()e ()()ex x f x x x f x f x --=-+=-+=≠≠-,因此选D .【提示】直接利用函数的奇偶性判断选项即可. 【考点】函数的奇偶性的判定 4.【答案】B【解析】任取两球一共有215151415712C ⨯==⨯⨯种情况,其中一个红球一个白球一共有11105105C C =⨯g ,因此概率为1051015721⨯=⨯. 【提示】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可. 【考点】古典概型及其概率计算公式 5.【答案】A【解析】与直线210x y ++=平行的直线可以设为20x y m ++=,= ∴||5m =,解得5m =±,因此我们可以得到直线方程为:250x y ++=或250x y +-=.【提示】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【考点】解析几何中的平行,圆的切线方程 6.【答案】B【解析】依据题意,可行域如右图所示,初始函数为032l y x =- :,当0l 逐渐向右上方平移的过程中,32z x y =+不断增大,因此我们可以得到当l 过点41,5E ⎛⎫⎪⎝⎭的时候,min 235z =.【提示】作出不等式组对应的平面区域,根据z 的几何意义,利用数形结合即可得到最小值.【考点】线性规划问题 7.【答案】C数学试卷 第7页(共16页) 数学试卷 第8页(共16页)【解析】已知双曲线22221x y C a b-=:,54c e a ==,又由焦点为()25,0F,因此45435c a c b =⇒==⇒=,因此双曲线方程为221169x y -=.【提示】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程. 【考点】圆锥曲线的离心率求解问题 8.【答案】B【解析】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立; 4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n 大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若4n >,由于任三点不共线,当5n =时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立; 同理5n >,不成立. 故选:B .【提示】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断. 【考点】棱锥的结构特征 二、填空题 9.【答案】6【解析】展开通式为144(1)m m m C ---,令2m =可得14124244(1)(1)4m m m C C x ----=-=,因此系数为6.【提示】根据题意二项式41)的展开的通式为144(1)m m m C ---,分析可得,2m =时,有x 的项,将2m =代入可得答案. 【考点】二项式定理的运用 10.【答案】10【解析】根据等差中项可得:345675525a a a a a a ++++==,55a =,因此285210a a a +==.【提示】根据等差数列的性质,化简已知的等式即可求出5a 的值,然后把所求的式子也利用等差数列的性质化简后,将5a 的值代入即可求出值. 【考点】等差中项的计算 11.【答案】1【解析】由1sin 2B =,得π6B =或者5π6B =,又因为π6C =,因此π6B =,2π3A =,根据正弦定理可得sin sin a bA B =1sin 1sin 2a b B A ===g g . 【提示】由1sin 2B =,可得π6B =或者5π6B =,结合a ,π6C =及正弦定理可求b .【考点】正弦定理,两角和与差的正弦函数 12.【答案】1560【解析】某高三毕业班有40人,每人给彼此写一条留言,因此每人的条数为39,故而一共有40391560⨯=条留言.【提示】通过题意,列出排列关系式,求解即可. 【考点】排列与组合的实际应用 13.【答案】13【解析】根据随机变量X服从二项分布(,)B n p ,根据()30()(1E X n p D X n p p===-=,,可得()21()3D X p E X -==,化简后可得13p =. 【提示】直接利用二项分布的期望与方差列出方程求解即可. 【考点】离散型随机变量的期望与方差 14.【答案】2【解析】考察基本的极坐标和直角坐标的化简以及点到直线距离问题.由数学试卷 第9页(共16页) 数学试卷 第10页(共16页)2sin 4πρθ⎛⎫- ⎪⎝⎭l 的直角坐标系方程为10x y --=,由7π4A ⎛⎫ ⎪⎝⎭可得它的直角坐标为()2,2A -, 因此,点A 到直线l的距离为d ==. 【提示】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可. 【考点】简单曲线的极坐标方程 15.【答案】8 【解析】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,又因为AB 为直径, 因此可得90CAO B ∠+∠=︒,90ACO B ∠+∠=︒, ∵OP BC ∥∴90AC OP ACO COP ⊥∠+∠=︒,, 因此可得COP B ∠=∠,因此Rt Rt DOC ABC △∽△, 故而可得21OD OC AB BC ==,∴8OD =. 【提示】连接OC ,根据AOC △为等腰三角形可得CAO ACO ∠=∠,AB 为直径以及OP BC ∥得出Rt Rt DOC ABC △∽△即可求出OD 的值.【考点】相似三角形的判定 三、解答题16.【答案】(Ⅰ)tan 1x =(Ⅱ)5π12x =【解析】∵m n ⊥u r r,π(sin ,cos )sin 22224m n x x x x x ⎛⎛⎫=-=-=- ⎪ ⎝⎭⎝⎭u r r g g , ∴||1||1m n ==u r r, ,因此:(Ⅰ)若m n ⊥u r r ,可得πsin 04m n x ⎛⎫=-= ⎪⎝⎭u r r g ,∴ππππ44x k x k -=⇒=+,又∵π0,2x ⎛⎫∈ ⎪⎝⎭,π04k x ==,,因此可得πtan tan 14x ==.