第九届新希望杯六年级试卷及答案
- 格式:doc
- 大小:499.00 KB
- 文档页数:5
第五届小学“希望杯”全国数学邀请赛六年级 第2试一、填空题(每小题5分,共60分。
)1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在地面上形成的影子不可能是图中的______。
2.气象台预报“本市明天降水概率是80%”。
对此信息,下列说法中正确的是______。
(填序号) ①本市明天将有80%的地区降水。
②本市明天将有80%的时间降水。
③明天肯定下雨。
④明天降水的可能性比较大。
3.将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到下图中的______。
(填序号)4.下图是华联商厦3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测4月份甲、乙、丙三种品牌彩电的销售量将分别增长5%,10%和2O %。
根据预测,甲、丙两种品牌彩电4月份的销售量之和为______台。
5.对于非零自然数a 和b ,规定符号⊗的含义是:ba ba mb a ⨯⨯+⨯=⊗2 (m 是一个确定的整数)。
如果3241⊗=⊗,那么=⊗43______。
6.112005+ 12006+ 12007+ 12008的整数部分是______。
7.在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟。
请问,小鸭在这项比赛中用时______分钟。
8. 2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4×15天是星期______。
9.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有______个,最少有______个。
10.已知n 个自然数之积是2007,这n 个自然数之和也是2007,那么n 的值最大是______。
11.如图,三角形田地中有两条小路AE 和CF ,交叉处为D ,张大伯常走这两条小路,他知道DF =DC ,且AD =2DE 。
六年级第九届希望杯部分培训题及答案(原创)1、有一个整数,用它去除160、110、70得到的三个余数之和是50,则这个整数是。
首先因为这三数除以未知数的余数必定都小于这个未知数,故未知数定大于50/3也就是17以上,其次三者之和减去50(也就是290)必定能整除这个数,所以只有29 58 和145,所以只有2970+110+160-50=290....这个整数的倍数由于三个余数的和为50,从而可知这个整数比50要小,再把290折成两个数的乘积,其中一个一定要小于50290=29*10故这个数为29.2、11+22+33+……+20020+20031除以7,余数是。
11+22+33+...20020+20031)/7=(11+20031)/2*20031/11/7=10021*1821/7=18248241/7=2606891 (4)3、有三个分子相同的最简假分数,化成带分数后为。
已知a,b,c都小10,则(a+b)÷c= 。
a=7,b=3,c=2 2+1=3,5+1=6,7+1=8 所以公共分子d再加1为3,6,8的公倍数设d+1=e 因为abc都小于10 所以e小于10*3=30 e只能取24 则d=23 易得a=7,b=3,c=2由题意可知,8c+7=6b+5 6b+5=3a+2 经过化简,得到:c=(3b-1)……①a=2b+1……②由②和abc都小于10知,b<5再由①,知:只有当b=3时符合题意。
此时,c=2,a=7由题意知,3a+2=6b+5=8c+7(abc是1-10之间的自然数)c=(3b-1)/4,所以3b-1是4-40之间的,且为4的倍数的自然数;a=2b+1,所以b是1,2,3,4中的一个。
(因a<10)分别代入3b-1中,只有b=3时,3b-1=8是4的倍数。
所以,b=3,a=7,c=24、分母是455的所有最简真分数的和等于。
分母是455的所有最简真分数的和等于?【最经典解析】:455=5*7*13455/5+455/7+455/13-455/(7*5)-455/(7*13)-455/(5*13)+455/(5*7*13)=91+65+35-13-5-7+1=167455-167=288而真分数是成对出现的,且每对的和是1,所以分母是455的最简真分数的和是288/2=144【解析2】455=5*7*13能被5整除的分子总和:5*[(1+7*13)*(7*13)/2]=20930能被7整除的分子总和:7*[(1+5*13)*(5*13)/2]=15015能被13整除的分子总和:13*[(1+5*7)*(5*7)/2]=8190同理:能被35整除的分子总和=3185 能被65整除的分子总和=1820 能被91整除的分子总和=1365 能被455整除的分子总和=455所以可约分的分子总和为20930+15015+8190-3185-1820-1365+455=38220所有分子之和:(1+455)*455/2=103740所以最简真分数之和为(103740-38220)/455=1445、将自然数从左到右依次写下来,得到一个数字串123456789101112131415……。
