《中心对称图形》单元测试卷(1)
- 格式:doc
- 大小:124.50 KB
- 文档页数:5
补充材料十《中心对称图形》单元练习一、选择题(每小题3分,共30分)1.把图形绕点A按逆时针方向旋转70o后所得的图形与原图作比较,保持不变的是( ) A.位置与大小B.形状与大小题C.位置与形状D.位置、形状及大小2.下面4个图案中,是中心对称图形的是( )3.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为( ) A.2个B.3个C.4个13.5个4.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=3,则菱形ABCD的周长是( ) A.12 B.18 C.24 D.305.如图,在周长为20 cm的 ABCD中,AB≠AD,AC、BD相交于点O,OE上BD交AD于点E,连接BE,则△ABE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm6.已知菱形的周长为40 cm,两对角线长度比为3:4,则对角线长分别为( )A.12 cm.16 cm B.6 cm,8 cm C.3 cm,4 cm D.24 cm,32 cm7.四边形ABCD,对角线AC、BD相交于点O,如果AO=CO,BO=DO,AC⊥BD,那么这个四边形( ) A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形,又是中心对称图形D.是轴对称图形,但不是中心对称图形8.对于下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.其中可以用任意两个全等的直角三角形拼成的图形有( )A.①④⑥B.①②⑤C.①③⑤D.②⑤⑥9.顺次连接下列各四边形各边中点所得的四边形是矩形的是( ) A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形10.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于( ) A.1:4 B.1:3 C.1:2 D.3:4二、填空题(每小题3分,共24分)11.已知三点A、B、D.如果点A'与点A关于点O对称,点B'与点B关于点O对称,那么线段AB与A'B'的关系是__________.12.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为__________cm.13.如图.在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形.四边形ABCD还应满足的一个条件是___________.14.△ABC三边的中点分别为D、E、F,如果AB=6 cm,Ac=8 cm,∠A=90o,那么△DEF的周长是________cm.15.平行四边形的周长为24 cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm.16.如图,矩形ABCD的对角线AC和BD相交于点D,过点O的直线分别交AD、BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为__________.17.菱形的两邻角的度数之比为l:3,边长为__________.18.如图.等边△EBC在正方形ABCD内,连接DE,则∠CDE=________.三、解答题(共46分)19.(6分)如图,在10×10的正方形网格纸中(每个小方格的边长都是1个单位)有一个△ABC,请在网格纸中画出以点O为旋转中心把△ABC按顺时针方向旋转90o得到的△A'B'C'.20.(8分)如图,在 ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF.(1)试说明△CEF是等腰三角形:(2) △CEF的哪两边之和恰好是 ABCD的周长,说明理由.21.(8分)如图,~ABCD中,AE~3J.A_DAB交DC于点E,连接BE,过E作EF⊥BE交AD于点F(1)试说明∠DEF=∠CBE:(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.22.(8分)如图,四边形ABCD是正方形,△DCE绕点D顺时针方向旋转90o后与△DAF重合,连接EF(1)试判断△DEF是什么三角形?并说明你的理由;(2)若此时DE的长为2,请求出EF的长.23.(8分)小华在某课外书上看到了这样一道题:“如图,分别以正方形ABCD的边AB、AD为直径画半圆.若正方形的边长为a,求阴影部分的面积.”从表面上看,图中的阴影部分是复杂且比较分散的图形,要直接计算它的面积还是有困难的,但小华仔细考虑过后,只是将正方形的对角线AC、BD连接起来,然后利用自己所学的“图形的旋转”知识很简便地就将本题解决了,你知道他是怎样做的吗?24.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D'处,折痕为EF(1)试说明△ABE≌△AD' F:(2)连接CF,判断四边形AECF是什么特殊四边形,并证明你的结论.。
五年级上册数学单元测试-2.对称、平移和旋转一、单选题1.下列数字是对称的是()。
A. B. C.2.下边的图形,()是通过平移左边的图①得到的。
①A. B. C.3.下面是平移现象的是()A. B. C.4.中心对称图形是指把图形绕某一点旋转180°后的图形和原来的图形能够完全重合,下面这些美丽的轴对称图案中,中心对称的图形有()个。
A. 1B. 2C. 3D. 4二、判断题5.平移和旋转后的物体,位置改变,形状、大小也改变。
6.飞机在空中飞行是旋转现象。
7.“脸谱”不是轴对称图形。
()8.判断对错.左图是六边形,每条边都相等,它有三条对称轴.三、填空题9.我们学过的汉字中有很多都是轴对称图形,请写出几个吧:________、________、________、________、________。
10.下图中图形A是图形B先向________平移________格,再向________平移________格后得到的。
11.移一移,说一说。
向下平移了________格。
向右平移了________格。
向上平移了________格先向________平移________格,再向________平移________格。
先向________平移________格,再向________平移________格。
12.“小鱼之家”。
小鱼尼莫要去“小鱼之家”,首先要潜入水草底躲过大鲨鱼。
那么,它应先向________平移________格,再向________平移________格潜入水草底。
躲过大鲨鱼后,尼莫再向________平移________格,安全到达“小鱼之家”。
四、解答题13.在括号里填上“平移”或“旋转”。
14.仔细观察图形,找出变化规律,想一想空白处应该怎样填?试着画一画吧!五、综合题15.看一看,填一填。
(1平移能够互相重合的有________。
【答案】B和③;D和①(1)旋转能够互相重合的有________。
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
学科教师辅导讲义年级:初一科目:数学课时数:3 课题图形的运动章节测试教学目的查漏补缺;考前模拟.教学内容一、填空题(每小题2分,共24分)1.如果某个图形绕着它的中心点旋转180°后能够与原图形重合,那么这个图形叫做.2.如果一个图形沿某条直线翻折后能够与另一个图形重合,我们说这两个图形关于这条直线成.3.长方形有条对称轴.4.正方形有条对称轴.5.圆有条对称轴.6.图形在平移、旋转变换过程中,有一个共同的特征,图形的和不变.7.国旗上的五角星是旋转对称图形,它的旋转最小角度是.8.在26个英文大写字母中,是中心对称图形的共有个.9.在长方形、正方形、圆中,既是轴对称图形又是中心对称图形的有个.10.如果△ABC与△DEF关于点O成中心对称,那么△ABC与△DEF的关系是.11.如图,正方形ABCD的边BC上有一点E,延长AB至F,使BF=BE,AE的延长线交CF于G,则线段AE与CF的关系一定是.12.小明从镜子中看到电子钟的显示屏上的时间为15:20,那么实际时间为.二、选择题(每小题3分,共12分)13.香港于1 997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花)如图所示,这个图形( )A.是轴对称图形;B.是中心对称图形;C.既是轴对称图形,也是中心对称图形;D.既不是轴对称图形,也不是中心对称图形.15.下列图形中,对称轴最多的图形是()16.下列图形中,既是轴对称图形又是中心对称图形的是()三、简答题(每小题6分,共24分)17.在下列旋转对称图形下面的括号中,写出旋转的最小角度.18.画出下列各轴对称图形的对称轴.19.标出下列各旋转对称图形的旋转中心,用字母O注明.21.小明在镜子里看到身后墙上的时钟如下,你认为实际时间最接近八点的是()22.如图,已知点O是正六边形的中心,现要用一条直线把它的面积分成相等的两部分,并且使两部分关于这条直线成轴对称.请分别用两种不同的方法画出这条直线.'''.23.请你画出△ABC关于点O对称的△A B C24.如图的网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形.(2)将(1)中画出的图形与原图看成一个整体图形,请写出这个整体图形的对称轴的条数;这个整体图像至少旋转多少度与自身重合.25.世界因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图案都有圆:它们看上去多么美丽和谐,这正是因为圆具有轴对称性和中心对称性.(1)请问以上三个图案中式轴对称图形的是,是中心对称的图形是.(2)请你在(D)(E)两个圆中,按要求分别画出与上面图案不重复的图案.(D)是轴对称图形但不是中心对称图形;(E)既是轴对称图形又是中心对称图形.。
旋转单元测试(一)(人教版)试卷简介:测试学生对于旋转章节知识掌握情况,如旋转的性质,中心对称图形,关于原点对称的点的坐标特征,重点考查学生对于旋转性质的灵活应用情况,能否有序思考解决问题。