(Ⅱ)若m u r 和n r 的夹角为π3,可得ππ1sin ||||cos 432m n x m n ⎛⎫=-== ⎪⎝⎭u r r u r r g g, ∴ππ2π46x k -=+或π5π2π46x k -=+, 又∵π0,2x ⎛⎫∈ ⎪⎝⎭,∴πππ,444x ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,∴ππ46x -=,解得5π12x =.【提示】(Ⅰ)若m n ⊥u r r ,则0m n =u r rg ,结合三角函数的关系式即可求tan x 的值.(Ⅱ)若m u r 和n r 的夹角为π3,利用向量的数量积的坐标公式进行求解即可求x 的值.【考点】平面向量数量积的运算,数量积表示两个向量的夹角 17.【答案】(Ⅰ)444036433637444337, , , , , , , , (Ⅱ)40x =21009s =(Ⅲ)23人63.89%.【解析】(Ⅰ)根据系统抽样的方法,抽取9个样本,因此分成9组,每组4人.又因为第一组中随机抽样可抽到44,因此按照现有的排序分组.故而每组中抽取的都是第二个数,因此我们可得样本数据为第2个,第6个,第10个,第14个,第18个,第22个,第26个,第30个,第34个, 分别为:444036433637444337, , , , , , , , (Ⅱ)由平均值公式得444036433637444337409x ++++++++==,由方差公式得数学试卷 第11页(共16页) 数学试卷 第12页(共16页)22222212291100()()()(994440)(4040)(3740)s x x x x x x ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦-+-=+-+.(Ⅲ)103s ===,因此可得21364333x s x s -=+=,,因此在x s -和x s +之间的数据可以是444036433637444337, , , , , , , , ,因此数据一共有23人,占比为23100%63.89%36⨯≈.【提示】(Ⅰ)利用系统抽样的定义进行求解即可.(Ⅱ)根据均值和方差公式即可计算(Ⅰ)中样本的均值x 和方差2s . (Ⅲ)求出样本和方差即可得到结论. 【考点】极差,方差与标准差,分层抽样方法 18.【答案】(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)证明:由PD PC =可得三角形PDC 是等腰三角形, 又因为点E 是CD 边的中点,因此可得PE CD ⊥,又因为三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,而且相交于CD ,因此PE ⊥平面ABCD ,又因为FG 在平面ABCD 内,因此可得PE FG ⊥,问题得证.(Ⅱ)因为四边形ABCD 是矩形,因此可得AD CD ⊥, 又因为PE ⊥平面ABCD ,故而PE AD ⊥, 又PECD E =,因此可得AD ⊥平面PDC ,因此,AD PD AD CD ⊥⊥,所以P AD C PDE ∠--=∠.在等腰三角形PDC 中,46PD CD AB ===,,132DE CD==.因此可得PE ==tan 3PE PDE DE ∠==. (Ⅲ)如图所示,连接AC AE ,.∵22AF FB CG GB ==,, ∴BF BGAB BC=,BFG BAC △∽△,GF AC ∥, 因此,直线PA 与直线FG 所成角即为直线PA 与直线AC 所成角PAC ∠, 在矩形ABCD 中,点E 为CD中点,因此AE ==,而且AC =.又PE ⊥面ABCD ,三角形PAE 为直角三角形,故5PA ==,因此在PAC △中,54PA PC AC ===,,,因此可得222cos 2PA AC PC PAC PA AC +-∠==g .【提示】(Ⅰ)通过等腰三角形PDC 可得PE CD ⊥,利用线面垂直判定定理及性质定理即得结论.(Ⅱ)通过(Ⅰ)及面面垂直定理可得PE AD ⊥,则PDE ∠为二面角P AD C ∠--的平面角,利用勾股定理即得结论.(Ⅲ)连结连接AC AE ,,利用勾股定理及已知条件可得GF AC ∥,在PAC △中,利用余弦定理即得直线PA 与直线FG 所成角即为直线PA 与直线FG 所成角PAC ∠的余弦值.【考点】二面角的平面角及求法,异面直线及其所成的角,直线与平面垂直的性质 19.【答案】(Ⅰ)单调增区间为R (Ⅱ)见解析 (Ⅲ)见解析【解析】()()()()2222e 1e 12e 1e x x x xf x x x x x x '=++=++=+Qg ,因此:(Ⅰ)求导后可得函数的导函数()()21e 0x f x x '=+≥恒成立,因此函数在(,)-∞+∞上是增函数.数学试卷 第13页(共16页) 数学试卷 第14页(共16页)故而单调增区间为R .(Ⅱ)证明:令2()(1)e 0x f x x a =+-=可得2(1)e xx a +=,设212(1)e x y x y a =+=,,对函数21(1)e xy x =+, 求导后可得21(1)e 0x y x '=+≥恒成立,因此函数21(1)e xy x =+单调递增,因此可以得到函数图像. 函数2()(1)e x f x x a =+-有零点,即方程2(1)e xx a +=有解, 亦即函数212(1)e xy x y a =+=,,图像有交点.当0x =时,11y =,因此根据函数的图像可得:212(1)e xy x y a =+=,有且只有一个交点,即2()(1)e xf x x a =+-有且只有一个零点.(Ⅲ)证明:设点P 的坐标为00(,)x y ,故而在点P 处切线的斜率为:0200()(1)e 0xf x x '=+=,01x =-,因此21,1e P ⎛⎫-- ⎪⎝⎭.在点M 处切线的斜率为:22()(1)e em OP f m m k a '=+==-, 因为1a >,因此20ea ->.欲证1m ≤-,即证322(1)(1)e e m m a m +≤-=+,1e m m +≤,设()e 1x g x x =--,求导后可得()e 1xg x '=-,0x =,令()e 10xg x '=-=,因此函数在(,0)-∞上单调递减,在(0,)+∞上单调递增.因此可得()(0)0g x g ≥=,所以()e 10xg x x =--≥,e 1x x ≥+,e 1m m ≥+问题得证.【提示】(Ⅰ)利用()0f x '≥,求出函数单调增区间.(Ⅱ)证明只有1个零点,需要说明两个方面:函数单调以及函数有零点. (Ⅲ)利用导数的最值求解方法证明.【考点】利用导数研究函数的单调性,利用导数研究曲线上某点切线方程 20.