RTB-II变比说明书
- 格式:pdf
- 大小:433.63 KB
- 文档页数:10
DS8252B-02 March 2011Ordering InformationNote :Richtek products are :` RoHS compliant and compatible with the current require-ments of IPC/JEDEC J-STD-020.` Suitable for use in SnPb or Pb-free soldering processes.Pin Configurations(TOP VIEW)ApplicationszWireless AP/Router z Set-T op-Boxz Industrial and Commercial Low Power Systems z LCD Monitors and TVsz Green Electronics/Appliancesz Point of Load Regulation of High-Performance DSPsSOP-8 (Exposed Pad)2A, 23V, 1.2MHz Synchronous Step-Down ConverterGeneral DescriptionThe RT8252B is a high-efficiency, monolithic synchronous step-down DC/DC converter that can deliver up to 2A output current from a 4.5V to 23V input supply. The RT8252B's current mode architecture and external compensation allow the transient response to be optimized over a wide range of loads and output capacitors.Cycle-by-cycle current limit provides protection against shorted outputs and soft-start eliminates input current surge during start-up. The RT8252B also provides under voltage protection and thermal shutdown protection. The low current (<3μA) shutdown mode provides output disconnect, enabling easy power management in battery-powered systems. The RT8252B is available in a SOP-8 (Exposed Pad) package.Featuresz ±1.5% High Accuracy Feedback Voltagez 4.5V to 23V Input Voltage Range z 2A Output Currentz Integrated N-MOSFET Switches z Current Mode Controlz Fixed Frequency Operation : 1.2MHz z Adjustable Output from 0.8V to 20V z Up to 95% Efficiencyz Programmable Soft-Startz Stable with Low-ESR Ceramic Output Capacitors z Cycle-by-Cycle Over Current Protection z Input Under Voltage Lockout z Output Under Voltage Protection z Thermal Shutdown ProtectionzRoHS Compliant and Halogen FreeBOOT VINSW GNDSS EN FBCOMPMarking InformationRT8252BGSP : Product Numberx : H or LYMDNN : Date CodePackage TypeSP : SOP-8 (Exposed Pad-Option 1)RT8252BLead Plating SystemG : Green (Halogen Free and Pb Free)H : UVP Hiccup L : UVP Latch-OffTypical Application CircuitOUTDS8252B-02 March 2011Function Block DiagramElectrical Characteristics(V IN= 12V, T A = 25°C, unless otherwise specified)Absolute Maximum Ratings (Note 1)z Supply Voltage, V IN -------------------------------------------------------------------------------------------------−0.3V to 25Vz Input Voltage, SW ---------------------------------------------------------------------------------------------------−0.3V to (V IN + 0.3V)z V BOOT − V SW ----------------------------------------------------------------------------------------------------------−0.3V to 6V z Other Pin Voltages --------------------------------------------------------------------------------------------------−0.3V to 6V zPower Dissipation, P D @ T A = 25°CSOP-8 (Exposed Pad)---------------------------------------------------------------------------------------------1.333W zPackage Thermal Resistance (Note 2)SOP-8 (Exposed Pad), θJA ----------------------------------------------------------------------------------------75°C/W SOP-8 (Εxposed Pad), θJC ---------------------------------------------------------------------------------------15°C/W z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------260°C z Junction T emperature -----------------------------------------------------------------------------------------------150°Cz Storage T emperature Range --------------------------------------------------------------------------------------−65°C to 150°C zESD Susceptibility (Note 3)HBM (Human Body Mode)----------------------------------------------------------------------------------------2kV