一、单选题(共15道,每道6分)1.已知点P(x,-3)和点Q(4,y)关于原点对称,则x+y=( )A.1B.-1C.7D.-7答案:B解题思路:∵点P(x,-3)和点Q(4,y)关于原点对称,∴,∴.试题难度:三颗星知识点:关于原点对称的点的坐标2.下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有( )A.4个B.3个C.2个D.1个答案:A解题思路:题中的四个图案均满足既是中心对称图形又是轴对称图形,故均符合要求.试题难度:三颗星知识点:利用轴对称设计图案3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到.则其旋转中心一定是( )A.点EB.点FC.点GD.点H答案:C解题思路:由旋转的性质:对应点到旋转中心的距离相等,我们知道旋转中心一定在对应点连线的垂直平分线上,则旋转中心是线段的垂直平分线的交点,易知是点G.试题难度:三颗星知识点:旋转的性质4.如图,若正方形EFGH是由正方形ABCD绕某点旋转得到的,则可以作为旋转中心的是( )A.M或O或NB.E或O或CC.E或O或ND.M或O或C答案:A解题思路:我们需要利用旋转的性质来进行分析.显然点A,B,C,D都不能作为旋转中心;假如旋转中心为点E,则点A,B,C,D与点E连成的四条线段中,没有一条能够与EH对应相等,对应关系不存在,所以点E不能为旋转中心;只能选A.以M为旋转中心时,是将正方形ABCD绕点M顺时针旋转90°;以O为旋转中心时,是将正方形ABCD绕点O顺时针旋转180°;以N为旋转中心时,是将正方形ABCD绕点N逆时针旋转90°.试题难度:三颗星知识点:旋转的性质5.如图,将△ABC绕点C(0,-1)旋转180°得到,设点A的坐标为(a,b),则点的坐标为( )A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)答案:D解题思路:方法一:由旋转可知点C是线段的中点,则由中点坐标公式可以求得点的坐标;方法二:如图,过点分别作y轴的垂线,垂足分别为E,F.由题意可得,点的横坐标互为相反数,CE=CF=-1-b,∴点的横坐标为-a,OF=CF-1=-b-2,∴点的坐标为(-a,-b-2).试题难度:三颗星知识点:坐标与图形变化—旋转6.如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从M(3,3),N(3,-3),P(-3,0),Q(-3,1)这四个点中选择一个点,使得以A,B,C与该点为顶点的四边形不是中心对称图形,则该点是( )A.MB.NC.PD.Q答案:C解题思路:由图形可知M,N,Q这三个点都能与A,B,C三点构成平行四边形,而我们知道平行四边形是中心对称图形,故选C.试题难度:三颗星知识点:中心对称图形7.如图是跷跷板示意图,横板AB绕其中点O上下转动,立柱OC与地面垂直,设B点的最大高度为.若将横板AB换成横板,且,O仍为的中点,设点的最大高度为,则下列结论正确的是( )A. B.C. D.答案:C解题思路:当点B达到最高点时,过点B作BM⊥地面,垂足为M,此时线段OC是△ABM 的中位线,则BM=2OC,即.同理可得,,故.试题难度:三颗星知识点:旋转的性质8.如图,△ABC中,AB=AC,∠BAC=100°,把△ABC绕点A逆时针旋转20°得到△ADE(点D与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数为( )A.40°B.35°C.30D.25°答案:A解题思路:∵AB=AC,∠BAC=100°,∴∠ACB=40°,∵△ABC绕点A逆时针旋转20°得到△ADE,∴∠AED=∠ACB,AC=AE,∠CAE=20°,∴∠AEC=80°,∴∠CED=∠AEC-∠AED=80°-40°=40°.试题难度:三颗星知识点:旋转的性质9.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到的位置,使得∥AB,则=( )A.30°B.35°C.40°D.50°答案:A解题思路:由旋转可知,∵∥AB,∠CAB=75°,∴,∴,∴.试题难度:三颗星知识点:旋转的性质10.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠ABC=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至的位置,则点B′的坐标为( )A. B.C. D.答案:A解题思路:如图,连接OB,,过点作⊥x轴于点E,根据题意得,,∵四边形OABC是菱形,∴OA=AB,,∴△OAB是等边三角形,∴OB=OA=2,∴,∴,∴点的坐标为.试题难度:三颗星知识点:菱形的性质11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与交于点O,则线段的长为( )A. B.5C.4D.答案:B解题思路:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=60°,∠ACD=30°.∵旋转角为15°,∴=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴,AB⊥CO,∵=DC=7,∴=4,在Rt△中,.试题难度:三颗星知识点:旋转的性质12.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为( )A. B.C. D.答案:C解题思路:由旋转可知∠ECN=75°,∵∠ECD=45°,∴∠NCO=60°,∴∠ONC=30°,在Rt△NOC中,设OC=a,则CN=2a,∵CE=CN=2a,∴CD=,∴.试题难度:三颗星知识点:含30度角的直角三角形13.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长为( )A. B.C. D.答案:A解题思路:由题意得△ABP≌,且旋转角为90°,∴,则在Rt中,易得.试题难度:三颗星知识点:旋转的性质14.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积为( )A.8B.10C.12D.6答案:B解题思路:如图,过A作AG⊥BC于G,过E作EF⊥AD,交DA的延长线于F,则四边形AGCD是矩形,∴AD=GC=5,∴BG=9-5=4.∵∠EAF+∠FAB=90°,∠FAB+∠BAG=90°,∴∠EAF=∠BAG,又∵AB=AE,∴Rt△EAF≌Rt△BAG,∴EF=BG=4,则.试题难度:三颗星知识点:全等三角形的性质与判定15.如图,在等腰直角三角形ABC中,∠A=90°,AC=8,点O在AC上,且AO=2,点P是AB上一动点.连接OP,将线段OP绕点O逆时针旋转90°得到线段OD,要使点D恰好落在BC上,则AP的长度为( )A. B.6C.5D.4答案:D解题思路:如图,过点D作DE⊥AC于点E,可证得△DEO≌△OAP,∴DE=OA=CE=2,∴AP=OE=4.试题难度:三颗星知识点:全等三角形的判定与性质第 11 页共 11 页。
苏科版八年级下学期第九章《中心对称图形——平行四边形》单元测试试卷2018.4一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.下列图形中,既是中心对称图形又是轴对称图形的是A B C D2.下列命题中假命题是A .两组对边分别相等的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .一组对边平行一组对角相等的四边形是平行四边形D .一组对边平行一组对边相等的四边形是平行四边形3.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为A .30°B .45°C .90°D .135°4.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为A .1B .34C .23 D .2 5.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为A .45°B .55°C .60°D .75°第3题 第4题 第5题6.在菱形ABCD 中,AE ⊥BC ,AF ⊥CD ,且E 、F 分别为BC 、CD 的中点,那么∠EAF 的度数为A .75°B .60°C .45°D .30°7.如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为100cm²,而中间那个小平行四边形(阴影部分)的面积为20 cm²,则四边形ABDC 的面积是A .40 cm²B .60 cm²C .70cm²D .80 cm²8.如图,在菱形ABCD 中,∠A =60°,E 、F 分别是AB ,AD 的中点,DE 、BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD =120°;②BG +DG =CG ;③△BDF ≌△CGB ;④S △ABD =2AB 43. A .1个 B .2个 C .3个 D .4个第7题 第8题 第9题9.如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是A .(23,3)、(32-,4) B .(23,3)、(21-,4) C .(47,27)、(32-,4) D .(47,27)、(21-,4) 10.如图所示,边长为1的正方形EFGH 在边长为3的正方形ABCD 所在平面上移动,始终保持EF ∥AB ,线段CF 的中点为M ,DH 的中点为N ,则线段MN 的长为A .217B .210 C .317 D .1032 二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.连接四边形ABCD 各边中点,得到四边形EFGH ,还要添加 ▲ 条件,才能保证四边形EFGH 是矩形.12中,AB=5cm ,AD =8cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF = ▲ cm .