【答案】(Ⅰ)1(3,0)C(Ⅱ)2230x y x +-=,其中5,33x ⎛⎤∈ ⎥⎝⎦(Ⅲ)存在34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭【解析】依题意得化成标准方程后的圆为:22(3)4x y -+=,因此:(Ⅰ)根据标准方程,圆心坐标为1(3,0)C . (Ⅱ)数形结合法:①当动线l 的斜率不存在是,直线与圆不相交. ②设动线l 的斜率为m ,因此l y mx =:, 联立22650y mxx y x =⎧⎨+-+=⎩,则22(1)650m x x +-+=根据有两个交点可得:()22224362010056151A B A B m m x x m x x m ⎧∆=-+>⇒≤<⎪⎪⎪+=⎨+⎪⎪=⎪+⎩,故而点M 的坐标为2233,11m m m ⎛⎫ ⎪++⎝⎭,令223131x m m y m ⎧=⎪⎪+⎨⎪=⎪+⎩,因此由此可得2230x y x +-=,其中235,313x m ⎛⎤=∈ ⎥+⎝⎦. (Ⅲ)证明:联立2230(4)x y x y k x ⎧+-=⎨=-⎩,所以,2222(1)(83)160k x k x k +-++=因此,当直线L 与曲线相切时,可得29160k ∆=-=,解得34k =±. 设2230x y x +-=,5,33x ⎛⎤∈ ⎥⎝⎦的两个端点是C D 、,设直线L 恒过点(4,0)E数学试卷 第15页(共16页) 数学试卷 第16页(共16页)因此可得53C ⎛ ⎝⎭,5,3D ⎛ ⎝⎭,故而可得77CE DE k k ==-, 由图像可得当直线L 与曲线有且只有一个交点的时候,34k ⎛⎧⎫∈± ⎨⎬ ⎩⎭⎝⎭.【提示】(Ⅰ)通过将圆1C 的一般式方程化为标准方程即得结论(Ⅱ)设当直线l 的方程为y mx =,通过联立直线l 与圆1C 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论. (Ⅲ)通过联立直线L 与圆1C 的方程,利用根的判别式0∆=及轨迹C 的端点与点(4,0)E 决定的直线斜率,即得结论.【考点】轨迹方程,直线与圆的位置关系 21.【答案】(Ⅰ)14(Ⅱ)1122n n T -=- (Ⅲ)见解析【解析】由给出的递推公式可得: ①当1n =时,1431a =-=②当2n ≥时,121122(1)42n n n n a a n a na --+++⋅⋅⋅+-+=-, 121212(1)42n n n a a n a --+++⋅⋅⋅+-=-, 所以12n n n na -=,112n n a -⎛⎫= ⎪⎝⎭其中1n =也成立,因此可得11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N(Ⅰ)因此231124a ⎛⎫== ⎪⎝⎭.(Ⅱ)∵11()2n n a n -⎛⎫=∈ ⎪⎝⎭*N ,所以数列{}n a 的公比12q =,利用等比数列的求和公式可得: 111121*********n nn n T -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎡⎤⎢⎥⎛⎫⎣⎦==-=- ⎪⎢⎥⎝⎭⎣⎦-. (Ⅲ)因为()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,1233111323a a b a +⎛⎫=+++ ⎪⎝⎭, 123111123n n n a a a a b a n n +++⋅⋅⋅+⎛⎫=++++⋅⋅⋅+ ⎪⎝⎭,因此,欲证22ln n S n <+,即证1111112122ln ln 2323n n n n ⎛⎫+++⋅⋅⋅+<+⇐++⋅⋅⋅+< ⎪⎝⎭,将ln n 化简为132l n l n l n l n l n1221n n n n n -=++⋅⋅⋅++--,即证1111l n l n l n 11n n n n n n n-⎛⎫>⇐-=--> ⎪-⎝⎭, 令()ln 1g x x x =-+,所以11()1xg x x x-'=-=,因此函数在(0,1)上单调递增,在(1,)+∞上单调递减,因此()(1)0g x g ≤=, 又因为111n-<,因此11111()0l l n1g g x nnn n⎛⎫⎛⎫⎛-<=⇒⇒-- ⎪ ⎪ ⎝⎭⎝⎭⎝, 问题得证.【提示】(Ⅰ)利用数列的递推关系即可求3a 的值.(Ⅱ)利用作差法求出数列{}n a 的通项公式,利用等比数列的前n 项和公式即可求数列{}n a 的前n 项和n T .(Ⅲ)利用构造法,结合裂项法进行求解即可证明不等式.【考点】数列与不等式的综合,数列的求和。
2015年普通高等学校招生全国统一考试(广东卷)数学理一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.[0}D.∅解析:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.答案:D2.(5分)(2015•广东)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3iB.2+3iC.3+2iD.3﹣2i解析:复数z=i(3﹣2i)=2+3i,则=2﹣3i,答案:A3.(5分)(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是()A. y=B. y=x+C. y=2x+D. y=x+e x解析:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是奇函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.答案:D4.(5分)(2015•广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D. 1解析:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.答案:B5.(5分)(2015•广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0B.2x+y+=0或2x+y﹣=0C. 2x﹣y+5=0或2x﹣y﹣5=0D. 2x﹣y+=0或2x﹣y﹣=0解析:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2xy+5=0或2x+y﹣5=0.答案:A6.