一、选择题1. 下列哪个数是偶数?A. 3B. 4C. 5D. 6答案:B解析:偶数是指能被2整除的数,只有选项B中的4是偶数。
2. 下列哪个数是质数?A. 8B. 9C. 11D. 12答案:C解析:质数是指只能被1和它本身整除的数,只有选项C中的11是质数。
3. 下列哪个图形是正方形?A. 长方形B. 正方形C. 三角形D. 梯形答案:B解析:正方形是指四条边都相等且四个角都是直角的四边形,只有选项B中的正方形符合条件。
4. 下列哪个数是三位数?A. 100B. 1000C. 10D. 10000答案:A解析:三位数是指由三个数字组成的数,只有选项A中的100是三位数。
5. 下列哪个图形是圆形?A. 长方形B. 正方形C. 圆形D. 三角形答案:C解析:圆形是指由一条曲线围成的平面图形,只有选项C中的圆形符合条件。
二、填空题1. 12的因数有()和()。
答案:1,12解析:因数是指能整除一个数的数,12的因数有1和12。
2. 下列图形的面积是()平方厘米。
答案:18解析:图形的面积是指图形所覆盖的平面区域的大小,根据图形的形状和尺寸,可以计算出其面积为18平方厘米。
3. 下列数的倒数是()。
答案:$\frac{1}{2}$解析:倒数是指一个数与其乘积为1的数,$\frac{1}{2}$与2相乘等于1,所以$\frac{1}{2}$是2的倒数。
4. 下列图形的周长是()厘米。
答案:20解析:图形的周长是指图形边界的长度,根据图形的形状和尺寸,可以计算出其周长为20厘米。
5. 下列数的平方是()。
答案:36解析:平方是指一个数乘以它自己,6乘以6等于36,所以36是6的平方。
三、解答题1. 小明有18个苹果,他每天吃掉2个,连续吃了3天后,还剩下多少个苹果?答案:9个解析:小明每天吃掉2个苹果,连续吃了3天,共吃掉2×3=6个苹果,所以还剩下18-6=12个苹果。
2. 一个长方形的长是8厘米,宽是5厘米,求这个长方形的面积。
2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=.2.计算:=.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2=,0.♦(7.5⊕4.8)=.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子颗.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是.8.根据图计算,每块巧克力元(□内是一位数字).9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是cm2.(π取3.14)10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于cm2.11.图中一共有个长方形.(不包含正方形)12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过次对换可使全部的黑棋子彼此不相邻.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是号.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了小时.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有种.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供只鸭子吃21天.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家千米.2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=5.【解答】解:7.625﹣6+5.75﹣1=﹣+5﹣1,=7﹣1+5﹣,=6+﹣6,=12﹣6,=5.2.计算:=.【解答】解:=====.故答案为:.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2= 5.4 ,0.♦(7.5⊕4.8)=.【解答】解:(1)3.6♦2=3.6×2﹣3.6÷2=7.2﹣1.8=5.4,(2)7.5⊕4.8=7.5+4.8÷2=7.5+2.4=9.9,0.♦(7.5⊕4.8),=0.×9.9﹣0.÷2,=0.×9.4,=×9.4,=故答案为:5.4,.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□【解答】解:,,,…,,所以,×3<3<×3,整理,得这个值在1和1.5之间,所以填入的两个相邻的自然数是1和2.