第13题 第14题 第15题第10题13.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 分别是边AB 、AC 的中点,延长BC到点F ,使CF =21BC ,若AB =10,则EF 的长是 ▲ . 14.如图,正方形ABCD 的面积为16,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线BD 上有一点P ,使PC +PE 的和最小,则这个最小值为 ▲ .15.如图,在平面直角坐标系中,菱形OABC 的顶点B 的坐标为(8,4),则C 点的坐标为 ▲ .16.如图,在Rt △ABC 中,∠C =90°,AC =BC =10cm ,点P 从点B 出发,沿BA 方向以每秒2cm 的速度向终点A 运动;同时,动点Q 从点C 出发沿CB 方向以每秒1cm 的速度向终点B 运动,将△BPQ 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间为t 秒,当四边形QPBP ′为菱形时t 的值为 ▲ .17.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部,将AF 延长交边BC 于点G ,若GB CG =k 1,则ABAD = ▲ (用含k 的代数式表示).18.在平面直角坐标系中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y =x 上时停止旋转,旋转过程中,AB 边交直线y =x 于点M ,BC 边交x 轴于点N (如图),在旋转正方形OABC 的过程中,△MBN 的周长为 ▲ .第16题 第17题 第18题三、解答题(本大题共7小题,共54分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分6分)如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴的正半轴上,点B 的坐标是(0,7),且AB =25.△AOB 绕某点旋转180°后,点C (36,9)是点B 的对应点.(1)求出△AOB 的面积;(2)写出旋转中心的坐标;(3)作出△AOB 旋转后的三角形.如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.21.(本题满分9分)如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0),动点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.(1)求直线AB的函数关系式;(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;(3)在运动过程中,点P、Q的距离为2时,求点P的坐标.22.(本题满分7分)D、E分别是△ABC的边AB、AC的中点,O是平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、E、F、G.(1)如图1,当点O在△ABC内时,求证:四边形DEFG是平行四边形;(2)若点O在△ABC外,其余条件不变,点O的位置应满足什么条件,能使四边形DEFG是菱形?请在图2中补全图形,并说明理由.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:①△ABG≌△AFG;②BG=GC;(2)求△FGC的面积.24.(本题满分8分)已知:如图,在菱形ABCD中,∠B=60°,把一个含60°角的三角尺与这个菱形叠合,使三角尺60°角的顶点与点A重合,将三角尺绕点A按逆时针方向旋转.(1)如图1,当三角尺的两边分别与菱形的两边BC、CD相交于点E、F,求证:CE +CF=AB;(2)如图2,当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F,写出此时CE、CF、AB长度之间关系的结论.(不需要证明)25.(本题满分10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1中,若AB=1,BC=2为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是▲ 阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形.(2)操作、探究与计算:的邻边长分别为1,a(a>1),且是3及裁剪线的示意图,并在图形下方写出a的值;的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,是几阶准菱形.。
《图形的旋转》单元测试题姓名: 班级: 学号: 成绩:(满分120分,60分钟完成)一、选择题(共30分)1.从5点15分到5点20分,分针旋转的度数为( ).A .20°B .26°C .30°D .36°2.在右边四个图形中,既是轴对称图形又是中心对称图形的是( )A .①②③④B .①②③C .①③D .③3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)4.在英文字母V W X Y Z 中,是中心对称的英文字母的个数有( )个.A .1B .2C .3D .45.平面直角坐标系内一点P 34-(,)关于原点对称点的坐标是( )A 、 34(,)B 、34-(,-)C 、34(,-)D 、43(,-)6.如图,将正方形图案绕中心O 旋转180°后,得到的图案是( )7.下列说法不正确的是( )A 、 中心对称图形一定是旋转对称图形B 、平移不改变图形的外形和大小,而旋转则改变图形的外形和大小C 、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分D 、在平移过程中,对应点所连的线段也可能在一条直线上8.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是( )A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张(1) (2)9.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )A 、300B 、600C 、900D 、120010.对右边这个图形的判断,正确的是( )(A )这是一个轴对称图形,它有一条对称轴;(B )这是一个轴对称图形,但不是中心对称图形;(C )这是一个中心对称图形,但不是轴对称图形;(D )这既是轴对称图形,也是中心对称图形.二、填空题(共20分)11.将△ABC 绕点A 旋转一定角度后能与△ADE 重合,如果△ABC 的面积是12cm 2,那么△ADE 的面积是 .12.如图,△ABC 是等边三角形,D 为BC 边上的点,∠BAD =15°,△ABD 经旋转后到达△ACE 的位置,那么旋转角的度数是 . 13.若点a 4(,)与3b (,)关于原点对称,则a b += .14.直线y =x +3上有一点P ( m -5 ,2m ),则 P 点关于原点的对称点P ′ 为 .=90°,AB =AC =5cm , △ABC 按逆时针方向是旋转中心,旋转角是___________。
2014年江苏省无锡市崇安区东林中学八年级下册第9章《中心对称图形》单元测试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D. 1个分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O 按逆时针方向旋转而得,则旋转的角度为()A.30° B.45° C.90°D.135°考点:旋转的性质.专题:压轴题;网格型;数形结合.分析:△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.解答:解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.点评:本题考查了旋转的性质,旋转前后对应角相等,本题也可通过两角互余的性质解答.3.(3分)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.A B=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(3分)如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B. AC=BDC.AC⊥BD D.▱ABCD是轴对称图形考点:平行四边形的性质.分析:由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.解答:解:∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选:A.点评:此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.5.(3分)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形考点:平行四边形的判定;作图—复杂作图.专题:压轴题.分析:利用平行四边形的判定方法可以判定四边形ABCD是平行四边形.解答:解:∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.点评:本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.6.(3分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B 落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D. 1cm考点:矩形的性质;翻折变换(折叠问题).分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.解答:解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选C.