(5分)(2015•广东)若变量x,y满足约束条件,则z=3x+2y的最小值为()A. 4B.C. 6D.解析:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=.答案:B7.(5分)(2015•广东)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A. ﹣=1B. ﹣=1C. ﹣=1D. ﹣=1解析:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.答案:C8.(5分)(2015•广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A. 至多等于3B. 至多等于4C. 等于5D. 大于5解析:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立.答案:B二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)(2015•广东)在(﹣1)4的展开式中,x的系数为 6 .解析:二项式(﹣1)4的展开式的通项公式为T r+1=•(﹣1)r•,令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,答案:610.(5分)(2015•广东)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8= 10 . 解析:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.答案:1011.(5分)(2015•广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b= 1 .解析:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾答案:112.(5分)(2015•广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560 条毕业留言.(用数字作答)解析:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.答案:156013.(5分)(2015•广东)已知随机变量X服从二项分布B(n,p),若E(X)=30,D (X)=20,则P= .解析:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,答案:14.(5分)(2015•广东)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A(2,),则点A到直线l的距离为.解析:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.答案:15.(2015•广东)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD= 8 .解析:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.答案:8三、解答题16.(12分)(2015•广东)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.答案:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=1,||=1,•=(,﹣)•(sinx,cosx)=sinx﹣cosx,∴若与的夹角为,则•=||•||cos=,即sinx﹣cosx=,则sin(x﹣)=,∵x∈(0,).∴x﹣∈(﹣,).则x﹣=即x=+=.17.(12分)(2015•广东)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 5 6 7 8 40444041334045421011121314151617363138394345393819202122232425262743413734423744282930313233343534394338425337499 43 18 36 27 42 36 39(1)用分层抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?解析:(1)利用分层抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.答案:(1)由分层抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.18.(14分)(2015•广东)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.解析:(1)通过△POC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC的余弦值.答案:(1)证明:在△POC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线FG所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.19.(14分)(2015•广东)设a>1,函数f(x)=(1+x2)e x﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m≤﹣1.解析:(1)利用f'(x)≥0,求出函数单调增区间.(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.答案:(1)f'(x)=e x(x2+2x+1)=e x(x+1)2∴f′(x)≥0,∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数. (2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数. 又f(0)=1﹣a,∵a>1.∴1﹣a<0…5分∴f(0)<0.当x→+∞时,f(x)>0成立.∴f(x)在(﹣∞,+∞)上有且只有一个零点(3)证明:f'(x)=e x(x+1)2,设点P(x0,y0)则)f'(x)=e x0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f'(x0)=0,即:e x0(x0+1)2=0,∴x0=1将x0=1代入y=f(x)得y0=.