MM (Machine Mode)------------------------------------------------------------------------------------------------200VRecommended Operating Conditions (Note 4)z Supply Voltage, V IN -------------------------------------------------------------------------------------------------4.5V to 23V z Junction T emperature Range --------------------------------------------------------------------------------------−40°C to 125°C zAmbient T emperature Range --------------------------------------------------------------------------------------−40°C to 85°CTo be continuedDS8252B-02 March 2011Note 1. Stresses listed as the above "Absolute Maximum Ratings " may cause permanent damage to the device. These are forstress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.Note 2. θJA is measured in natural convection at T A = 25°C on a high effective thermal conductivity four-layer test board ofJEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad for SOP-8 (Exposed Pad) package.Note 3. Devices are ESD sensitive. Handling precaution is recommended.Note 4. The device is not guaranteed to function outside its operating conditions.Typical Operating CharacteristicsReference Voltage vs. Input Voltage0.7800.7850.7900.7950.8000.8050.8100.8150.8204681012141618202224Input Voltage (V)R e f e r e n c e V o l t a g e (V)Output Voltage vs. Output Current3.203.223.243.263.283.303.323.343.363.383.400.00.20.40.60.81.01.21.41.61.82.0Output Current (A)O u t p u t V o l t a g e (V )Frequency vs. Temperature1.001.051.101.151.201.251.301.351.40-50-25255075100125Temperature (°C)F r e q u e n c y (M H z )Frequency. vs. Input Voltage1.001.051.101.151.201.251.301.351.404681012141618202224Input Voltage (V) F r e q u e n c y(M H z )Reference Voltage vs. Temperature0.7800.7850.7900.7950.8000.8050.8100.8150.820-50-25255075100125Temperature (°C)R e f e r e n c e V o l ta g e (V )Efficiency vs. Output Current01020304050607080901000.010.1110Output Current (A)E f f i c i e n c y (%)DS8252B-02 March 2011Current Limit vs. Duty Cycle3.03.54.04.55.05.56.001020304050607080Duty Cycle (%)C u r r e n t L i m i t (A)Current Limit VS. Temperature3.03.54.04.55.05.56.0-50-25255075100125Temperature (°C)C u r r e n t L i m i t (A)Output Current Limit vs. Input Voltage0.00.51.01.52.02.53.03.54.04.55.05.56.04681012141618202224Input Voltage (V)O u t p u t C u r r e n t L i m i t (A)Load Transient ResponseTime (100μs/Div)V IN = 12V, V OUT = 3.3V, I OUT = 0.2A to 2AI OUT (2A/Div)V OUT (50mV/Div)Load Transient ResponseTime (100μs/Div)V OUT (50mV/Div)I OUT (2A/Div)V IN = 12V, V OUT = 3.3V, I OUT = 1A to 2ASwitchingTime (500ns/Div)V IN = 12V, V OUT = 3.3V, I OUT = 2AI L (1A/Div)V OUT (10mV/Div)V SW (10V/Div)SwitchingTime (500ns/Div)V IN = 12V, V OUT = 3.3V, I OUT = 1A V OUT (10mV/Div)V SW (10V/Div)I L (1A/Div)Power On from VINTime (5ms/Div)V IN = 12V, V OUT = 3.3V, I OUT = 2AI L (2A/Div)V OUT (2V/Div)V IN (5V/Div)Power Off from VIN Time (5ms/Div)I L (2A/Div)V OUT (2V/Div)V IN (5V/Div)V IN = 12V, V OUT = 3.3V, I OUT = 2APower On from ENTime (5ms/Div)V OUT (2V/Div)V EN (5V/Div)I L (2A/Div)V IN = 12V, V OUT = 3.3V, I OUT = 2APower Off from ENTime (5ms/Div)V IN = 12V, V OUT = 3.3V, I OUT = 2AV OUT (2V/Div)V EN (5V/Div)I L (2A/Div)DS8252B-02 March 2011Application InformationThe RT8252B is a synchronous high voltage buck converter that can support the input voltage range from 4.5V to 23V while providing output current up to 2A.Output Voltage SettingThe resistive divider allows the FB pin to sense the output voltage as shown in Figure 1.Figure 