故答案为:1,2.5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是0.1234678.【解答】解:当循环小数为:0.1234678时,不循环的小数位数有4位,循环节的位数有5位,(2011﹣4)÷5=401…2,余数2表示循环节的第2位上的数字,即6,所以当循环小数为0.1234678时,小数点后第2011位上的数字是6.故答案为:0.1234678.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子90 颗.【解答】解:红珠子的数量是2,4,6,8,10这样的规律增加;它们的和在100之内求解.若有9组红珠子,它们的和是:2+4+…+16+18=90(颗);中间补上9个白珠子,正好是99颗珠子;所以红珠子有90颗.故答案为:90.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是145 .【解答】解,由分析知:a和b其中一个是140,一个是5,所以:a+b的最大值就是5+140=145;故答案为:145.8.根据图计算,每块巧克力 5.11 元(□内是一位数字).【解答】解:72×5.11=367.92(元),故答案为:5.11.9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是157 cm2.(π取3.14)【解答】解:大圆的半径为:20÷2=10(厘米),小圆的半径为:10÷2=5(厘米),3.14×102﹣2×3.14×52,=314﹣175,=157(平方厘米),答:阴影部分的面积为157平方厘米.10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于60 cm2.【解答】解:根据题干分析可得:(11×4+8×2)×1×1=60(平方厘米),答:这个立方体的表面积是60平方厘米.故答案为:60.11.图中一共有58 个长方形.(不包含正方形)【解答】解:因为图中长边有5个分点(包括端点),所以长边上不同的线段有:1+2+3+4=10(条);又因为宽边有4个分点(包括端点),所以宽边上不同的线段有:1+2+3=6(条),因此图中一共有长方形:10×6=60(个).由图知正方形个数只有边长为1和3两个,所以长方形个数60﹣2=58(个)答:图中一共有58个长方形(不包含正方形).故答案为:58.12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是 3 .【解答】解:假设“杯”所代表的数字是a,每个小三角形三个顶点上的数字之和相等为k,由已知列式为:6k=12×2+4a,k==4+,k必须是自然数,a为1~9中一个自然数.当a=1、2、4、5、7、8时k都无解;a=6和9时,则7个数字和会大于12,所以不行.只有当a=3时,k=4+2=6;1+2+3=6,1+2+1+2+1+2+3=12,符合题意;答:则“杯”所代表的数字是 3.故答案为:3.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过50 次对换可使全部的黑棋子彼此不相邻.【解答】解:从黑白珠子相交的地方为起点,分别数白棋子和黑棋子,只要交换偶数位置的棋子就可以;这样就需要交换:100÷2=50(次);故答案为:50.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是14 .【解答】解:由40的约数可知,三个孤的年龄及相加的和为:40=1×1×40,1+1+40=42;40=1×2×20,1+2+20=23;40=1×4×10,1+4+10=15;40=1×5×8,1+5+8=14;40=2×2×10,2+2+10=14;40=2×4×5,2+4+5=11;通过这些因数的和可以发现,同时等于14的有两种情况.王阿姨家的门牌号普查员是知道的,但还是不能确定几个孩子的年龄,说明这几个孩子的年龄和有两种情况,并且和都等于门牌号.所以,此题的答案是14.答:王阿姨家的门牌号是14.故答案为:14.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是128 号.【解答】解:据题意可知,剩下的同学的新编号就是上一次的编号除以2,因此含2因数最多的编号就是最后剩下的,196内的数中,27=128含因数2最多,所以这位同学的编号是128.故答案为:128.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了 3.6 小时.【解答】解:甲乙两人的速度比是6:4=3:2;把全程看作10份,甲走了9份,则乙要走6份;9×4÷10,=36÷10,=3.6(小时).答:他们已经出发了3.6小时.故答案为:3.6.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有840 种.