点评:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.7.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是()A.25 B.20 C.15 D.10考点:菱形的性质;等边三角形的判定与性质.分析:由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.解答:解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是20.故选B.点评:本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.8.(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是()A.18米B.24米C.28米 D. 30米考点:三角形中位线定理.分析:根据D、E是OA、OB的中点,即DE是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.解答:解:∵D、E是OA、OB的中点,即CD是△OAB的中位线,∴DE=AB,∴AB=2CD=2×14=28m.故选C.点评:本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.9.(3分)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形考点:矩形的判定;三角形中位线定理.分析:此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解答:解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选C.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.10.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A. 1 B. C.4﹣2D. 3﹣4考点:正方形的性质.专题:压轴题.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选C.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(每空2分,共18分)11.(2分)如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=4.考点:三角形中位线定理;平行四边形的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故答案为:4.点评:此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.12.(2分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=2.考点:平行四边形的性质.分析:根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.解答:解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC﹣DE=AB﹣AD=5﹣3=2,∴CF=2.故答案为:2.点评:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,平行线的性质,比较简单,熟记性质是解题的关键.13.(2分)如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足AE=CF的条件时,四边形DEBF是平行四边形.考点:平行四边形的判定与性质.分析:当AE=CF时四边形DEBF是平行四边形;根据四边形ABCD是平行四边形,可得DO=BO,AO=CO,再由条件AE=CF可得EO=FO,根据对角线互相平分的四边形是平行四边形可判定四边形DEBF是平行四边形.解答:解:当AE=CF时四边形DEBF是平行四边形;∵四边形ABCD是平行四边形,∴DO=BO,AO=CO,∵AE=CF,∴EO=FO,∴四边形DEBF是平行四边形,故答案为:AE=CF.点评:此题主要考查了平行四边形的判定与性质,关键是掌握对角线互相平分的四边形是平行四边形.14.(4分)如图,DE∥BC,DE=EF,AE=EC,则图中的四边形ADCF是平行四边形,四边形BCFD是平行四边形.(选填“平行四边形、矩形、菱形、正方形”)考点:平行四边形的判定;全等三角形的判定与性质.分析:根据对角线互相平分的四边形是平行四边形可得四边形ADCF是平行四边形;首先证明△ADE≌△CFE可得∠A=∠ECF,进而得到AB∥CF,再根据两组对边分别平行的四边形是平行四边形可得四边形BCFD是平行四边形.解答:解:连接DC、AF,∵DE=EF,AE=EC,∴四边形ADCF是平行四边形;在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,∴AB∥CF,又∵DE∥BC,∴四边形BCFD是平行四边形;故答案为:平行四边形;平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形;两组对边分别平行的四边形是平行四边形.15.(2分)如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为60度时,四边形ABFE为矩形.考点:矩形的判定.专题:计算题.分析:根据矩形的性质和判定.解答:解:如果四边形ABFE为矩形,根据矩形的性质,那么AF=BE,AC=BC,又因为AC=AB,那么三角形ABC是等边三角形,所以∠ACB=60°.故答案为60.点评:本题主要考查了矩形的性质:矩形的对角线相等且互相平分.16.(2分)如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=22°.考点:旋转的性质.分析:根据旋转的性质可得AB=AB′,∠BAB′=44°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.解答:解:解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣44°)=68°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.点评:本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.17.(2分)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.考点:菱形的性质.分析:根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.解答:解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.点评:本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.18.(2分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=()n﹣1.考点:正方形的性质.专题:压轴题;规律型.分析:求a2的长即AC的长,根据直角△ABC中AB2+BC2=AC2可以计算,同理计算a3、a4.由求出的a2=a1,a3=a2…,a n=a n﹣1=()n﹣1,可以找出规律,得到第n个正方形边长的表达式.解答:解:∵a2=AC,且在直角△ABC中,AB2+BC2=AC2,∴a2=a1=,同理a3=a2=2,a4=a3=2,…由此可知:a n=()n﹣1,故答案为:()n﹣1.点评:本题考查了正方形的性质,以及勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.三、解答题(共52分)19.(6分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.解答:证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.点评:本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.20.(6分)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.21.(6分)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:由已知∠AEB=∠BFC=90°,AB=BC,结合∠ABE=∠BCF,证明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数.解答:解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.点评:本题主要考查正方形的性质,解答本题的关键是熟练掌握全等三角形的判定与性质,以及勾股定理等知识.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB 的中点.(1)求∠A的度数;(2)求EF的长.考点:三角形中位线定理;含30度角的直角三角形.分析:(1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;(2)由“30度角所对的直角边等于斜边的一半”求得AB=2BC,则BC=4cm.然后根据三角形中位线定理求得EF=BC.解答:解:(1)如图,∵在Rt△ABC中,∠C=90°,∠B=60°,∴∠A=90°﹣∠B=30°,即∠A的度数是30°;(2)∵由(1)知,∠A=30°.∴在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,∴BC=AB=4cm.又E、F分别为边AC、AB的中点,∴EF是△ABC的中位线,∴EF=BC=2cm.点评:本题考查了三角形中位线定理、含30度角的直角三角形.