1. Output Voltage SettingThe output voltage is set by an external resistive voltage divider according to the following equation :⎛⎞+⎜⎟⎝⎠OUT FB R1V = V 1R2Where V FB is the feedback reference voltage (0.8V typ.).External Bootstrap DiodeConnect a 100nF low ESR ceramic capacitor between the BOOT pin and SW pin. This capacitor provides the gate driver voltage for the high side MOSFET .It is recommended to add an external bootstrap diode between an external 5V and BOOT pin for efficiency improvement when input voltage is lower than 5.5V or duty ratio is higher than 65% .The bootstrap diode can be a low cost one such as IN4148 or BAT54. The external 5V can be a 5V fixed input from system or a 5V output of the RT8252B. Note that the external boot voltage must be lower than 5.5V.Figure 2. External Bootstrap DiodeSoft-StartThe RT8252B contains an external soft-start clamp that gradually raises the output voltage. The soft-start timing can be programmed by the external capacitor between SS pin and GND. The chip provides a 6μA charge current for the external capacitor. If 0.1μF capacitor is used to set the soft-start, it's period will be 13.5ms(typ.).Chip Enable OperationThe EN pin is the chip enable input. Pulling the EN pin low (<0.4V) will shutdown the device. During shutdown mode, the RT8252B quiescent current will drops below 3μA. Driving the EN pin high (>2.7V, < 5.5V) will turn on the device again. For external timing control (e.g.RC),the EN pin can also be externally pulled high by adding a R EN * resistor and C EN * capacitor from the VIN pin (see Figure 5).An external MOSFET can be added to implement digital control on the EN pin when no system voltage above 2.5V is available, as shown in Figure 3. In this case, a 100k Ωpull-up resistor, R EN , is connected between V IN and the EN pin. MOSFET Q1 will be under logic control to pull down the EN pin.V OUT100nFFigure 3. Enable Control Circuit for Logic Control withLow Voltage.To prevent enabling circuit when V IN is smaller than the V OUT target value, a resistive voltage divider can be placed between the input voltage and ground and connected to the EN pin to adjust IC lockout threshold, as shown in Figure 4. For example, if an 8V output voltage is regulated from a 12V input voltage, the resistor R EN2 can be selected to set input lockout threshold larger than 8V.OUTHaving a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve highest efficiency operation. However, it requires a large inductor to achieve this goal.For the ripple current selection, the val ue of ΔI L = 0.24(I MAX )will be a reasonable starting point. The large st ripple current occurs at the highest V IN . To guarantee that theOUT OUT L(MAX)IN(MAX)V V L =1f I V ⎡⎤⎡⎤×−⎢⎥⎢⎥×Δ⎣⎦⎣⎦The inductor's current rating (caused a 40°C temperature rising from 25°C ambient) should be greater than the maximum load current and its saturation current should be greater than the short circuit peak current limit. Please see Table 2 for the inductor selection reference.Table 2. Suggested Inductors for TypicalRMS OUT(MAX)I = I This formula has a maximum at V IN = 2V OUT , where I RMS = I OUT /2. