特征方程法求递推数列的通项公式
- 格式:doc
- 大小:598.65 KB
- 文档页数:8
高中数学学习材料 (灿若寒星 精心整理制作)特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,na 为常数列,即0101,;xb a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
用特征根法与不动点法求递推数列的通项公式特征根法和不动点法是两种常用的方法来求解递推数列的通项公式。
本文将从这两个角度详细介绍这两种求解方法,并举例说明其应用。
一、特征根法(Characteristic Root Method)特征根法是一种基于代数方法的求解递推数列通项公式的方法,它通过寻找递推关系式的特征根来获取通项公式。
1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。
(2)设通项公式:假设递推数列的通项公式为Un=a^n。
(3)代入递推关系式:将通项公式Un=a^n代入递推关系式,得到方程Un=P(Un-1,Un-2,...,Un-k),其中P为k个变量的多项式函数。
(4)寻找特征根:解方程Un=0,得到特征根r1,r2,...,rk。
(5)确定通项公式:根据特征根,得到通项公式Un=C1*r1^n+C2*r2^n+...+Ck*rk^n,其中C1,C2,...,Ck为待定系数。
(6)确定待定系数:利用已知序列的初始条件,求解待定系数,得到最终的通项公式。
2.示例:求解递推数列Un=3Un-1-2Un-2,已知U0=1,U1=2(1)建立递推关系式:Un=3Un-1-2Un-2(2)设通项公式:Un=a^n。
(3)代入递推关系式:a^n=3a^(n-1)-2a^(n-2)。
(4)寻找特征根:解方程a^n=3a^(n-1)-2a^(n-2),得到特征根a=2,a=1(5)确定通项公式:Un=C1*2^n+C2*1^n。
(6)确定待定系数:利用初始条件U0=1,U1=2,得到方程组C1+C2=1,2C1+C2=2,解得C1=1,C2=0。
最终的通项公式为Un=2^n。
二、不动点法(Fixed Point Method)不动点法是一种基于迭代的求解递推数列通项公式的方法,它通过设定一个迭代公式,求解极限来获得通项公式。
1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。
特征方程法 解递推关系中 通项公式一、(一阶线性递推式)若已知数列}{n a 的项满足d ca a b a n n +==+11,,其中求这个,1,0≠≠c c 数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,这里提出一种易于掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程称之为,d cx x +=特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中是以为}{n b c 公比的等比数列,即01111,x a b c b b n n -==-.证明:因为由特征,1,0≠c 方程得作换.10cdx -=元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列是以为}{n b c 公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说说说说明定理1的应用.例1.已知数列满}{n a 足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列是以为}{n b 31-公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列满}{n a 足递推关系:,N ,)32(1∈+=+n i a a n n 其中为虚数i 单位。
特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为x ,则当10a x =时,na 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n(证毕)下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
特征方程法求解递推关系中的数列通项考虑一个简单的线性递推问题.设已知数列}{n a 的项满足其中,1,0≠≠c c 求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理 1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位.当1a 取何值时,数列}{n a 是常数数列?解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601i x a +-== 现在考虑一个分式递推问题(*).例3.已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式. 将这问题一般化,应用特征方程法求解,有下述结果.定理2.如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1(其中p 、q 、r 、h 均a 1=ba n+1=ca n +d为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2 ① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r h r q p λλλλ 将该式代入①式得.N ,)(1∈-+-=+n r h rd r p d d n n n λλ ② 将r p x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,r p ≠于是.0≠-r p λ ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④由λ是方程h rx q px x ++=的两个相同的根可以求得.2rh p -=λ ∴,122=++=---+=-+h p p h r r h p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n rp r b b n n λ故数列}{n b 是以r p r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n rp r n b b n λ 其中.11111λ-==a d b 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a n n n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第(2)部分如下: ∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ 故21111λλ--=+++n n n a a c ,将h ra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤ 由第(1)部分的证明过程知r p x =不是特征方程的根,故.,21r p r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p h q a r p r p c n n n λλλλλλ ⑥ ∵特征方程h rx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--r p h q r p h q 将上两式代入⑥式得N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ 当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为r p r p 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n rp r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,h ra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.