在直角三角形中,30°角所对的直角边等于斜边的一半.23.(7分)如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:(1)△ABF≌△DCE;(2)△AOD是等腰三角形.考点:矩形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用“边角边”证明△ABF和△DCE全等即可;(2)根据全等三角形对应角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根据等腰三角形的定义证明即可.解答:证明:(1)在矩形ABCD中,∠B=∠C=90°,AB=DC,∵BE=CF,BF=BC﹣FC,CE=BC﹣BE,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠BAF=∠EDC,∵∠DAF=90°﹣∠BAF,∠EDA=90°﹣∠EDC,∴∠DAF=∠EDA,∴△AOD是等腰三角形.点评:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的判定,熟记性质确定出三角形全等的条件是解题的关键.24.(7分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.考点:菱形的性质;矩形的判定.分析:(1)根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证;(2)根据勾股定理求出AE的长度,然后利用菱形的面积等于底乘以高计算即可得解.解答:(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==3,所以,S菱形ABCD=8×3=24.点评:本题考查了矩形的判定,菱形的性质,平行四边形的判定,勾股定理的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.25.(7分)如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.考点:正方形的判定;三角形中位线定理;平行四边形的判定.专题:证明题.分析:通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.解答:证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC且GF=EC.又∵H是EC的中点,EH=EC,∴GF∥EH且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH,EF.∵G,H分别是BE,EC的中点,∴GH∥BC且GH=BC.又∵EF⊥BC且EF=BC,又∵EF⊥BC,GH是三角形EBC的中位线,∴GH∥BC,∴EF⊥GH,又∵EF=GH.∴平行四边形EGFH是正方形.点评:主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.26.(7分)如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.专题:压轴题.分析:(1)根据平行四边形的性质和全等三角形的证明方法证明即可;(2)请连接EC、AF,则EF与AC满足EF=AC是,四边形AECF是矩形,首先证明四边形AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明.解答:(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AB∥CD.∴∠E=∠F.∵在△AOE与△COF中,,∴△AOE≌△COF(AAS);(2)连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形,理由如下:由(1)可知△AOE≌△COF,∴OE=OF,∵AO=CO,∴四边形AECF是平行四边形,∵EF=AC,∴四边形AECF是矩形.点评:本题主要考查了全等三角形的性质与判定、平行四边形的性质以及矩形的判定,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题。
《第16章轴对称和中心对称》一、选择题1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有()A.1个B.4个C.3个D.2个2.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间3.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD4.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=3cm,则线段PB的长为()A.6cm B.5cm C.4cm D.3cm5.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm6.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点7.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°8.如图,已知AC∥BD,OA=OC,则下列结论不一定成立的是()A.∠B=∠D B.∠A=∠B C.OA=OB D.AD=BC9.已知M(a,3)和N(4,b)关于y轴对称,则(a+b)的值为()A.1 B.﹣1 C.7 D.﹣710.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.二、填空题11.观察字母A,E,H,O,T,W,X,Z,其中不是轴对称的字母是.12.如图,是从镜中看到的一串数字,这串数字应为.13.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=5cm,BD=3cm,则点D到AB的距离为.14.已知点P关于x轴的对称点P′的坐标是(2,3),那么P关于y轴对称点P″的坐标是.15.等腰三角形一个顶角和一个底角之和是110°,则顶角是.16.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有对.17.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.18.如下图,在△ADC中,AD=BD=BC,若∠C=25°,则∠ADB= 度.三、解答题19.如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC 边上的点F,求CE的长.20.如图,已知线段CD垂直平分线AB,AB平分∠CAD,问AD与BC平行吗?请说明理由.21.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.22.如图,在△ABC中,CE、CF分别平分∠ACB和△ACB的外角∠ACG,EF∥BC交AC于点D,求证:DE=DF.23.已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8,△ABE 的周长为14,求AB的长.24.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.25.如图,AD∥BC,∠DAB的平分线与∠CBA的平分线交于点P,过点P的直线垂直于AD,垂足为D,交BC于点C.试问:点P是线段CD的中点吗?为什么?《第16章轴对称和中心对称》参考答案与试题解析一、选择题1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有()A.1个B.4个C.3个D.2个【考点】轴对称图形.【分析】此题主要是分析汉字的对称性,美和善都是轴对称图形,祥和洋不是对称图形.【解答】解:美和善都是轴对称图形,祥和洋不是对称图形.共2个.故选D.【点评】本题考查了轴对称图形,能够根据轴对称图形的概念,正确分析汉字的对称性.轴对称的概念:把其中的一个图形沿某直线翻折,能够和另一个图形完全重合,则两个图形关于某直线对称.2.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PD=PE.【解答】解:∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.4.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=3cm,则线段PB的长为()A.6cm B.5cm C.4cm D.3cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得PB=PA.【解答】解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,∵PA=3cm,∴PB=3cm.故选D.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.5.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.6.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C 的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选D.【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.7.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30° B.50° C.90° D.100°【考点】轴对称的性质;三角形内角和定理.【分析】由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.【点评】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.8.