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.For the input capacitor, one 10μF low ESR ceramic capacitors are recommended. For the recommended capacitor, please refer to Table 3 for more detail.The selection of C OUT is determined by the required ESR to minimize voltage ripple.Moreover, the amount of bulk capacitance is also a key for C OUT selection to ensure that the control loop is stable.Loop stability can be checked by viewing the load transientC IN and C OUT SelectionThe input capacitance, C IN, is needed to filter the trapezoidal current at the source of the high side MOSFET .To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The RMS current is given by :V OUTFigure 4. The Resistors can be Selected to Set ICLockout Threshold.Hiccup ModeFor the RT8252BH, it provides Hiccup Mode Under Voltage Protection (UVP). When the FB voltage drops below half of the feedback reference voltage, V FB , the UVP function will be triggered and the RT8252BH will shut down for a period of time and then recover automatically. The Hiccup Mode UVP can reduce input current in short-circuit tch-Off ModeFor the RT8252BL, it provides Latch-Off Mode Under Voltage Protection (UVP). When the FB voltage drops below half of the feedback reference voltage, V FB , UVP will be triggered and the RT8252BL will shut down in Latch-Off Mode. In shut down condition, the RT8252BL can be reset by the EN pin or power input VIN.Inductor SelectionThe inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔI L increases with higher V IN and decreases with higher inductance.OUT OUT L IN V V I =1f L V ⎡⎤⎡⎤Δ×−⎢⎥⎢⎥×⎣⎦⎣⎦ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation :DS8252B-02 March 2011OUT L OUT 1V I ESR 8fC ⎡⎤Δ≤Δ+⎢⎣⎦The output ripple will be highest at the maximum input voltage since ΔI L increases with input voltage. Multiplecapacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement. Dry tantalum,special polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages.Special polymer capacitors offer very low ESR value. However, it provides lower capacitance density than other types. Although T antalum capacitors have the highest capacitance density, it is important to only use types that pass the surge test for use in switching power supplies.Aluminum electrolytic capacitors have significantly higher ESR. However, it can be used in cost-sensitive applications for ripple current rating and long term reliability considerations. Ceramic capacitors have excellent low ESR characteristics but can have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can also lead to significant ringing.Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at theresponse as described in a later section.The output ripple, ΔV OUT , is determined by :input, V IN . At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at V IN large enough to damage the part.Checking Transient ResponseThe regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in load current. When a load step occurs, V OUT immediately shifts by an amount equal to ΔI LOAD (ESR) also begins to charge or discharge C OUT generating a feedback error signal for the regulator to return V OUT to its steady-state value. During this recovery time, V OUT can be monitored for overshoot or ringing that would indicate a stability problem.EMI ConsiderationSince parasitic inductance and capacitance effects in PCB circuitry w ould cause a spike voltage on SW pin when high side MOSFET is turned-on /off, this spike voltage on SW may impact on EMI performance in the system. In order to enhance EMI performance, there are two methods to suppress the spike voltage. One is to place an R-C snubber between SW and GND and make them as close as possible to the SW pi n (see Figure 5). Another m ethod is adding a resistor in series with the bootstrap capacitor, C BOOT . But this method will decrease the driving capability to the high side MOSFET. It is strongly recommended to reserve the R-C snubber during PCB layout for EMI improvement. Moreover, reducing