现在求解前述例3的分类递推问题)(*. 解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有.N ,)221211(2313)(11212111∈⋅-⋅-⋅+-⋅--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a nn n 例4.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答.(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a(2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(11 51131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ 令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n n λ (4)显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.。
2i2 4特征根法求解数列递推公式类型一、形如a n 2 pa * i qa n (p,q 是常数)的数列(二阶线性递推式)形如a i m i , a 2 m 2,a * 2 pa * 1 qa *( p,q 是常数)的二阶递推数列都可用特征根法求得通项a n ,其特征方程为x 2 px q …①(1) 若①有二异根,,则可令a n C i n C 2 n (C i ,C 2是待定常数) (2) 若①有二重根,则可令a n (C i nC 2) n (C i ,C 2是待定常数)再利用a i m i ,a 2 m 2,可求得G ©,进而求得a .已知数列{a n }满足a i2,a 2 3, a n 2 3a n i 2a n (n N ),求数列{a n }的通项a n 解: 其特征方程为x 23x 2,解得 X i i,X 2 2,令 a n C i iC 2 2n ,a i C i 2C 2 2a 2 C 4C 2 3 c ,得 C 2n ia n i 2例2已知数列{a n }满足a i i,a 22,4a n 24a n i a n (n求数列{a n }的通项a n 解:其特征方程为4x 24x解得 X iX 2a i ( C i C 2)Cinc 2a 2 (C i 2C 2),得 &C 2a n3n 2 * i5133类型二、形如a n 1 A?」的数列 Ca n D (分式递推式)对于数列a n 1Aa n B,a 1 m,nCa n D N (代 B,C,D 是常数且 C 0,AD BC 0)其特征方程为 Ax B X,变形为 Cx DCx 2 (DA)x B 0…② (1)若②有二异根,,则可令旦口a n 1a n c— a n(其中c 是待定常数)代入a 1, a 2的值可求得c 值。
即数列aa n是首项为aa 1,公比为c 的等比数列,于是这样可求得a(2)若②有二重根,则可令 —1-—— c (其中c 是待定常数)a n 1a n代入a 1, a 2的值可求得c 值。
特征根法求数列的通项公式类型一、n n n qa pa a +=++12 对于由递推公式n n n qa pa a+=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。
若21,x x 是特征方程的两个根.(1)当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);(2)当21x x=时,数列{}n a 的通项为12)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a决定(即把2121,,,x x a a 和2,1=n ,代入12)(-+=n n x Bn A a ,得到关于A 、B 的方程组).例1. 数列{}n a 满足*12212,3,32()n n n aa a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232xx =-,解得121,2x x ==,令n n n B A a 21⋅+⋅=,由⎩⎨⎧=+==+=342221B A a B A a ,得⎪⎩⎪⎨⎧==211B A , 112n na-∴=+.例2.已知数列{}na 满足*12211,2,44()n n n a a a a a n N ++===-∈,求{}n a 的通项n a .解:其特征方程为2441xx =-,解得1212x x ==,令n nnB A a)21)((+=,由⎪⎪⎩⎪⎪⎨⎧=+==+=241)2(121)(21B A a B A a ,得⎩⎨⎧=-=64B A , 1322n n n a --∴=.类型二、 hra qpa a n n n ++=+1如果数列}{na 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa an n n ++=+1, (其中p 、q 、r 、h 均为常数,且r h ar qr ph -≠≠≠1,0,),那么,其特征方程为hrx qpx x ++=,变形为0)(2=--+q x p h rx(1)若方程有二异根1x 、2x ,则可令212111x a x a c x a x an nn n --⋅=--++(其中c 是待定常数),代入12,a a 的值可求得c 值.这样数列12nn ax a x ⎧⎫-⎨⎬-⎩⎭是首项为2111x a x a --,公比为c 的等比数列,于是可求得na .(2)若方程有二重根0x ,则c x a x a n n +-=-+00111(其中c 是待定常数),代入12,a a 的值可求得c 值.这样数列01n a x ⎧⎫⎨⎬-⎩⎭是首项为011x a -,公差为c 的等差数列,于是可求得na .例3. 已知数列{}na 满足11122,(2)21n n n a aa n a --+==≥+,求数列{}n a 的通项n a . 解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++ 由12,a=得245a =,可得13c =-, ∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n nn nna --∴=+-.例4.已知数列{}na 满足*11212,()46n n n a aa n N a +-==∈+,求数列{}n a 的通项n a . 解:其特征方程为2146x x x -=+,即24410xx ++=,解得1212x x ==-,令1111122n n c a a +=+++由12,a=得2314a =,求得1c =, ∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+, 135106n n a n -∴=-.