∴,∴令;g(m)=e m﹣(m+1)g(m)=e m﹣(m+1),则g'(m)=em﹣1,由g'(m)=0得m=0.当m∈(0,+∞)时,g'(m)>0当m∈(﹣∞,0)时,g'(m)<0∴g(m)的最小值为g(0)=0∴g(m)=e m﹣(m+1)≥0∴e m≥m+1∴e m(m+1)2≥(m+1)3即:∴m≤20.(14分)(2015•广东)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数 k,使得直线L:y=k(x﹣4)与曲线 C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解析:(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.答案:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k)x+16k2=0,令△=(3+8k)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为(﹣,)∪{﹣,}.21.(14分)(2015•广东)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前 n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.解析:(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n项和公式即可求数列{a n}的前 n项和T n;(3)利用构造法,结合裂项法进行求解即可证明不等式.答案:(1)∵a1+2a2+…na n=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+na n=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)a n﹣1=4﹣,n∈N+.两式相减得na n=4﹣﹣(4﹣)=,n≥2,则a n=,n≥2,当n=1时,a1=1也满足,∴a n=,n≥1,则a3=;(2)∵a n=,n≥1,∴数列{a n}是公比q=,则数列{a n}的前 n项和T n==2﹣21﹣n.(3)b n=+(1+++…+)a n,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴S n=b1+b2+…+b n=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n =(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)<2+lnn,即S n<2(1+lnn)=2+2lnn.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
参考公式:如果事件 A、B互斥,那么球的表面积公式P( A B) P( A) P(B)S 4R2如果事件 A、B相互独立,那么其中 R表示球的半径P(A B) P( A) P(B)球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V3R3n 次独立重复试验中事件 A 恰好发生k次的概率4其中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k 0,1,2, n)普通高等学校招生全国统一考试一、选择题13i 1、复数i =1A 2+I B2-I C 1+2i D 1- 2i2、已知集合 A ={1.3.m },B={1,m} ,A B = A, 则 m=A0或3 B 0或3C1或3 D 1或33椭圆的中心在原点,焦距为 4 一条准线为 x=-4 ,则该椭圆的方程为A x2y2=1Bx2y2=1 16++12128C x2y2=1Dx2y28+12+=1 444已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1与平面 BED 的距离为A2B3C2D1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为10099(C)99101(A)(B)(D)100101101100(6)△ ABC 中, AB 边的高为 CD ,若a· b=0, |a|=1, |b|=2,则(A)(B)(C)(D)3(7)已知α为第二象限角,sinα+ sinβ =3,则 cos2α = 5555--(C) 9(D)3(A)3(B)9(8)已知 F1、 F2 为双曲线 C: x2-y2=2的左、右焦点,点P 在 C 上, |PF1|=|2PF2|,则 cos ∠F1PF2=1334(A) 4(B)5(C)4(D)51(9)已知 x=ln π, y=log52 ,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12 种( B)18 种( C)24 种( D)36 种7(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =3。
2024年普通高等学校招生全国统一考试数学(理科)试卷(全国甲卷)一、选择题1.若,则( )5i z =+i()z z +=A. B. C.10D.-210i2i2.已知集合,,则( ){1,2,3,4,5,9}A={}B A =()A A B = ðA. B. C. D.{1,4,9}{3,4,9}{1,2,3}{2,3,5}3.若实数x ,y 满足约束条件,则的最小值为( )4330,220,2690,x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩5z x y =-724.记等差数列的前n 项和,若,,则( )n S {}n a 510S S =51a =1a =7115.已知双曲线的两个焦点分别为,,点在该双曲线上,则该双曲线的离心率(0,4)(0,4)-(6,4)-为( )6.设函数在点处的切线与两坐标轴所围成的三角形的()f x =()y f x =(0,1)面积为( )7.函数在区间的大致图像为( )()2e e sin xx y x x -=-+-[ 2.8,2.8]-A. B.C. D.