the SW trace area and keeping the main power in a small loop will be helpful on EMI performance. For detailed PCB layout guide, please refer to the section of Layout Consideration.Figure 5. Reference Circuit with Snubber and Enable Timing ControlV OUT 3.3V/2AFigure 7. Derating Curves for RT8252B Package(a) Copper Area = (2.3 x 2.3) mm 2, θJA = 75°C/W(b) Copper Area = 10mm 2, θJA = 64°C/W(c) Copper Area = 30mm 2 , θJA = 54°C/W0.00.20.40.60.81.01.21.41.61.82.02.20255075100125Ambient Temperature P o w e r D i s s i p a t i o n (W )(°C)Thermal ConsiderationsFor continuous operation, do not exceed the maximum operation junction temperature 125°C . The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient.The maximum power dissipation can be calculated by following formula :P D(MAX) = (T J(MAX) − T A ) / θJAWhere T J(MAX) is the maximum operation junction temperature , T A is the ambient temperature and the θJA is the junction to ambient thermal resistance.For recommended operating conditions specification of RT8252B, the maximum junction temperature is 125°C .The junction to ambient thermal resistance θJA is layout dependent. For PSOP-8 package, the thermal resistance θJA is 75°C /W on the standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T A = 25°C can be calculated by following formula :P D(MAX) = (125°C − 25°C ) / (75°C /W) = 1.333W (min.copper area PCB layout)P D(MAX) = (125°C − 25°C ) / (49°C /W) = 2.04W (70mm 2copper area PCB layout)The thermal resistance θJA of SOP-8 (Exposed Pad) is determined by the package architecture design and the PCB layout design. However, the package architecture design had been designed. If possible, it's useful to increase thermal performance by the PCB layout copper design. The thermal resistance θJA can be decreased by a dding copper area under the exposed pad of SOP-8(Exposed Pad) package.As shown in Figure 6, the amount of copper area to which the SOP-8 (Exposed Pad) is mounted affects thermal performance. When mounted to the standard SOP-8 (Exposed Pad) pad (Figure 6.a), θJA is 75°C/W.Adding copper area of pad under the SOP-8 (Exposed Pad) (Figure 6.b) reduces the θJA to 64°C/W. Even further,increasing the copper area of pad to 70mm 2 (Figure 6.e)reduces the θJA to 49°C/W.The maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance θJA . For RT8252B package, the Figure 7 ofderating curves allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed.DS8252B-02 March 2011(d) Copper Area = 50mm 2 , θJA = 51°C/W(e) Copper Area = 70mm 2 , θJA = 49°C/WFigure 6. Themal Resistance vs. Copper Area Layout DesignFigure 8. PCB Layout GuideTable 3. Suggested Capacitors for Cand CLayout ConsiderationFor best performance of the RT8252B, the follow layout guidelines must be strictly followed.`Input capacitor must be placed as close to the IC as possible.C `SW should be connected to inductor by wide and short trace. Keep sensitive components away from this trace.`The feedback components must be connected as close to the device as possibleInformation that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.Richtek Technology CorporationHeadquarter5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C.Tel: (8863)5526789 Fax: (8863)5526611Richtek Technology CorporationTaipei Office (Marketing)5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C.Tel: (8862)86672399 Fax: (8862)86672377Email:*********************Outline DimensionHM(Bottom of Package)8-Lead SOP (Exposed Pad) Plastic Package。