【解答】解:据题意可知,最高位为5一种情况;分钟和秒的十位数,只可能是0、1、2、3、4这几种情况,而且还不能相同,共有5×4=20种情况;分钟和秒的个位数,有7×6=42种情况,所以,此题的结论是:20×42=840(种).故答案为:840.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食42 粒.【解答】解:①甲乙丙的效率之比是:(﹣):()=12:7:8;②24÷(12﹣8)×7,=6×7,=42(粒).答:蚂蚁乙搬运粮食42粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供 5 只鸭子吃21天.【解答】解:设1只鸭子每天吃饲料x,1只鸡每天吃饲料y,根据题干可得:(10x+15y)×6=(12x+6y)×7,60x+90y=84x+42y,24x=48y,x=2y,把2y=x代入:(12x+6y)×7=(12x+3x)×7=105x,105x÷21x=5(只),答:这批饲料可供5只鸭子吃21天.故答案为:5.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家36 千米.【解答】解:设小明的爸爸行驶了x小时,可得方程:12×(2.5﹣0.5+x)=36x,24+12x=36x,24x=24,x=1;则小明家距奶奶家:36×1=36(千米).答:小明家距离奶奶家36千米.故答案为:36.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:49:27;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
小学希望杯六1. 原式=3.625+0.(45)-1.(36)=2.625+(1.(45)-1.(36))=2.625+0.(09)=2.715(90)。
(这里用括号代替表示循环节)2. 后一部分等于(4×1.5)÷(4+1.5÷3)=4/3,而0.(36)=4/11,所以原式=(2×4/11+4/3)÷(4/11+2×4/3)=(2/11+1/3)÷(1/11+2/3)=17/25。
3. 第二个图形比第一个图形多9根火柴,第三个图形比第二个图形多13根火柴,经尝试,第四个图形比第三个图形多17根火柴,而最下面一层有15根火柴的是第8个图形,所以共需要火柴4+(9+13+17+21+25+29+33)=151根。
4. 因为奇数个连续自然数之和等于中间数乘以数的个数,所以N能被3和11整除,也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数,所以N等于一个整数加上1/2再乘以12,也就是被12除余6,最小为66。
66可以表示成0到11的和。
5. 4m+5=5n+4,也就是说4(m-1)=5(n-1),如果m-1=5,n-1=4,则m=6,n=5,但此时n进制中不能出现数字5;如果m-1=10,n-1=8,则m=11,n=9,符合题意。
6. 1949+60=2009,而2009年是己丑年,所以1949年是己丑年。
7. 每次摸出的结果可能是两个球颜色相同,有3种可能;或颜色不同,也有3种可能,共6种可能。
最不利情况是每种可能各出现4次,则再摸一次就保证有5次相同,6×4+1=25。
8. 相当于分别从1和1002处以2:5的速度比进行相遇问题,(1002-1)÷7×2+1=287。
9. 连接两个正方形的"\"的对角线,发现它们平行,所以阴影部分的面积就等于一个扇形的面积,为15×15×3÷4=675/4。
小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。
第九届“新希望杯”全国数学大赛六年级试题(C 卷)一、 填空题(每题4分,共24分)1. 有16个小朋友,其中9岁的有11人,11岁的有2人,13岁的有3人,那么这16个小朋友的平均年龄是( )2. 如图,将一张正方形纸片对折一次,得到一个长方形,长方形与正方形的周长之比为3. 商店处理某种商品,原价每件400元,先降价20%,在降价30%,两次降价后的售价是4. 布袋中有27个同样大小的小球,其中白球9个,红球12个,篮球6个。
从布袋中摸出若干个球,为保证剩下的球中至少有8个球同色,摸出的球数最多为5. 由若干个相同的小正方体堆积而成,且三视图如图所示的立体图形有左视图主视图俯视图6. 对于两个整数a b 、,若它们除以整数m 所得的余数相等,则称a b 、对于模m 同余,记作(mob )a b m ≡,如:113(mob4),1419(mob5)≡≡。
已知p 是小于2013的自然数,且2013(mob9)p ≡,则p 的取值共有二、 填空题7. 计算:155201369=324⎛⎫÷-⨯ ⎪⎝⎭。
8. 按规律填数:11019283746248163264,,,,,,。
9. 要把1000可糖10%的糖水的含糖量提高到25%,需要再加入 克糖。