如图,已知AC∥BD,OA=OC,则下列结论不一定成立的是()A.∠B=∠D B.∠A=∠B C.OA=OB D.AD=BC【考点】等腰三角形的性质;平行线的性质.【分析】本题可根据平行线的性质和OA=OC的条件来得出∠A、∠B、∠C、∠D四角的大小关系,进而可判断各条件的对错.【解答】解:∵AC∥BD,∴∠A=∠D,∠C=∠B;又∵OA=OC,∠A=∠C;∴∠A=∠D=∠C=∠B,∴△AOC和△BOD为等腰三角形;∴OA+OB=OC+OD,即AD=BC.所以A、B、D成立;C不一定成立.故选C.【点评】本题较简单,但构思巧妙,结合了等腰三角形和平行线的性质,是一道好题.9.已知M(a,3)和N(4,b)关于y轴对称,则(a+b)的值为()A.1 B.﹣1 C.7 D.﹣7【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b,然后代入代数式进行计算即可得解.【解答】解:∵M(a,3)和N(4,b)关于y轴对称,∴a=﹣4,b=3,∴(a+b)=(﹣4+3)=1.故选A.【点评】本题考查了关于x轴y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.【考点】剪纸问题.【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【解答】解:按照题意,动手操作一下,可知展开后所得的图形是选项B.故选B.【点评】对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.二、填空题11.观察字母A,E,H,O,T,W,X,Z,其中不是轴对称的字母是Z .【考点】轴对称图形.【分析】根据轴对称图形的概念可知.【解答】解:其中不是轴对称图形的只有Z.【点评】能够根据轴对称图形的概念,正确判断字母的对称性.12.如图,是从镜中看到的一串数字,这串数字应为810076 .【考点】镜面对称.【专题】几何图形问题.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.13.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=5cm,BD=3cm,则点D到AB的距离为2cm .【考点】角平分线的性质.【分析】首先过点D作DE⊥AB于E,由在△ABC中,∠C=90°,AD是∠BAC的角平分线,根据角平分线的性质,即可得DE=CD,又由BC=5cm,BD=3cm,即可求得CD的长,继而求得点D到AB的距离.【解答】解:过点D作DE⊥AB于E,∵在△ABC中,∠C=90°,∴DC⊥AC,∵AD是∠BAC的角平分线,∴DE=CD,∵BC=5cm,BD=3cm,∴CD=BC﹣BD=2cm,∴DE=2cm.∴点D到AB的距离为2cm.故答案为:2cm.【点评】此题考查了角平分线的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.14.已知点P关于x轴的对称点P′的坐标是(2,3),那么P关于y轴对称点P″的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【专题】综合题.【分析】根据平面直角坐标系中两点关于x轴的对称点的坐标关系:横坐标不变,纵坐标互为相反数;可知道P点的坐标,再根据两点关于y轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数,得出P″的坐标.【解答】解:∵点P关于x轴的对称点P′的坐标是(2,3),根据轴对称的性质,得P点的坐标是(2,﹣3),根据两点关于y轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数,得出P″的坐标为(﹣2,﹣3),故答案为(﹣2,﹣3).【点评】本题考查了平面直角坐标系中两点关于x轴和y轴对称,横纵坐标的关系,难度适中.15.等腰三角形一个顶角和一个底角之和是110°,则顶角是40°.【考点】等腰三角形的性质.【分析】已知给出了两角的和,可根据三角形内角和定理求出另一个底角,再相减即可求出顶角.【解答】解:依题意得:等腰三角形的顶角和一个底角的和是110°即它的另一个底角为180°﹣110°=70°∵等腰三角形的底角相等故它的一个顶角等于110°﹣70°=40°.故答案为:40°.【点评】本题考查了三角形内角和定理以及等腰三角形的性质;本题思路比较直接,简单,属于基础题.16.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有 4 对.【考点】轴对称图形.【分析】关于直线OE对称的三角形就是全等的三角形,据此即可判断.【解答】解:△ODE和△OCE,△OAE和△OBE,△ADE和△BCE,△OCA和△ODB共4对.故答案为:4.【点评】能够理解对称的意义,把找对称三角形的问题转化为找全等三角形的问题,是解决本题的关键.17.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19 cm.【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.【点评】本题考查了线段垂直平分线的性质;解答此题时要注意利用垂直平分线的性质找出题中的等量关系,进行等量代换,然后求解.18.如下图,在△ADC中,AD=BD=BC,若∠C=25°,则∠ADB= 80 度.【考点】等腰三角形的性质;三角形内角和定理.【分析】在等腰△BDC中,可得∠BDC=∠C;根据三角形外角的性质,即可求得∠ABD=50°;进而可在等腰△ABD中,运用三角形内角和定理求得∠ADB的度数.【解答】解:∵BD=BC,∴∠BDC=∠C=25°;∴∠ABD=∠BDC+∠C=50°;△ABD中,AD=BD,∴∠A=∠ABD=50°;故∠ADB=180°﹣∠A﹣∠ABD=80°.故答案为:80.【点评】本题考查了等腰三角形的性质、三角形外角的性质以及三角形内角和定理;利用三角形外角求得∠ABD=50°是正确解答本题的关键.三、解答题19.如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC 边上的点F,求CE的长.【考点】勾股定理;翻折变换(折叠问题).【专题】几何图形问题.【分析】要求CE的长,应先设CE的长为x,由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE ≌Rt△AFE,所以AF=10cm,EF=DE=8﹣x;在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,又CF=BC﹣BF=10﹣BF,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即:(8﹣x)2=x2+(10﹣BF)2,将求出的BF的值代入该方程求出x的值,即求出了CE的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴∠AFE=90°,AF=10cm,EF=DE,设CE=xcm,则DE=EF=CD﹣CE=8﹣x,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm),在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即(8﹣x)2=x2+42,∴64﹣16x+x2=x2+16,∴x=3(cm),即CE=3cm.【点评】本题主要考查运用勾股定理、全等三角形、方程思想等知识,根据已知条件求指定边长的能力.20.如图,已知线段CD垂直平分线AB,AB平分∠CAD,问AD与BC平行吗?请说明理由.【考点】线段垂直平分线的性质;平行线的判定.【分析】由线段CD垂直平分线AB,根据线段垂直平分线的性质,易得∠CAB=∠CBA,又由AB平分∠CAD,即可得∠DAB=∠CBA,继而证得AD与BC平行.【解答】解:AD∥BC,理由:∵CD垂直平分AB,∴AC=BC,∴∠CAB=∠CBA,∵AB平分∠CAD,即∠CAB=∠DAB,∴∠ABC=∠DAB,∴AD∥BC.【点评】此题考查了线段垂直平分线的性质以及平行线的判定.此题难度不大,注意掌握数形结合思想的应用.21.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.【考点】轴对称-最短路线问题.【专题】作图题.【分析】分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,则PM+MN+NP最短.【解答】解:如图所示:分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P 1P 2交OX 于M ,交OY 于N ,则PM+MN+NP 最短.【点评】本题主要利用了两点之间线段最短的性质通过轴对称图形的性质确定三角形的另两点.22.如图,在△ABC 中,CE 、CF 分别平分∠ACB 和△ACB 的外角∠ACG ,EF ∥BC 交AC 于点D ,求证:DE=DF .【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】利用平行线及角平分线的性质先求得CD=ED ,CD=DF ,然后等量代换即可证明DE=DF .【解答】证明:∵CE 是△ABC 的角平分线,∴∠ACE=∠BCE .∵CF 为外角∠ACG 的平分线,∴∠ACF=∠GCF .∵EF ∥BC ,∴∠GCF=∠F ,∠BCE=∠CEF .∴∠ACE=∠CEF ,∠F=∠DCF .∴CD=ED ,CD=DF (等角对等边).∴DE=DF .【点评】本题考查了等腰三角形的判定及角平分线的性质和平行线的性质;进行等量代换是正确解答本题的关键.23.已知,如图,在△ABC 中,AB <AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,AC=8,△ABE 的周长为14,求AB 的长.【考点】线段垂直平分线的性质.【分析】利用垂直平分线的性质和已知的周长计算.【解答】解:∵DE是BC的中垂线,∴BE=EC,则AC=EC+AE=BE+EA=8,又∵△ABE的周长为14,故AB=14﹣8=6.