RTRB-II变压器绕组变形检测仪使用说明书武汉锐拓普电力设备有限公司目录一、系统简介................................................................................................................................................ - 1 -二、安全工作准则........................................................................................................................................ - 2 -三、准备工作................................................................................................................................................ - 3 -3.1采集仪器USB驱动安装 (3)3.2采集程序安装 (5)3.3USB通讯线 (5)3.4网络设置 (5)3.5被试变压器的准备 (6)四、试验接线................................................................................................................................................ - 7 -4.1绕组的接线方式 (7)4.2试验的注意事项 (9)五、采集分析.............................................................................................................................................. - 10 -5.1启动“采集分析”程序 (10)5.2连接主机 (10)5.3采集分析 (11)5.3.1选择被试变压器...................................................................................................................... - 12 -5.3.2选择数据采集模式.................................................................................................................. - 14 -5.3.3采集数据.................................................................................................................................. - 15 -5.3.4数据文件.................................................................................................................................. - 17 -5.3.5打开数据文件.......................................................................................................................... - 18 -5.3.6波形操作.................................................................................................................................. - 20 -5.3.7清除曲线.................................................................................................................................. - 21 -5.3.8修改曲线的显示颜色.............................................................................................................. - 21 -5.3.9数据存储格式设置.................................................................................................................. - 21 -5.3.10数据导入.................................................................................................................................. - 22 -5.3.11数据库功能.............................................................................................................................. - 22 -六、报告输出.............................................................................................................................................. - 23 -6.1报告预览和报告打印 (23)6.2WORD报告文档 (23)七、修改和查看.......................................................................................................................................... - 24 -7.1修改和查看铭牌数据文件 (24)7.2修改和查看测试设置数据文件 (25)八、设备维护.............................................................................................................................................. - 25 -8.1基本维护 (25)8.2高级维护 (25)一、系统简介变压器绕组变形检测仪(频响法)用于测试6KV及以上电压等级电力变压器及其它特殊用途的变压器,电力变压器在运行或者运输过程中不可避免地要遭受各种故障短路电流的冲击或者物理撞击,在短路电流产生的强大电动力作用下,变压器绕组可能失去稳定性,导致局部扭曲、鼓包或移位等永久变形现象,这样将严重影响变压器的安全运行。
RTDC-II智能蓄电池充电机RTDC-II Battery Chargeing Tester使用说明书User's Manual武汉拓普联合电力设备有限公司Wuhan Top Union Electric Device Co.,LTD第一部分仪器使用说明第一章概述1.1综述该仪器功率大,体积小,重量轻,友好、人性化的人机交互界面,大大减少了蓄电池日常测试维护的工作量,是蓄电池充电维护工作的最佳助手。
请您在使用仪器前仔细阅读本说明书,以免因使用不当,造成损失!1.2主要功能及特点a.严格按照蓄电池充电特性曲线进行自动充电,设计的充电模式是“恒流→(均充稳压值)定压减流→(自动判别转为)涓流浮充”,具有充电速度快、充电还原效率高、无需人工值守、超长时间充电无过充电危险、确保蓄电池使用寿命等优点;b.用户设定好均充电压、浮充电压、单节电压上限、充电电流、充电时间、充入容量等参数,测试仪便自动执行充电过程,并实时显示充电电流、充入容量、整组电压、单节电池电压、充电时间等信息;在充电过程中可重新修改充电参数;c.当充电时间到达设定时间、充入容量到达设定容量、充电模块异常或人为终止操作均可停止充电操作;◆可保存10组充电数据;用户可进行查询、删除及SD卡导出操作。