( )=π4α⎛⎫+= ⎪⎝⎭A. B.19.已知向量,,则( )(1,)x x =+a (,2)x =b A.是的必要条件 B.是的必要条件3x =-⊥a b 3x =-//a bC.是的充分条件D.是的充分条件0x =⊥a b 1x =-+//a b 10.设,为两个平面,m ,n 为两条直线,且.下述四个命题:αβm αβ= ①若,则或//m n //n α//n β②若,则或m n ⊥n α⊥n β⊥③若且,则//n α//n β//m n④若n 与,所成的角相等,则.αβm n ⊥其中所有真命题的编号是( )A.①③B.②④C.①②③D.①③④11.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,,则ABC △60B =︒294b ac =( )sin sin A C +=12.已知b 是a ,c 的等差中项,直线与圆交于A ,B 两点,则0ax by c ++=22410x y y ++-=A.1B.2C.4D.二、填空题13.的展开式中,各项系数中的最大值为_________.1013x ⎛⎫+ ⎪⎝⎭14.已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,1r 2r ()212r r -,则圆台甲与乙的体积之比为_________.()213r r -15.已知_________.a >1log 4a -==16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的三、解答题17.某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率p =p >+)12.247≈附:2K =(1)求的通项公式;{}n a(2)设,求数列的前n 项和.1(1)n n n b na -=-{}n b n T 19.如图,已知,//AB CD,,,//CD EF 2AB DE EF CF ====4CD =AD BC ==AE =点.(1)证明:平面BCF ;//EM (2)求二面角的正弦值.A EM B --20.已知函数.()(1)ln(1)f x ax x x =-+-(1)若,求的极值;2a =-()f x (2)当时,,求a 的取值范围.0x ≥()0f x ≥21.设椭圆的右焦点为F ,点在C 上,且轴.2222:1(0)x y C a b a b +=>>31,2M ⎛⎫⎪⎝⎭MF x ⊥(1)求C 的方程;(2)过点的直线交C 于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q .证(4,0)P 明:轴.AO y ⊥22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.cos 1ρρθ=+(1)写出C 的直角坐标方程;(2)设直线l :(t 为参数),若C 与l 相交于A ,B 两点,且,求a .,x t y t a=⎧⎨=+⎩||2AB =23.[选修4-5:不等式选讲]已知实数a ,b 满足.3a b +≥(1)证明:;2222a b a b +>++-≥b b a226答案1.答案:A解析:因为,所以,故选A.5i z =+i()10i z z +=2.答案:D解析:因为,,所以,{1,2,3,4,5,9}A ={}{1,4,9,16,25,81}B A ==(){2,3,5}A A B = ð故选D.3.答案:D解析:将约束条件两两联立可得3个交点:,和,经检验都符合约束条件.代(0,1)-3,12⎛⎫ ⎪⎝⎭13,2⎛⎫⎪⎝⎭入目标函数可得:min z =4.答案:B解析:因为,所以,,又因为,所以公差510S S =718S S =80a =51a =d =187a a d =-=5.答案:C 解析:,故选C.12212F F c e a PF PF ===-6.答案:A解析:因为,所以,,563y x '=+3k =31y x =-11123S =⨯⨯=7.答案:B 解析:8.答案:B,故选=1α=πtan 1141tan ααα+⎛⎫+== ⎪-⎝⎭B.9.答案:C解析:,则,解得:或-3,故选C.⊥a b (1)20x x x ++=0x =10.答案:A 解析:11.答案:C解析:因为,所以B =294ac =24sin sin sin 9A C B ==,即:,22294b a c ac ac =+-=22134a c ac +=22sin sin A C +=222(sin sin )sin sin 2sin sin A C A C A C+=++=sin A +12.答案:C解析:因为a ,b ,c 成等差数列,所以,直线恒过.当20a b c -+=0ax by c ++=(1,2)P -,,故选C.PC ⊥|1PC =||4AB =13.答案:5解析:展开式中系数最大的项一定在下面的5项:、、、、55101C 3⎛⎫ ⎪⎝⎭46101C 3⎛⎫ ⎪⎝⎭37101C 3⎛⎫ ⎪⎝⎭28101C 3⎛⎫ ⎪⎝⎭,计算可得:系数的最大值为.19101C 3⎛⎫ ⎪⎝⎭28101C 53⎛⎫= ⎪⎝⎭h h ===15.答案:64,所以,而,221315log log 4log 22a a a -=-=-()()22log 1log 60a a +-=1a >故,.2log 6a =64a =解析:记前三个球的号码分别为a 、b 、c ,则共有种可能.令36A 120=可得:,根据对称性:或6时,2||0.5236a b a b c a b cm n ++++-=≤-=-|2|3a b c +-≤1c =均有2种可能;或5时,均有10种可能;或4时,均有16种可能;故满足条件的共有2c =3c =56种可能,56120P ==17.答案:(1)没有的把握99%(2)有优化提升解析:(1),没有的把握;22150(70242630) 6.635965450100x ⨯-⨯=<⨯⨯⨯99%p >+18.答案:(1)14(3)n n a -=⋅-(2)(21)31n n T n =-+解析:(1)因为,所以,434n n S a =+11434n n S a ++=+两式相减可得:,即:,11433n n n a a a ++=-13n n a a +=-又因为,所以,11434S a =+14a =故数列是首项为4,公比为-3的等比数列,;{}n a 14(3)n n a -=⋅-(2)解法1:,11(1)43n n n n b na n --=-=⋅所以,.