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.难度简单.24.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,(1)A、B关于x轴对称;(2)A、B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得,再解方程组即可;(2)根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,再解方程组即可.【解答】解:(1)∵点A(2m+n,2),B (1,n﹣m),A、B关于x轴对称,∴,解得;(2)∵点A(2m+n,2),B (1,n﹣m),A、B关于y轴对称,∴,解得:.【点评】此题主要考查了关于x、y轴对称的点的坐标,关键是掌握点的坐标特点.25.如图,AD∥BC,∠DAB的平分线与∠CBA的平分线交于点P,过点P的直线垂直于AD,垂足为D,交BC于点C.试问:点P是线段CD的中点吗?为什么?【考点】角平分线的性质.【分析】过点P作PE⊥AB于E,根据垂直于同一直线的两直线互相平行求出PC⊥BC,再根据角平分线上的点到角的两边距离相等可得PD=PE,PC=PE,从而得到PC=PD,然后根据线段中点的定义解答.【解答】答:点P是线段CD的中点.证明如下:过点P作PE⊥AB于E,∵AD∥BC,PD⊥CD于D,∴PC⊥BC,∵∠DAB的平分线与∠CBA的平分线交于点P,∴PD=PE,PC=PE,∴PC=PD,∴点P是线段CD的中点.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作出辅助线是解题的关键.。
数学人教版9年级上册第23单元旋转单元测试卷(时间:120分钟总分:120分)一、单选题(30分每题2分)1.下列四幅图案代表“清明”、“谷雨”、“白露”、“大雪”,其中既是中心对称又是轴对称图形的是()A.B.C.D.2.国家提倡推行生活垃圾分类,下列垃圾分类标志分别是厨余垃圾、有害垃圾、可回收物和其他垃圾,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列图形中是中心对称图形的是()A.B.C.D.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.下面四幅图分别是“故宫博物馆”“广东博物馆”、“四川博物馆”、“温州博物馆”的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列扑克牌中,牌面是中心对称图形的是()A.B.C.D.7.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.9.环保全称环境保护,是指人类为解决现实的或潜在的环境问题,协调人类与环境的关系,保障经济、社会的持续发展而采取的各种行动的总称.下列有关环保的四个图形中,是中心对称图形的是()A.B.C.D.10.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.11.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.12.下列数学经典图形中,是中心对称图形的是()A.B.C.D.13.如图,两个年春晚吉祥物“龙辰辰”的图案成中心对称,则对称中心的坐标为()2024A .B .C .D .14.将如图所示的拼图关于点作中心对称,则下列四个选项中不属于变换后的图形的一块是( )A .B .C .D .15.垃圾分类功在当代,利在千秋,下列垃圾分类指引标志图形中,是轴对称图形又是中心对称图形的是( )A . 厨余垃圾B . 可回收物C . 其他垃圾D .有害垃圾()4,4()4,3()3,3()3,4O FoodWaste RecyclableResidualWaste HazardousWaste二、填空题(30分 每题3分)16.如图,将绕点顺时针旋转一定的角度得到,此时点在边上,若,,则的长是 .17.如图,已知直线和直线相交于点O ,且夹角为,现将直线绕点O 逆时针方向旋转,那么此时直线和直线的夹角为 度.18.如图,将绕点按逆时针方向旋转后得到,若,则 度19.点关于轴对称的点的坐标是 ,关于原点对称的点的坐标是 .20.如图,将绕着点逆时针旋转得到,使得点的对应点落在边的延长线上,若,,则线段的长为 .21.如图,将绕点逆时针旋转两次得到,每次旋转的角度都是.若ABC B A BC ''△C A B '5AB =2BC '=A C '1l 2l 40︒2l 60︒1l 2l AOB O 50︒COD △15AOB ∠=︒AOD ∠=.(x ABC A ADE V B D AC 12AB =7AE =CD ABC A AB C ''△60︒BAC '∠,则 22. 如图, 把(其中 )绕点B 顺时针旋转得到, 使得,B ,C 在同一直线上,那么这个旋转角的度数= .23.如图,将绕点旋转一定角度得到,,,,则的长度是 .24.如图,由个相同的正方形组成的十字形纸片沿直线和剪开后重组可得到矩形,那么②可看作①通过一次 得到(填“平移”“旋转”或“轴对称”).25.已知点与点关于原点对称,则的值为 .三、解答题(60分)145=︒BAC ∠=︒ABC 60ABC ∠=︒A BC ''△A 'ABC A ADE V 90B Ð=°30C ∠=︒1AD =DE 5AB EF ABCD ()11,A x y ()22,B x y 1122x y x y -26.如图,在的方格纸中,已知格点P ,请按要求画格点图形(顶点均在格点上).(8分 每题4分)(1)在图1中画一个锐角三角形,使P 为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P 为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P 旋转后的图形.27.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点(顶点为网格线的交点).(10分 每题5分)(1)将线段AB 绕着点A 逆时针旋转90°得到线段AP ,请在图中画出线段AP ;(2)将作适当平移,使得点C 与点P 重合,请在图中画出平移后的.28.已知△ABC 中,∠ACB =135°,将△ABC 绕点A 顺时针旋转90°,得到△AED ,连接CD ,CE .(10分 每题5分)26⨯180︒ABC ABC 11A B P △(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.29.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针方向旋转一定的角度,得到△ADC,连接OD,OA.(16分)(1)求∠ODC的度数;(4分)(2)试判断AD与OD的位置关系,并说明理由;(5分)(3)若OB=2,OC=3,求AO的长(直接写出结果).(7分)30.如图,在平面直角坐标中,的顶点坐标分别是,,.(16分 每题8分)(1)将以为旋转中心旋转,画出旋转后对应的;(2)将平移后得到,若点的对应点的坐标为,求的面积ABC ∆()0,4A ()0,2B ()3,2C ABC ∆О180︒111A B C ∆ABC ∆222A B C ∆A 2A ()2,2112A C C ∆参考答案1.D2.B3.C4.D5.D6.D7.A8.B9.D10.B11.C12.A13.A14.A15.D16. 317. 2018. 3519. 20. 521. 22. 23. 24. 旋转25. 026.(1)画法不唯一,如图1或图2等.(3,(3,-25120︒(2)画法不唯一,如图3或图4等.27.(1)解:如图,线段AP 即为所求;(2)解:如图,即为所求.28.(1)证明:∵△AED 是△ABC 旋转90°得到的,,∠CAD =90°,∴AC =AD ,∴△ACD 是等腰直角三角形;(2)解:∵△ACD 是等腰直角三角形,∴∠ADC =∠ACD =45°,AC =AD =2,11A B P △ABC AED ∴≌△△CD ∴==由(1)知,∠ADE =∠ACB =135°,∴∠CDE =∠ADE -∠ADC =90°,∵DE =BC =1,∴29.(1)由旋转的性质得:,.∴,即.∵为等边三角形,∴.∴.∴为等边三角形,.(2).由旋转的性质得,.∵,∴.即.(3)由旋转的性质得,AD =OB =2,∵△OCD 为等边三角形,∴OD =OC =3,在Rt △AOD 中,由勾股定理得:AO30.解:(1)延长至,使得;延长至,使得;延长至,使得;再连接即得旋转后对应的,如下图所示:11221222ACD CDE ADEC S S S =+=⨯⨯+⨯=△△四边形CD CO =OCB DCA ∠=∠ACO OCB ACO DCA ∠+∠=∠+∠ACB DCO ∠=∠ABC 60ACB ∠=︒60DCO ∠=︒OCD 60ODC ∠=︒AD OD ⊥150BOC ADC ∠=∠=︒60ODC ∠=︒90ADO ADC ODC ∠=∠-∠=︒AD OD ⊥AO 1A 1AO A O =BO 1B 1BO B O =CO 1C 1CO C O =111,,A B C 111A B C ∆(2)由题意,,,平移后得到,其中,根据平移的规律知,平移过程是向下和向右分别移动两个单位可得:,再连接点,得,其中交轴于点,如上图所示:由得出直线的方程如下:直线:当时,,,,故.()0,4A ()0,2B ()3,2C 222A B C ∆2(2,2)A 22(2,0),(5,0)B C 112,,A C C 112A C C ∆12C C y D 1121112A C C A C D A DC S S S =+ 12(3,2),(5,0)C C --12C C 12C C 1544y x =-0x =54y =-5(0,)4D ∴-1114A D ∴=1121112A C C A C D A DC S S S =+ 111121122A D CB A D OC =⨯⋅+⨯⋅11111135112424=⨯⨯+⨯⨯=11211A C C S =。
第一学期八年级数学..