◆运行过程中可以随时调整充电参数。
◆设有交流输入过流、过欠压、输出短路保护,反应速度快、寿命长。
并设有过热自动关机保护功能,确保用户放心安全使用。
◆模块化的操作界面,操作简单,流程清晰,每一步操作均有简体中文提示。
◆7寸彩色大屏幕液晶触摸显示器,显示效果清晰优美。
◆体积小、重量轻,带万向轮便于移动。
1.3技术指标◆环境条件工作温度:(-20~55)℃贮存温度:(-45~70)℃相对湿度:90%(40±2℃)大气压力:(70~106)kPa◆外形尺寸:500*450*350整机重量:35kg◆工作电源:AC380V;频率:50Hz◆蓄电池类型:铅酸蓄电池◆蓄电池组标称电压:380v◆充电电流:5A~30A◆显示方式:7寸彩色大屏幕LCD1.4充电原理简介充电机以所设置均充充电电流的五分之一作为均充-浮充转换的判别阈值,大于阈值处于均充状态,小于阈值处于浮充状态。
BP-2B 母差及失灵保护装置使用说明BP-2B 母线差动保护是母线故障时的快速保护,能满足双母线运行灵活的要求。
其在双母线并列运行,单母线运行解列运行,固定联结破坏及倒闸操作过程中均能正确动作,不必进行手动切换。
在双母线并列运时发生母线短路或接地故障时保护动作无时限跳开母联及故障母线上联结的各元件断路器。
在单母线运行时,当母线发生短路或接地故障时保护动作无时限跳开母线上联结的各元件断路器。
BP-2B 微机母差及失灵保护装置装置面板布置图如下图1:图1 BP-2B 母差及失灵保护BP-2B 型微机母线保护装置面板指示灯与按钮说明表:见表1表1 BP-2B 型微机母线保护装置面板指示灯与按钮说明表BP-2B保护装置运行或操作时相应的信号指示灯和界面显示表:见表2BP-2B微机母线保护装置异常信息含义及菜单操作BP-2B微机母线保护装置自检信息含义及处理建议:见下表3表3 BP-2B微机母线保护装置自检信息含义及处理建议BP-2B保护插件异常信息含义及处理建议:见下表4BP-2B母线保护装置告警信号灯处理表:见下表5表5 BP-2B母线保护装置告警信号灯处理表BP-2B微机母线成套保护液晶显示画面总体结构示意图,如下图2:图2 BP-2B微机母线成套保护液晶显示画面总体结构示意图保护插件刀闸辅助接点与一次设备状态不对应时强制对应的步骤:a)由主界面按“确认”键进入一级菜单;b)按“←”键选中“参数”,后按“↓”键选中“运行方式设置”,按“确认”键,后按“↑”、“↓”键输入密码后进入下一级菜单,按“确认”键,间隔数变成灰色;c)利用“↓”、“↑”,从界面中找到相应线路所对应的间隔,再按“确认”键,此时间隔数灰色消失;d)按“↓”键选中所要改变的刀闸,再按“确认”键此时又变灰色;e)按“↓”改变刀闸位置(合、断、自动)后,按“取消”键提示是否保存,按确认键保存改变的设置(此时主接线图上,被强制的刀闸上有一实心矩形块);f)按下保护屏上的信号复归按钮,复归信号。
RTB-II全自动变比测试仪RTB-II Auto Transformer Turn Ratio Tester使用说明书User's Manual 武汉锐拓普电力设备有限公司Wuhan Retop Electric Device Co.,LTD目录一、产品概况 (1)二、用户须知 (1)三、性能特点 (2)四、技术指标 (2)五、面板示意图 (3)六、操作方法 (3)七、注意事项 (8)八、一般故障处理 (9)九、产品清单 (9)打印机的使用与操作 (10)一、产品概况根据IEC及国家有关标准规定,在电力变压器生产、用户交接和检修试验过程中,变压器变比试验是必做的项目,这样可有效监督变压器产品出厂及使用过程中的质量,防止变压器匝间短路,开路,连接错误,调压开关内部故障或接触故障。
为此我公司研制生产的RTB-II全自动变比测试仪在原基础上根据用户的现场使用要求,使操作更加简便,功能完备,数据稳定可靠,测试速度大大提高。
适应各种大中小型变压器变比测试的需要。
二、用前须知1.使用前请认真阅读本使用说明书。
2.本仪器户内外均可使用,但应避开雨淋、腐蚀性气体、尘埃过浓、高温、阳光直射等场所使用。
3.测试前开机预热10分钟!4.接线时注意高压侧与低压侧引线不能接反。
5.仪器开机后不能将测试引线互相短路或接地等,必须将不用的引线夹悬空处理。
6.仪器接线要注意黄、绿、红三色分别对应变压器的A、B、C、三相接线端,不可接错。
7.对仪器的维修、调整应由专业人员进行。
三、性能特点●中文菜单提示、操作简单方便。
●变比测量范围大:1-10000●功能强大:既可进行单相测量,又可实现三相绕组的自动测试,联接组别可任意选择,一次完成测量AB、BC、CA三相的变比值、误差、联线组别等参数。
●测量速度快。
●一次测量完成、自动切断试验电源。
●设置数据,测量结果自动保存,可查看以前数据。
●测有载变压器,只输入一次变比。
●携带方便、适合野外作业。
H C B R-I I变压器容量测试仪使用手册HCBR-II型变压器容量—特性测试仪目录一、概述 (1)功能特点 (2)二、技术指标 (3)三、界面及功能介绍 (3)1、结构尺寸 (3)2、操作面板示意图 (4)3、主菜单 (4)4、容量测试 (5)5、空载测试 (7)6、负载测试 (10)7、数据管理 (12)8、数据上传 (13)四、使用方法 (13)1、基本概念介绍 (13)2、变压器容量测试及有源负载测试的接线方法 (14)3、单相电源测量单相变压器的空载损耗的接线方法 (14)4、单相电源测量单相变压器的短路损耗的接线方法 (14)5、单相电源对三相变压器的空载损耗的测量及接线方式 (15)6、单相电源对三相变压器的短路(负载)损耗测量及其接线方式 (17)7、两元件法对变压器空载损耗的测量及接线方式 (17)8、两元件法对变压器短路损耗的测量及接线方式 (19)9、三相电源对变压器空载损耗的测量及接线方式 (19)10、三相电源对变压器负载损耗的测量及接线方式 (19)五、电池充电及维护 (20)六、注意事项 (20)七、附录:系列配电变压器技术参数 (22)HCBR-II型变压器容量—特性测试仪是我公司研发人员专门针对不良电力用户偷逃基本电费、私自增容问题而研发设计的新型仪器,是专门用于变压器容量、特性参数测量的高精密仪器。
本产品采用彩色大屏幕液晶显示器,中文显示,简便快捷的菜单式操作,人机界面友好。
仪器内部自带高效能可充电电池,无需外接电源即可工作。
电池一次完全充电可连续测量500台套左右的变压器。
此外,仪器内可提供三相精密50Hz正弦波交流测试电源,在测量变压器容量及变压器负载损耗时不需要外接三相测试电源及调压器、升流器等辅助设备,从而大大提高了您的工作效率。
本仪器为多功能测量仪器,相当于往常两种测试仪器:即有源变压器容量测试仪+变压器特性参数测试仪,在特性测试中又可以以传统的两表法测试又可以用标准的三线四相制法测试,既能和传统测试法比较参数,又能精确的测量参数。
YDB-II全自动变比组别测试仪说明书尊敬的顾客感谢您购买本公司YDB-II全自动变比组别测试仪。
在您初次使用该仪器前,请您详细地阅读本使用说明书,将可帮助您熟练地使用本仪器。
我们的宗旨是不断地改进和完善公司的产品,因此您所使用的仪器可能与使用说明书有少许的差别。
如果有改动的话,我们会用附页方式告知,敬请谅解!您有不清楚之处,请与公司售后服务部联络,我们定会满足您的要求。
由于输入输出端子、测试柱等均有可能带电压,您在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电危险,注意人身安全!公司地址:湖北省武汉市江汉区八古新墩168号销售热线:4006-650-027(全国免费咨询电话)售后服务:(027)85883272(直拨)传真:(027)85600891E-mail:**************网址:�慎重保证本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。
一年(包括一年)内如产品出现缺陷,实行免费维修。
一年以上如产品出现缺陷,实行有偿终身维修。
�安全要求请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。