()012141323333n n T n -=⋅+⋅+⋅++⋅ 12334(1323)333n n T n =⋅+⋅+⋅++⋅ 两式相减可得:,()12113241333343(24)3213n n nn n n T n n n -⎛⎫--=++++-⋅=-⋅=-- ⎪-⎝⎭.(21)31n n T n =-+解法2:,所以,11(1)43n n n n b na n --=-=⋅1143n n n T T n --=+⋅两边同时减去可得:,(21)3nn -11(21)3(23)3n n n n T n T n ----=--故为常数列,即:,.{}(21)3n n T n --(21)31n n T n --=(21)31n n T n =-+19.答案:(1)证明见解析解析:(1)由题意:,,//EF CM EF CM =而平面,平面ADO ,CF ÜADO EM Ú所以平面BCF ;//EM(2)取DM 的中点O ,连结OA ,OE ,则,,,,OA DM ⊥OE DM⊥3OA =OE =AE =故.OA OE ⊥以O 为坐标原点建立如图所示的空间直角坐标系,则,,,,,,(0,0,3)A E (0,1,0)M (0,2,3)B 3)AE =- (EM =,(0,1,3)MB =设平面AEM 的法向量为,(,,)n x y z =由可得:,00n AE n EM ⎧⋅=⎪⎨⋅=⎪⎩300z y -=+=⎪⎩令,则,1z =,1)3n =同理:取平面BEM 的法向量为,1)m =-则cos ,||||m n m n m n ⋅〈〉==,m n 〈〉= 故二面角A EM B --20.答案:(1)极小值为,无极大值(0)0f =(2)1,2⎛⎤-∞- ⎥⎝⎦解析:(1)当时,,.2a =-()(12)ln(1)f x x x x =++-1x >-时,,当时,,()2ln(1)f x x =+0>()0f x >10x -<<()0f x <所以在上递增,()f x (-)+∞故的极小值为,无极大值;()f x (0)0f =(2),()(1)ln(1)f x ax x x =-+-()ln(1)f x a x =-+-令,则.()()g x f x =21()1(1)a a g x x x +'=--++因为当时,,且,,0x ≥()0f x ≥(0)0f =(0)0f '=所以,(0)120g a '=--≥a ≤当,在上递增,a ≤2211()02(1)2(1)2(1)x g x x x x '≥-=≥+++()g x [0,)+∞,()()(0)0g x f x g =≥=故在上递增,恒成立,即a 的取值范围为.()f x [0,)+∞()(0)0f x f ≥=1,2⎛⎤-∞- ⎥⎝⎦213y =(2)证明见解析解析:(1)设椭圆C 的左焦点为,.F 23||2MF =因为,MF ⊥1MF =1||4a MF MF =+=解得:,,24a =2213b a =-=;213y =(2)解法1:设,,,()11,A x y ()22,B x y ,AP PB λ=则,即.12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩212144x x y y λλ=+-⎧⎨=-⎩又由可得,()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-结合上式可得.25230x λλ-+=,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫⎪⎝⎭222122335252Q y y y y y x x λλλ===-=--AQ y ⊥解法2:设,,()11,A x y (22,B x y =()1221214y x y y y -=-所以()()2222122112211221x y x y x y x y x y x y -+=-,()()()()22221221212121122144444433y y y y y y y y y y x y x y ⎛⎫⎛⎫=+-+=-+=-+ ⎪ ⎪⎝⎭⎝⎭即:,.122121x y x y y y +=+2112253x y y y =-,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫ ⎪⎝⎭21212112335252Q y y y y y x y y x ===--AQ y ⊥22.答案:(1)221y x =+(2)34a =解析:(1)因为,所以,cos 1ρρθ=+22(cos 1)ρρθ=+故C 的直角坐标方程为:,即:;222(1)x y x +=+221y x =+(2)将代入可得:,x t y t a=⎧⎨=+⎩221y x =+222(1)10t a ta +-+-=,解得.2||2AB t ===34a =23.答案:(1)证明见解析(2)证明见解析解析:(1)因为,所以;3a b +≥22222()a b a b a b +≥+>+222222222222()b b a a b b a a b a b +-≥-+-=+-+.22222()()()()(1)6a b a b a b a b a b a b =+-+≥+-+=++-≥。
绝密★启用前 试卷类型:B
2015年普通高等学校招生全国统一考试(广东卷】
数学(理科】
本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名和考生号、考场号、 座位号填写在答题卡上。
用2B 铅笔将试卷类型(A 】填涂在答题卡相应位置 上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点 涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指 定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案; 不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏 涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式: 样本数据12,,
,n x x x 的方差2222121[()()()]n s x x x x x x n
=-+-+
+-,其中x 表示样本均值.