例5(2005,重庆,文,22)数列).1(0521681}{111≥=++-=++n a a a a aa n n n n n且满足记).1(211≥-=n a b n n(Ⅰ)求b 1、b 2、b 3、b 4的值;(Ⅱ)求数列}{nb 的通项公式及数列}{nn b a 的前n 项和.nS解:由已知,得nn n a a a816521-+=+,其特征方程为xx x 81652-+=解之得,211=x 或452=x∴n n n a a a 816)21(6211--=-+,nn n a a a 816)45(12451--=-+∴452121452111--⋅=--++n n n n a a a a , ∴n n n n a a a a 24)21(45214521111-=⋅--=---∴42521++=-nn n a )1(34231≥+⋅=n b n n ,121211+=-=n n n n n b b a a b 得由 n n n b a b a b a S +++= 2211故121()2n b b b n=++++ 1(12)53123n n -=+-1(251)3n n =+-.。
特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列{a n }的项满足a j = b,a n 4 = ca n • d ,其中c = 0, c = 1,求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法一一特征方程 法:针对问题中的递推关系式作出一个方程 x =cx • d,称之为特征方程;借助这个特征方程的根快速求解通项公式•下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为 x 0,则当x 0 = a 4时,a n为常数列,即a n 二a i ;当X o 二a i 时,a^ b n ' x o ,其中{b n }是以c 为公比 的等比数列,即 b n = b 4c n J,b 4 =a 4-x 0.pl证明:因为c = 0,1,由特征方程得x 0——.作换元b n = a n - x 0,贝U 1 -c n 1当X 。
=a 1时,b 1 =0 ,数列{b n }是以c 为公比的等比数列, 故b n =b1C _; 当 x ° 二a 1 时,d =0 , {b n }为 0 数列,故 a * =a 1,n • N.(证毕) 下面列举两例,说明定理 1的应用.1例1•已知数列{a n }满足:a n^^a -2,- N,a—,求a n.13 解:作方程x x -2,则x 0. 3 2b"a n「x0 © d—注乂a .cd1 -c二 c(a n -X °) = cb n . 11一2 -3 一2 +X — a-fl等的比公为11 1 n4丁 3) ,a n-3b n —3叫-」)n‘, n N. 2 2 2 3b n列是例2.已知数列{a n}满足递推关系:a n ^(2a n - 3)i, n,N,其中i为虚数3单位。
当a i 取何值时,数列{a .}是常数数列?a^ :-,a 2二:给出的数列:a n 爲方程x 2- px -q =0,叫做数列 :a n / 的特征方程。
特征方程法 解递推关系中 通项公式一、(一阶线性递推式)若已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.先说定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则 .)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b cb b n n -==-.证明:因为,1,0≠c 由特征方程得.10cd x -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca cd d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n二、(二阶线性递推式)定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。
若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x B A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11()n n a A B x -=+,得到关于A 、B 的方程组)。
例2:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。
解法一(待定系数——迭加法)由025312=+-++n n n a a a ,得)(32112n n n n a a a a -=-+++,且a b a a -=-12。
则数列{}n n a a -+1是以a b -为首项,32为公比的等比数列,于是11)32)((-+-=-n n n a b a a 。
把n n ,,3,2,1⋅⋅⋅=代入,得a b a a -=-12,)32()(23⋅-=-a b a a ,234)32()(⋅-=-a b a a ,∙∙∙21)32)((---=-n n n a b a a 。
把以上各式相加,得])32()32(321)[(21-+⋅⋅⋅+++-=-n n a b a a )(321)32(11a b n ---=-。
a b b a a a b a n n n 23)32)((3)]()32(33[11-+-=+--=∴--。
解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x 。
32,121==x x ,∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A 。
又由b a a a ==21,,于是⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n n b a a b a三、(分式递推式)定理3:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且rh a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=.(1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ 若λ≠1a ,则,N ,1∈+=n b a nn λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中例3、已知数列}{n a 满足性质:对于+14N ,,23n n n a n a a +∈=+且,31=a 求}{n a 的通项公式.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理3的第(2)部分,则有1111112231112()(),N.321+22n n n a p r c n a p rλλλλ------⋅=⋅=⋅∈--+⋅∴.N ,)51(521∈-=-n c n n∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n n n λλ即.N ,)5(24)5(∈-+--=n a nnn例4.