为了避免可能发生的危险,本产品只可在规定的范围内使用。
只有合格的技术人员才可执行维修。
—防止火灾或人身伤害使用适当的电源线。
只可使用本产品专用、并且符合本产品规格的电源线。
正确地连接和断开。
当测试导线与带电端子连接时,请勿随意连接或断开测试导线。
产品接地。
本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。
为了防止电击,接地导体必须与地面相连。
在与本产品输入或输出终端连接前,应确保本产品已正确接地。
注意所有终端的额定值。
为了防止火灾或电击危险,请注意本产品的所有额定值和标记。
在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。
请勿在无仪器盖板时操作。
如盖板或面板已卸下,请勿操作本产品。
避免接触裸露电路和带电金属。
YTB-S2系列交流电机变频调速器使用说明书概述YTB-S2系列变频器是我公司在YTB-S1的基础上改进而来,它保持了原有的优点,改善了运行性能, 增加了直流制动功能,及其它附属功能. 使调速更可靠,应用更广泛.,采用先进的SMD工艺,严格的出厂质检,能够满足用户的多种使用要求.开箱检查1 确认在运输过程中是否造成损坏。
2 检查变频器的铭牌以确定在您手中的产品就是所订货品。
3 检查包装箱内含变频器本体一台,使用说明书一份,出厂合格证一张及其它选购品。
安装与结构1.安装为了提高散热效果,应垂直安装变频器,安装底板应为铁质或为其它阻燃耐热材料,并留有足够的通风空间(周围至少留有12CM以上的空间).2.接线打开接线盖板,即可看到主接线柱和控制用接线柱。
端子说明见表二。
位置排列如图3, 图4为典型接线图.说明 U ,V ,W 变频器输出端子 连接三相电动机 P ,PR制动电阻端子 连接制动电阻控制回路 接线端子 说明X1,X2,X3,X4 多功能外接端子详见参数一览表中的说明 COM 与X1,X2,X3,X4相连的公共端 0V, 相对于+5V, +12V I+ 0-10mA 输入“+”端参见典型接线图VR外接电位器输入端(电位器中点) 电位器其它两端接+5V, COM. +12V 直流电压输出(正端) 可供给外接传感器用(最大20mA) r1,r2,r3多能继电器输出触点r3 为继电器中间转换触点K在位置1K在位置2K在位置3+5V COM I++12V VR X1X2X3X4r1r2W U 图3V PR P R 频率设定方式开关,K*频率设定方式开关K 的设置(模拟信号)外接电位器方式面板上的电位器1 2 3电流输入方式公共端COMX30--10mA输入I+r3空(T)S计数脉冲输入或定时器暂停端子+多功能端子公共端外接电位器单相或三相输入S10KX2VR +5V COMX1(T)MCRX4r1多机能继电器复位端图4外接刹车电阻变频器机壳V MP PRWr2r3U 安 全 事 项1. 此变频器仅应用于工业三相感应电机。
目录1 概述 (3)1.1应用范围 (3)1.2保护配置 (3)1.3主要特点 (3)2 技术参数 (3)2.1额定参数 (3)2.2功耗 (4)2.3交流回路过载能力 (4)2.4输出接点容量 (4)2.5装置内电源 (4)2.6主要技术指标 (4)2.7环境条件 (4)2.8电磁兼容 (5)2.9绝缘与耐压 (5)2.10通讯 (5)2.11机械性能 (5)3 装置原理 (5)3.1母线差动保护 (5)3.1.1 起动元件 (6)3.1.2 差动元件 (6)3.1.3 TA(电流互感器)饱和检测元件 (8)3.1.4 电压闭锁元件 (8)3.1.5 故障母线选择逻辑 (9)3.1.6 差动回路和出口回路的切换 (10)3.2母联(分段)失灵和死区保护 (12)3.3母联(分段)充电保护 (13)3.4母联(分段)过流保护 (14)3.5电流回路断线闭锁 (15)3.6电压回路断线告警 (16)3.7母线运行方式的电流校验 (16)3.8断路器失灵保护出口 (16)3.8.1 与失灵起动装置配合方式 (16)3.8.2 自带电流检测元件方式 (17)3.8.3 失灵电压闭锁元件 (17)3.8.4 母线分列运行的说明 (17)4 整定方法与参数设置 (19)4.1参数设置的说明 (19)4.1.1 装置固化参数 (19)4.1.2 装置系统参数 (19)4.1.3 装置使用参数 (20)4.2整定值清单 (21)4.3整定方法 (22)4.3.1 母差保护定值整定方法 (22)4.3.2 断路器失灵保护出口定值整定方法 (24)4.3.3 母联失灵保护定值整定方法 (25)4.3.4 充电保护定值整定方法 (25)4.3.5 母联过流保护定值整定方法 (25)4.3.6 TA断线定值整定方法 (25)4.3.7 失灵保护过流定值整定方法 (25)5 装置硬件介绍 (26)5.1硬件概述 (26)5.2机箱结构与面板布置 (26)5.3机箱背面布置和插件功能简介 (29)5.3.1 主机插件—— BP320 (31)5.3.2 管理机插件—— BP321 (31)5.3.3 保护单元插件—— BP330 (31)5.3.4 光耦输入、输出和电源检测插件—— BP331 (31)5.3.5 电压闭锁插件—— BP332 (32)5.3.6 出口信号、告警信号插件—— BP333 (32)5.3.7 辅助电流互感器插件—— BP310 (32)5.3.8 辅助电压互感器插件—— BP311 (32)5.3.9 电源模块插件—— BP360、BP361 (32)5.4装置原理图 (32)6 装置使用说明 (34)6.1界面显示 (34)6.1.1 主界面 (34)6.1.2 一级界面 (35)6.1.3 二级界面 (38)6.2装置调试与投运 (40)6.2.1 调试资料准备 (40)6.2.2 试验仪器 (41)6.2.3 通电前检查 (41)6.2.4 上电检查 (41)6.2.5 预设 (41)6.2.6 定值整定 (42)6.2.7 整机调试 (42)6.2.8 投入运行与操作 (46)6.3注意事项 (47)1 概述1.1 应用范围BP-2B 微机母线保护装置,适用于500KV 及以下电压等级,包括单母线、单母分段、双母线、双母分段以及 211接线在内的各种主接线方式,最大主接线规模为36个间隔(线路、元件和联络开关)。
少年易学老难成,一寸光阴不可轻- 百度文库目录一、概述 0二、产品特性 0三、技术参数 0九、保养、维修 (6)九、运输、贮存 (6)十、开箱及检查 (7)一、概述RTB-IV全自动变比测试仪可用于电力系统的三相变压器测试,特别适合于Z型绕组变压器、整流变压器和铁路电气系统的斯科特、逆斯科特、平衡变压器测试。
仪器采用了大屏幕液晶显示,全中文菜单及汉字打印输出,人机界面友好,功能完善,操作方便,是电力系统、变压器生产厂家和铁路电气系统理想的变压器变比组别极性测试仪。
本仪器输入单相电源,内部采用功率模块产生三相电源输出到变压器的高压侧,可进行三相变压器或其它特种变压器变比、误差及组别或相位角的测试,另外本仪器还能提供一组相差90°的二相电源输出,可进行逆斯科特变压器的变比及相位差测试。
二、产品特性◆自动产生幅值稳定、相位恒定的三相或两相标准电源。
◆不受变压器内部接线方式的约束,直接测量高、低压侧的电压比值及相角差。
◆速度快,一组数据的测试时间为几秒钟。
◆内部具有过流保护功能。
◆测试结果不受工频电源频率及幅值波动的影响。
◆尤其适用于特种变压器的变比及相位差测试。
◆真正意义上的三相同时测量。
◆具备RS232接口,方便生产厂家的测试自动化要求。
三、技术参数1.变比测试范围:1-10002.组别测试范围:1-123.变比测试准确度:±0.2%读数4.相位差测试范围: 0-360°5.相位差分辨率:0.001°6.仪器电源输入:220V±22V 、50Hz±1Hz7.仪器面板上有电源插座、电源开关、复位按钮、旋转鼠标、测试电源分合闸指示灯、液晶对比度调节旋钮、接地端子、打印机等。
8.测试电源输出端子、信号输入端子在仪器后面板上。
9.工作环境: 0~40℃;环境湿度≤85%RH四、使用说明1. 准备工作测三相电力变压器时,用测试线将变压器的高压侧(A、B、C)和仪器面板上所标的高压侧(A(α)、B(β)、C)相连,变压器低压侧(a、b、c)与仪器的低压侧(a (α)、b(β)、c)相连接,并保证接触良好。