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M
N =
A .∅
B .{}1,4--
C .{}0
D .{}1,4 2.若复数z=i ( 3 – 2 i ) ( i 是虚数单位 ),则z =
A .3-2i
B .3+2i
C .2+3i
D .2-3i 3.下列函数中,既不是奇函数,也不是偶函数的是
A .x
e x y += B .x x y 1+
= C .x x
y 2
12+= D .21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所
取的2个球中恰有1个白球,1个红球的概率为 A .1 B.
2111 C. 2110 D. 21
5 5.平行于直线012=++y x 且与圆52
2
=+y x 相切的直线的方程是
A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x
6.若变量x ,y 满足约束条件⎪⎩
⎪
⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为
A .
531 B. 6 C. 5
23 D. 4 7.已知双曲线C :122
22=-b
y a x 的离心率e =45,且其右焦点F 2( 5 , 0 ),则双曲线C 的方程为
A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14
32
2=-y x
8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值
A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一】必做题(9-13题】
9.在4)1(-x 的展开式中,x 的系数为 。
10.在等差数列{n a }中,若2576543=++++a a a a a ,则82a a += 。
11.设△ABC 的内角A ,B ,C 的对边分别为a,b,c .若a =3,sinB=
21,C=6
π
,则b = 。
12.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写
了 条毕业留言。
(用数字做答】
13.已知随机变量X 服从二项分布(,)B n p .若()30E X =,()20D X =,则p = .
(二】选做题(14-15题,考生只能从中选做一题】
14.(坐标系与参数方程选做题)已知直线l 的极坐标方程为24
sin(2=-)
πθρ,点A 的极坐标为
A(22,
4
7π
),则点A 到直线l 的距离为 。
15.(几何证明选讲选作题】如图1,已知AB 是圆O 的直径,AB=4,EC 是圆O 的切线,切点为C , BC=1,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD= 。
图1
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分】
在平面直角坐标系xOy 中,已知向量m =(2
2,22
-】,n =(sin x ,cos x 】,x ∈(0,2π】。
(1】若m ⊥n ,求tan x 的值 (2】若m 与n 的夹角为
3
π
,求x 的值。
17.(本小题满分12分】
(1】用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2】计算(1】中样本的平均值x 和方差2
s ;
(3】36名工人中年龄在s x -与s x +之间有多少人?所占的百分比是多少(精确到0.01%】? 18.(本小题满分14分】
如图2,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,
3BC =.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且2AF FB =,2CG GB =.
(1】证明:PE FG ⊥;
(2】求二面角P AD C --的正切值; (3】求直线PA 与直线FG 所成角的余弦值.
图2
19.(本小题满分14分】
设a>1,函数a e x x f x -+=)1()(2。
(1) 求)(x f 的单调区间 ;
(2) 证明:)(x f 在(∞-,+∞】上仅有一个零点;
(3) 若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点】,证明:123--≤e
a m 20.(本小题满分14分】
已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点A ,B . (1】求圆1C 的圆心坐标;
(2】求线段AB 的中点M 的轨迹C 的方程;
(3】是否存在实数k ,使得直线:(4)L y k x =-与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由. 21.(本小题满分14分】
数列{}n a 满足1
212
2
42-+-=+⋅⋅⋅++n n n na a a , *N n ∈. (1) 求3a 的值;
(2) 求数列{}n a 前n 项和Tn ; (3) 令11b a =,n n n a n
n T b )1
31211(1+⋅⋅⋅++++=-(2≥n 】,证明:数列{n b }的前n 项和n S 满足n S n ln 22+<。