10. 习近平总书记说过,要有“逢山开路,遇河架桥”的精神。
如果“逢”、“山”、“开”、“路”、“遇”、“河”、“架”、“桥”、“精”、“神”这10个字分别代表小于45的两位数质数中的一个,且:的+++++++=+逢山开路遇河架桥精神,那么质数“的”最大是。
11. 从一副扑克牌(共54张)中一次抽出两张,两张都是“花牌”的可能性是。
(这里的“花牌”指J Q K 、、和大小王)12. 如图,扇形的圆心角为45︒,半径为14,平行四边形的面积为84,则阴影①与阴影②的面积相差。
22=7π⎛⎫ ⎪⎝⎭ 13. 如果一个多位数从第三位数开始,每一位数都大于它前面所有数位上的数字之和,就称这个多位数具有“正能量”,那么具有“正能量”的数最大是。
2024年希望杯竞赛六年级数学培训题1 .计算: .2 . 计算: .3 .计算: .4 .计算:.5 .等式中的和都是自然数,.6 . .7 .的积不到,里最大填 .8 .以表示不超过的最大整数,若要,则自然数的最小值是 .9 .如果正整数使得,则为 .(其中表示不超过的最大整数) 10 .的整数部分是 .11 .不等式,时的解为 ,时的解为 ,时的解为 .12 .甲、乙两个两位数,甲数的等于乙数的,这两个数的和最大是 . 13 .一个三位数加或者乘的结果都是完全平方数,这个三位数是 . (注:一个自然数与自身相乘的积叫做完全平方数.) 14 .已知是数字到中的一个,若循环小数,则.15 .下面竖式中,相同的图标表示相同的数字,不同的图标表示不同的数字.那么,., .17 .将至填入右图的网格中,要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,已知左右格子已经填有数字和,问:标有字母的格子所填的数字最大是 .18 .各位数字均不大于,且能被整除的六位数共有 个. 19 .八位数(中的数字可重复出现)是的倍数,这样的八位数共有 个.20 .把的所有自然数连写在一起,可以得到这样的一个多位数,它是 位数.21 .某日,可可到动物园里去观赏动物,他看了猴子,熊猫和狮子三种动物,这三种动物的总量在到只之间,根据下面的情况: ①猴子和狮子的总数要比熊猫的数量多, ②熊猫和狮子的总数要比猴子的两倍还多, ③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.22 .儿童节的早上,方玲去图书馆看了一会儿书后到游泳馆游泳.她每天去一次图书馆,每天去游泳一次.方玲下一次既到图书馆看书,又到游泳馆游泳的时间是 月 日.23 .五名选手在一次数学竞赛中共得分,每人得分互不相等且都是整数,并且得分最高的选手得了分,那么得分最低的选手至少得 分,至多得 分. 24 .被除余,被除余,被除余的最小两位数是 。
第九届小学“希望杯”全国数学邀请赛六年级第Ⅰ试以下每题6分,共120分。
1.计算:137.6256 5.75138-+-=_______________。
2.计算:2 4.6949.2181 2.3 4.53 6.913.5⨯⨯+⨯⨯⨯⨯+⨯⨯=_______________。
3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y-x÷2,x⊕y=x+y÷2。
按此规则计算:3.6♦2=____________,0.12♦(7.5⊕4.8)=____________。
4.在方框里分别填入两个相邻的自然数,使下式成立。
□<1111 101102103150⎛⎫+++⋅⋅⋅⋅⋅⋅+⎪⎝⎭×3<□5.在循环小数0.123456789中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是___________。
6.一条项链上共串有99颗珠子,如图1,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第4颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,……。
则这条项链中共有红色珠子___________颗。
图17.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是___________。
8.根据图2计算,每块巧克力___________元。
(□内是一位数字)图29.手工课上,小红用一张直径是20cm的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是___________cm2。
(π取3.14)图310.用若干个棱长为1cm的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底面积)等于cm。
___________ 2图411.图5中一共有________个长方形(不包含正方形)。
图512.图6中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等。