《中心对称图形》单元测试卷..
一、选择题(每小题3分,共30分)..
1.把图形绕点A按逆时针方向旋转70o后所得的图形与原图作比较,保持不变的是( ) A.位置与大小B.形状与大小
C.位置与形状D.位置、形状及大小
2.下面4个图案中,是中心对称图形的是.. ( )
3.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为( )
A.2个B.3个C.4个13.5个
4.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=3,则菱形ABCD的周长是 . . ( )
A.12 B.18 C.24 D.30
5.如图,在周长为20 cm的ABCD中,AB≠AD,AC、BD相交于点O,OE上BD交AD
于点E,连接BE,则△ABE的周长为( )
A.4 cm B.6 cm C.8 cm D.10 cm
6.已知菱形的周长为40 cm,两对角线长度比为3:4,则对角线长分别为( ) A.12 cm.16 cm B.6 cm,8 cm C.3 cm,4 cm D.24 cm,32 cm
7.四边形ABCD,对角线AC、BD相交于点O,如果AO=CO,BO=DO,AC⊥BD,那么这个四边形( )
A.仅是轴对称图形
B.仅是中心对称图形
C.既是轴对称图形,又是中心对称图形
D.是轴对称图形,但不是中心对称图形
8.对于下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形.其中可以用任意两个全等的直角三角形拼成的图形有( )
A.①④⑥B.①②⑤C.①③⑤D.②⑤⑥
9.顺次连接下列各四边形各边中点所得的四边形是矩形的是( ) A.等腰梯形B.矩形
C.平行四边形D.菱形或对角线互相垂直的四边形
10.在梯形ABCD中,AB∥CD,DC:AB=1:2,E、F分别是两腰BC、AD的中点,则EF:AB等于( )
A.1:4 B.1:3 C.1:2 D.3:4
二、填空题(每小题3分,共24分)
11.已知三点A、B、D.如果点A'与点A关于点O对称,点B'与点B关于点O对称,那么线段AB与A'B'的关系是__________.
12.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为__________cm.
13.如图.在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形.四边形ABCD还应满足的一个条件是___________.
14.△ABC三边的中点分别为D、E、F,如果AB=6 cm,Ac=8 cm,∠A=90o,那么△DEF 的周长是________cm.
15.平行四边形的周长为24 cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm.
16.如图,矩形ABCD的对角线AC和BD相交于点D,过点O的直线分别交AD、BC于点
E、F,AB=2,BC=3,则图中阴影部分的面积为__________.
17.菱形的两邻角的度数之
比为l:3,
边长为,则高为__________.
18.如图.等边△EBC在正方形ABCD内,连接DE,则∠CDE=________.
三、解答题(共46分)
19.(6分)如图,在10×10的正方形网格纸中(每个小方格的边长都是1个单位)有一个△ABC,请在网格纸中画出以点O为旋转中心把△ABC按顺时针方向旋转90o得到的△A'B'C'.
20.(8分)如图,在ABCD中,延长CD至点E,延长CB至
点F,使点E、A、F共线,且∠EAD=∠BAF.
(1)试说明△CEF是等腰三角形:
(2) △CEF的哪两边之和恰好是ABCD的周长,说明理由.
21.(8分)如图,~ABCD中,AE~3J.A_DAB交DC于点E,连接BE,过E作EF⊥BE交AD于点F
(1)试说明∠DEF=∠CBE:
(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.
22.(8分)如图,四边形ABCD是正方形,△DCE绕点D顺时针方向旋转90o后与△DAF
重合,连接EF
(1)试判断△DEF是什么三角形?并说明你的理由;
(2)若此时DE的长为2,请求出EF的长.
23.(8分)小华在某课外书上看到了这样一道题:“如图,分别以正方形ABCD的边AB、AD 为直径画半圆.若正方形的边长为a,求阴影部分的面积.”从表面上看,图中的阴影部分是复杂且比较分散的图形,要直接计算它的面积还是有困难的,但小华仔细考虑过后,只是将正方形的对角线AC、BD连接起来,然后利用自己所学的“图形的旋转”知识很简便地就将本题解决了,你知道他是怎样做的吗?
24.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D' 处,折痕为EF
(1)试说明△ABE≌△AD' F:
(2)连接CF,判断四边形AECF是什么特殊四边形,并证明你的结论.
参考答案
1.B 2.A 3.B 4.C 5.D 6.A 7.C 8.B 9.D 10.D
11.平行且相等12. 6 13.AD=BC
14.12 15. 3 16.3 17. 5 18.75o 19.略
20.(1)因为ABCD中,AD∥BC,AB//DC,所以∠EAD=∠F,∠BAF=∠E,又因为∠EAD=∠BAF,所以∠E=∠F,所以△CEF是等腰三角形.
(2)由(1)可知,∠F=∠BAF,所以AB=BF,同理AD=DE.所以
CF+CE=BF+BC+CD+DE=AB+BC+CD+AD=C
ABCD
=∠BAF
21.(1)略
(2)EF=BE理由略
22.(1) △DEF是等腰直角三角形.提示:由△DCE≌△DAF得DE=DF.利用正方形ABCD 得∠FDE=90o.
(2)EF=
23.将图形S1旋转到S2位置,图形S3旋转到S4位置,这样阴影部分的面积就是△DBC的面
积,也是正方形ABCD面积的1
2
,即为
1
2
a2.
24.(1)由折叠可知:∠D=∠D',CD=AD',∠C=∠D'AE.因为四边形ABCD是平行四边形,所以∠B=∠D,AB=CD,∠C=∠BAD.所以∠B=∠D',AB=AD',∠D'AE=∠BAD,即∠1+∠2=∠2+∠3,所以∠l=∠3.所以△ABE≌△AD'F
(2)四边形AECF是菱形.由折叠可知:AE=EC,∠4=∠5.因为四边形ABCD是平行四
边形,所以AD//BC。
所以∠5=∠6.所以∠4=∠6.所以AF=AE.因为AE=EC,所以AF=EC.又因为AF//EC,所以四边形AECF是平行四边形.因为AF=AE,所以四边形AECF是菱形.。