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a(4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理3的第(1)部分解答. (1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(1151131)1(531⋅-⋅-+-=n,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4,N ∈n 时,51751--=+=n n b a nn λ.(3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n rp r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a nn λ(4)、显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a rp r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2.∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在.于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.练习题:求下列数列的通项公式:1、 在数列}{n a 中,,7,121==a a )3(3221≥+=--n a a a n n n ,求n a 。
(key :21)1(32---+⋅=n n n a )2、 在数列}{n a 中,,5,121==a a 且2145---=n n n a a a ,求n a 。
(key :)14(31-=nn a )3、 在数列}{n a 中,,7,321==a a )3(2321≥-=--n a a a n n n ,求n a 。
(key :121-=+n n a )4、 在数列}{n a 中,,2,321==a a n n n a a a 313212+=++,求n a 。
(key :2)31(4147--⋅+=n n a )5、 在数列}{n a 中,,35,321==a a )4(3112n n n a a a -=++,求n a 。
(key :1321-+=n n a )6、 在数列}{n a 中,,,21b a a a ==n n n qa pa a +=++12,且1=+q p .求n a .(key :1=q 时,))(1(a b n a a n --+=;1≠q 时,qq a b b aq a n n +---+=-1))((1)7、 在数列}{n a 中,,,21b a a a a +==0)(12=++-++n n n qa a q p pa (q p ,是非0常数).求n a .(key :b pqqp p a a n n )](1[1---+= (q p ≠); b n a a n )1(1-+=)(q p =)8、在数列}{n a 中,21,a a 给定,21--+=n n n ca ba a .求n a .(key:122211)(a c a a n n n n n ⋅--+⋅--=----αβαβαβαβ)(βα≠;若βα=,上式不能应用,此时,.)2()1(1122----⋅-=n n n a n a n a αα附定理3的证明定理3(分式递推问题):如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且rh a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=.(1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a nn λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中证明:先证明定理的第(1)部分. 作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra q pa a d n n n n 11hra hq r p a n n +-+-=λλ)(hd r hq r p d n n ++-+-+=)())((λλλλλλλλr h rdq p h r r p d nn -+--+--=])([)(2①∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr q p λλλλ将该式代入①式得.N ,)(1∈-+-=+n rh rdr p d d nn n λλ ②将rp x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp ≠于是.0≠-r p λ ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化: .1)(11rp r d rp r h r p d rh rdd nn nn λλλλλ-+⋅-+=--+=+ ④由λ是方程hrx q px x ++=的两个相同的根可以求得.2rh p -=λ∴,122=++=---+=-+hp p h rrh p p r r h p h rp r h λλ将此式代入④式得.N ,111∈-+=+n rp r d d nn λ令.N ,1∈=n d b nn 则.N ,1∈-+=+n rp r b b n n λ故数列}{n b 是以rp r λ-为公差的等差数列.∴.N ,)1(1∈-⋅-+=n rp r n b b n λ其中.11111λ-==a d b当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ当存在,N 0∈n 使00=n b 时,λλ+=+=001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的.再证明定理的第(2)部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra q pa a n n n ++=+1代入再整理得N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤由第(1)部分的证明过程知rp x =不是特征方程的根,故.,21rp rp ≠≠λλ故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n rp h q a r p h q a rp r p c n n n λλλλλλ ⑥∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx又是同解方程.∴222111,λλλλλλ-=---=--rp h q rp h q将上两式代入⑥式得 N ,2121211∈--=--⋅--=-n c rp r p a a rp r p c n n n n λλλλλλ当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为rp r p 21λλ--.此时对于N ∈n 都有.))(()(12121111211------=--=n n n rp r p a a rp r p c c λλλλλλ当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,hra q pa n n ++会退化为常数;当0=r 时,hra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.。